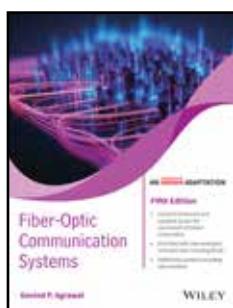


WILEY


Wiley Academic Catalog

Electrical, Electronics & Instrumentation Engineering

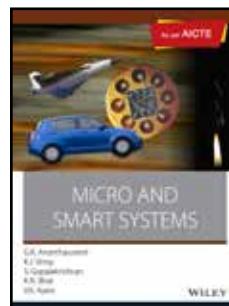
2025

www.wileyindia.com

ELECTRICAL, ELECTRONICS & INSTRUMENTATION ENGINEERING

Fiber-Optic Communication Systems, 5ed, An Indian Adaptation | e | k

Agrawal


About the Author

Govind P. Agrawal is a professor at the Institute of Optics at the University of Rochester and a Fellow of both the Optical Society of America and the Institute of Electrical and Electronics Engineering. He is a Senior Scientist at the Laboratory for Laser Energetics. Dr. Agrawal is author or coauthor of over 300 research papers, book chapters, and monographs.

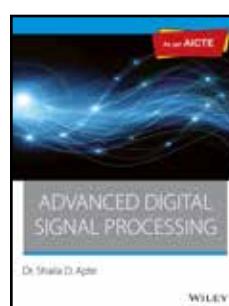
Table of Contents

- Preface • 1 Introduction • 1.1 Historical Perspective • 1.2 Basic Concepts • 1.3 Optical Communication Systems and Components • 1.4 Applications and Challenges • 2 Optical Fibers • 2.1 Geometrical-Optics Description • 2.2 Wave Propagation • 2.3 Dispersion in Single-Mode Fibers • 2.4 Dispersion-Induced Limitations • 2.5 Fiber Losses • 2.6 Nonlinear Optical Effects • 2.7 Fiber Design and Fabrication • 3 Optical Transmitters • 3.1 Semiconductor Laser Physics • 3.2 Single-Mode Semiconductor Lasers • 3.3 Semiconductor Laser Characteristics • 3.4 Modulation Techniques • 3.5 Light-Emitting Diodes • 3.6 Transmitter Design • 4 Optical Receivers • 4.1 Basic Concepts • 4.2 Common Photodetectors • 4.3 Receiver Design • 4.4 Receiver Noise • 4.5 Coherent Detection • 4.6 Receiver Sensitivity • 4.7 Sensitivity Degradation • 4.8 Receiver Performance • 5 Lightwave Systems • 5.1 System Architectures • 5.2 Design Guidelines • 5.3 Long-Haul Systems • 5.4 Sources of Power Penalty • 5.5 Forward Error Correction • 5.6 Optical Network Design Using Computer-Aided Design • 6 Multichannel Systems • 6.1 WDM Systems and Networks • 6.2 WDM Components • 6.3 System Performance Issues • 6.4 Time-Division Multiplexing • 6.5 Subcarrier Multiplexing • 6.6 Code-Division Multiplexing • 7 Loss Management • 7.1 Compensation of Fiber Losses • 7.2 Erbium-Doped Fiber Amplifiers • 7.3 Raman Amplifiers • 7.4 Optical Signal-To-Noise Ratio • 7.5 Electrical Signal-To-Noise Ratio • 7.6 Receiver Sensitivity and Q Factor • 7.7 Role of Dispersive and Nonlinear Effects • 7.8 Periodically Amplified Lightwave Systems • 8 Dispersion Management • 8.1 Dispersion Problem and Its Solution • 8.2 Dispersion-Compensating Fibers • 8.3 Fiber Bragg Gratings • 8.4 Dispersion-Equalizing Filters • 8.5 Optical Phase Conjugation • 8.6 Advanced Techniques • 8.7 Electronic Dispersion Compensation • 9 Control of Nonlinear Effects • 9.1 Impact of Fiber Nonlinearity • 9.2 Solitons in Optical Fibers • 9.3 Pseudo-linear Lightwave Systems • 9.4 Management of Nonlinear Effects • 10 Coherent Lightwave Systems • 10.1 Coherent Transmitters • 10.2 Coherent Receivers • 10.3 Noise and Bit-Error Rate • 10.4 Sources of Performance Degradation • 10.5 Management of Nonlinear Effects • 10.6 Digital Signal Processing • 10.7 Experimental Progress • 10.8 Channel Capacity • 11 Space-Division Multiplexing • 11.1 SDM Technique • 11.2 Modes of Optical Fibers • 11.3 SDM Components • 11.4 Modeling of SDM Systems • 11.5 Experimental Progress • 12 Advanced Topics • 12.1 Optical Signal Processing • 12.2 Wavelength Conversion • 12.3 Ultrafast Optical Switching • 12.4 Optical Regeneration • 12.5 Nonlinear Frequency-Division Multiplexing • 12.6 Optical Sensors • 12.7 Hybrid Fiber-FSO Systems • Problems • References • A System of Units • B Acronyms • C Formula for Pulse Broadening • D Nyquist Pulses • References • Index

9789357461245 | ₹ 1019

Micro and Smart Systems: As per AICTE

Ananthasuresh


About the Author

Prof. G.K. Ananthasuresh is a Professor of Mechanical Engineering at IISc, Bangalore, India. He has been chosen for the Shanti Swarup Bhatnagar Prize, 2010. He has been working in the microsystems area since 1991 with emphasis on modeling and design. Prof. Ananthasuresh has edited the first book on Optimal Synthesis Methods for MEMS.

Table of Contents

- 1 Introduction • 1.1 Why Miniaturization? • 1.2 Microsystems versus MEMS • 1.3 Why Microfabrication? • 1.4 Smart Materials, Structures and Systems • 1.5 Integrated Microsystems • 1.6 Applications of Smart Materials and Microsystems • 1.7 Summary
- 2 Micro Sensors, Actuators, Systems and Smart Materials: An Overview • 2.1 Silicon Capacitive Accelerometer • 2.2 Piezoresistive Pressure Sensor • 2.3 Conductometric Gas Sensor • 2.4 An Electrostatic Comb-Drive • 2.5A Magnetic Microrelay • 2.6 Portable Blood Analyzer • 2.7 Piezoelectric Inkjet Print Head • 2.8 Micromirror Array for Video Projection
- 2.9 Smart Materials and Systems • 2.10 Summary • 3 Micromachining Technologies • 3.1 Silicon as a Material for Micromachining • 3.2 Thin-Film Deposition • 3.3 Lithography • 3.4 Etching • 3.5 Silicon Micromachining • 3.6 Specialized Materials for Microsystems • 3.7 Advanced Processes for Microfabrication • 3.8 Summary • 4. Modeling of Solids in Microsystems • 4.1 The Simplest Deformable Element: A Bar • 4.2 Transversely Deformable Element: A beam • 4.3 Energy Methods for Elastic Bodies • 4.4 Examples and Problems • 4.5 Heterogeneous Layered Beams • 4.6 Bimorph Effect • 4.7 Residual Stresses and Stress Gradients • 4.8 Poisson Effect and the Anticlastic Curvature of Beams
- 4.9 Torsion of Beams and Shear Stresses • 4.10 Dealing with Large Displacements • 4.11 In-Plane Stresses • 4.12 Summary • 5 Finite Element Method • 5.1 Need for Numerical Methods for Solution of Equations • 5.2 Variational Principles • 5.3 Weak Form of the Governing Differential Equation • 5.4 Finite Element Method • 5.5 Numerical Examples
- 5.6 Finite Element Model for Structures with Piezoelectric Sensors and Actuators • 5.7 Analysis of a Piezoelectric Bimorph Cantilever Beam • 5.8 Summary • 6 Modeling of Coupled Electromechanical Systems • 6.1 Electrostatics • 6.2 Coupled Electromechanics: Statics • 6.3 Coupled Electromechanics: Stability and Pull-In Phenomenon • 6.4 Coupled Electromechanics: Dynamics • 6.5 Squeezed Film Effects in Electromechanics • 6.6 Summary • 7 Electronics Circuits and Control for Micro and Smart Systems • 7.1 Semiconductor Devices • 7.2 Electronics Amplifiers • 7.3 Practical Signal Conditioning Circuits for Microsystems • 7.4 Circuits for Conditioning Sensed Signals • 7.5 Introduction to Control Theory • 7.6 Implementation of Controllers • 7.7 Summary
- 8 Integration of Micro and Smart Systems • 8.1 Integration of Microsystems and Microelectronics • 8.2 Microsystems Packaging • 8.3 Case Studies of Integrated Microsystems • 8.4 Case Study of a Smart Structure in Vibration Control • 8.5 Summary • 9 Scaling Effects in Microsystems • 9.1 Scaling in the Mechanical Domain • 9.2 Scaling in the Electrostatic Domain • 9.3 Scaling in the Magnetic Domain • 9.4 Scaling in the Thermal Domain • 9.5 Scaling in Diffusion • 9.6 Scaling in Fluids • 9.7 Scaling Effects in the Optical Domain • 9.8 Scaling in Biochemical Phenomena • 9.9 Summary • Further Reading • Exercises • Glossary • Index • About the Authors

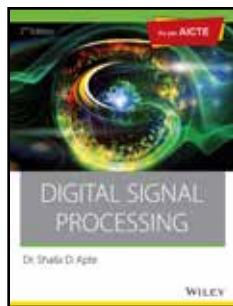
9788126520701 | ₹ 1009

Advanced Digital Signal Processing: As per AICTE, w/cd | e

Apte

About the Author

Dr. Shaila Dinkar Apte has been teaching at Walchand College of Engineering, Sangli (Maharashtra) for last 27 years of which she has been teaching DSP in UG courses for 17 years and Advanced DSP in PG courses for 8 years. Besides teaching DSP, she has also taught subjects like Digital Communication, Communication



Systems, Mobile Communication, Random Signals and Processes, etc. She is currently working as a professor in Rajarshi Shahu College of Engineering, Pune.

Table of Contents

- Foreword • Preface • Random Signals and Processes • Discrete Fourier Transform and its Applications • FIR and Adaptive FIR Filter Design • IIR and Adaptive IIR Filter Design • Linear Prediction • Spectral Estimation • Multirate DSP and Applications • DCT, WT, and Applications • Introduction to Digital Signal Processors

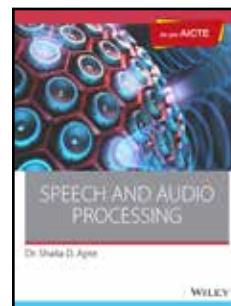
9788126508839 | ₹ 879

Digital Signal Processing, 2ed: As per AICTE, w/cd | e

Apte

About the Author

Dr. Shaila Dinkar Apte is currently working as a Professor in Rajarshi Shahu College of Engineering, Pune and as a reviewer for the International Journal of Speech Technology by Springer Publication, International Journal of Digital Signal Processing, Elsevier Publication and Bulletin of Pure and Applied Mathematics (BPAM). She is currently guiding 8 PhD candidates and about 23 candidates completed their M.E. dissertations under her guidance. With a vast teaching experience of 28 years in Electronics Engineering, she enjoys great popularity amongst students. She has been teaching Digital Signal Processing for the last 18 years.


Table of Contents

- Foreword • Preface to Second Edition • • 1 Fundamentals of DSP • 1.1 Signals • 1.2 Classification of Signals • 1.3 Graph Terminology and Domains • 1.4 DT Signals or Sequences • 1.5 Signal Processing Operations • • 2 Sampling • 2.1 Sampling Theorem • 2.2 Sampling of Analog Signals (Case I) • 2.3 Recovery of Analog Signals (Case I) • 2.4 Sampling of Analog Signals (Case II) • 2.5 Recovery of Analog Signals (Case II) • 2.6 Analytical Treatment • 2.7 Analytical Example • 2.8 Anti-Aliasing Filter • • 3 Discrete Time Signals and Systems • 3.1 DT Representation of Sinusoids • 3.2 Some Standard DT Signals • 3.3 Analog Signals • 3.4 DT Signals • 3.5 DT Systems • 3.6 Properties of LTI Systems • • 4 Z Transform • 4.1 Need for a Transform • 4.2 Relation between Laplace Transform and Z Transform • 4.3 Relation between Fourier Transform (FT) and Z Transform • 4.4 Solved Problems on Z Transform • 4.5 Properties of ROC • 4.6 Properties of Z Transform • 4.7 Relation between Pole Locations and Time Domain Behavior • 4.8 Inverse Z Transform • 4.9 Solution of Difference Equation using Z Transform • 4.10 Applications of ZT and IZT • • 5 Discrete Fourier Transform • 5.1 Sampling Theorem in Frequency Domain: DFT • 5.2 Interpolation Formula for X(?) • 5.3 Relationship to Z Transform • 5.4 DFT as a Linear Transformation • 5.5 Properties of DFT • 5.6 Circular Convolution and Its Implementation • 5.7 Conversion of Linear Convolution to Circular Convolution • 5.8 Efficient Computation of DFT • 5.9 Linear Filtering using FFT • 5.10 Goertzel Algorithm • 5.11 Spectral Resolution and Selection of Window Length • 5.12 Frequency Analysis of DT Signals • 5.13 Power Spectral Density and Energy Spectral Density • 5.14 Chirp Z Transform Algorithm • • 6 Linear Time-Invariant Filter Realization • 6.1 FIR and IIR Systems • 6.2 FIR System Structures • 6.3 IIR System Structures • • 7 FIR Filter Design • 7.1 Ideal Filter Requirements • 7.2 Fourier Series Expansion Method • 7.3 Use of Windowing • 7.4 High-Pass and Band-Pass Filter Design • 7.5 FIR Filter Design using Frequency Sampling Method • 7.6 FIR Differentiator Design • 7.7 Design of FIR Hilbert Transformer • 7.8 Frequency Sampling Structures • 7.9 Equiripple Design of FIR Filters – Alternation Theorem • 7.10 Application of FIR Filter for Speech Processing • • 8 IIR Filter Design • 8.1 IIR Filter Design using Method of Mapping of Differentials • 8.2 IIR Filter Design using Impulse Invariance • 8.3 IIR Filter Design using Bilinear Transformation • 8.4 Analog Filters – Butterworth Filters • 8.5 Analog Filters – Chebyshev Filters • 8.6 Applications of IIR Filters • • 9 Quantization Effects in IIR Filters • 9.1 Truncation and Rounding • 9.2 Input Signal Sample Quantization • 9.3 Coefficient Inaccuracy Error • 9.4 Product Round-Off Error • 9.5 Scaling Considerations • 9.6 Limit Cycle Oscillations • • 10 Multirate DSP • 10.1 Decimation by Integer Factor D • 10.2 Interpolation by Integer Factor I • 10.3 Sampling Rate Conversion by Factor I/D • 10.4 Efficient Implementation of Decimator/Interpolator • 10.5 Polyphase Filter Structures • 10.6 Time Variant Filter Structures • 10.7 Multistage Filter Design • 10.8 Oversampling ADC/DAC • 10.9 Sub-Band Coding of Speech Signals • • 11 Other Transforms • 11.1

Basis Functions, Basis Matrix, Orthogonality and Reversibility • 11.2 Energy Compaction

- 11.3 Decorrelation • 11.4 DCT and DST • 11.5 Karhunen–Loève Transform (KLT) • 11.6 Applications of Different Transforms • • 12 Introduction to Wavelet Transform • 12.1 Short-Time Fourier Transform (STFT) • 12.2 Wavelet Transform • 12.3 Haar Wavelet and Multiresolution Analysis • 12.4 Daubechies Wavelets • 12.5 Some Other Standard Wavelets • 12.6 Applications of Wavelet Transform • • 13 Introduction to Digital Signal Processors • 13.1 Digital Signal Processor Architecture • 13.2 Multiple Access Memory and Multiport Memory • 13.3 Circular Buffering • 13.4 Fixed-Point and Floating-Point Representations • 13.5 Case Study – TMS320C6713 (Texas Instruments) • 13.6 Case Study – ADSP SHARC Processor (Analog Devices) • 13.7 VLSI Architecture for DSP Algorithms • • Summary • Key Terms • Multiple-Choice Questions • Review Questions • Answers • • Appendix: Table of Z Transform Pairs • Frequently Asked Questions For Oral Examination • Frequently Asked Questions For Theory Examination • Index

9788126510733 | ₹ 919

Speech and Audio Processing: As per AICTE | e

Apte

About the Author

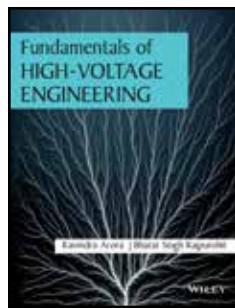

Dr. Shaila Dinkar Apte is currently working as a Professor at Rajarshi Shahu College of Engineering, Pune. She has formerly been an Assistant Professor in Walchand College of Engineering, Sangli, for 27 years; a member of the Board of Studies at Shivaji University and a Principal Investigator for a research project sponsored by the Armament Research and Development Establishment (ARDE), New Delhi.

Table of Contents

- Preface • Chapter 1 Fundamentals of Speech • 1.1 The Human Speech Production Mechanism • 1.2 LTI Model for Speech Production • 1.3 Nature of the Speech Signal • 1.4 Linear Time-Varying Model • 1.5 Phonetics • 1.6 Types of Speech • 1.7 Voiced and Unvoiced Decision Making • • 1.8 Audio File Formats: Nature of the WAV File • Chapter 2 Parameters of Speech: Pitch and Formants • 2.1 Fundamental Frequency or Pitch Frequency • 2.2 Parallel Processing Approach for Calculation of Pitch Frequency • 2.3 Pitch Period Measurement Using Spectral Domain • 2.4 Cepstral Domain • 2.5 Formants and Their Relation With LPC • 2.6 Evaluation of Formants Using Cepstrum • 2.7 Evaluation of Formants Using Log Spectrum • 2.8 Evaluation of Formants Using Power Spectral Density Estimate • 2.9 Estimation of Formants: Other Methods • Chapter 3 Spectral Parameters of Speech • 3.1 Homomorphic Processing • 3.2 Cepstral Analysis of Speech: Cepstral Coefficients • 3.3 The Auditory System as a Filter Bank • 3.4 Mel Frequency Cepstral Coefficients (MFCCs) • 3.5 Perceptual Linear Prediction (PLP) • 3.6 Log Frequency Power Coefficients (LFPCs) • 3.7 RelAitive SpecTrAI Perceptual Linear Prediction (Rasta-PLP): Strategies for Robustness • 3.8 Short-Time Spectral Analysis of Speech: Short-Time Fourier Transform (STFT) • 3.9 Wavelet Transform Analysis of Speech • Chapter 4 Linear Prediction of Speech 143 • 4.1 Lattice Structure Realization • 4.2 Forward Linear Prediction • 4.3 Autocorrelation Method • 4.4 Covariance Method • 4.5 Lattice Methods • 4.6 Selection of Order of the Predictor • 4.7 Line Spectral Frequencies/Line Spectral Pair Frequencies • Chapter 5 Speech Quantization and Coding • 5.1 Uniform and Non-Uniform Quantizers and Coder • 5.2 Companded Quantizer • 5.3 Uniform Quantization of Non-uniform Sources: Adaptive Quantizers • 5.4 Waveform Coding of Speech • 5.5 Comparison of Different Waveform Coding Techniques • 5.6 Parametric Speech Coding Techniques • 5.7 Sinusoidal Speech Coding Techniques • 5.8 Mixed Excitation Linear Prediction Coder • 5.9 Multi-Mode Speech Coding (Hybrid Coder) • 5.10 Transform Domain Coding of Speech • • • Chapter 6 Speech Processing Applications • 6.1 Speech Recognition Systems • 6.2 Architecture of a Large Vocabulary Continuous Speech Recognition System • 6.3 Deterministic Sequence Recognition for ASR • 6.4 Statistical Sequence Recognition for ASR • 6.5 Statistical Pattern Recognition and Parameter Estimation • 6.6 VQ-HMM-Based Speech Recognition • 6.7 Discriminant Acoustic Probability Estimation • 6.8 Word Spotting/Keyword Spotting • 6.9 Speech Recognition and Understanding • 6.10 Speaker Recognition • 6.11 Distortion Measures: Mathematical and Perceptual • 6.12 Speech Enhancement • 6.13 Adaptive Echo Cancellation • Chapter 7 Speech Synthesis • 7.1 A Text-to-Speech System • 7.2 Synthesizer Technologies • 7.3 Speech Synthesis Using

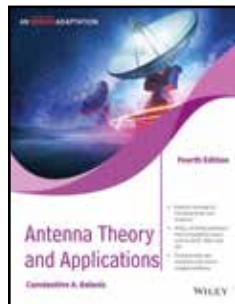
Other Methods • 7.4 Speech Transformations • 7.5 Emotion Recognition from Speech • 7.6 Watermarking for Authentication of a Speech/Music Signal • Chapter 8 Basics of Musical Instruments and Music Synthesis • 8.1 Indian Musical Instruments • 8.2 Features Used for Classification • 8.3 Music Synthesis • 8.4 Musical Instrument Digital Interface (MIDI) • 8.5 Streaming Audio • 8.6 Piano Note Synthesis Using LPC and WT • 8.7 Audio Standards • • Summary • Key Terms • Multiple Choice Questions • Review Questions • Problems (Write MATLAB Programs) • Suggested Projects (Write MATLAB Programs) • Answers • Frequently Asked Short Questions With Answers • Frequently Asked Long Questions With Pointers • Bibliography • Index

9788126540389 | ₹ 929

Fundamentals of High-Voltage Engineering | IM | e | k

Arora

About the Author


Dr. Ravindra Arora retired from Indian Institute of Technology Kanpur in May 2008, where he worked for 34 years. At IITK, he established a unique high-voltage laboratory, where he conducted research activity for more than 40 master's theses, 2 PhDs, and a large number of undergraduate projects, besides having completed several industry-sponsored projects. He is a Life

Member of IEEE (USA) and Institution of Engineers (India).

Table of Contents

- Preface • About the Authors • Acknowledgements • Preamble • • Chapter 1 Introduction to High-Voltage Engineering • • Chapter 2 Electric Field Intensity, Stress Control, and Types of Breakdown in Dielectrics • • Chapter 3 Transient Overvoltages and Insulation Coordination in High-Voltage Networks • • Chapter 4 Field-Dependent Electric Strength and Breakdown in Gaseous Dielectrics and Vacuum • • Chapter 5 Lightning, a Breakdown Phenomenon in Atmospheric Air, Its Effects and Protection
- • Chapter 6 Solid- and Liquid-Insulating Materials, Their Classification, Properties, and Breakdown • • Chapter 7 Generation of High Test Voltages • • Chapter 8 Measurement of High Test Voltages • • Chapter 9 Non-Destructive Testing and Quality Control of Electrical Equipment • • Chapter 10 High-Voltage Test Laboratory Design and Curriculum Experiments • Experiment I • Experiment II • Experiment III • Experiment IV • Experiment V • Experiment VI • Experiment VII • • Experiment VIII and IX • • Experiment X • Summary • References • Worked Examples • Multiple-Choice Questions • Review Questions • Numerical Problems • • Appendix A Finite Element Modelling and High-Voltage Engineering • A.1 Introduction to FEM Modelling in COMSOLTM • Reference • Practice Questions • • Appendix B Travelling Waves on Transmission Lines • B.1 Evaluation of the Velocity of Wave Propagation • B.2 Reflection and Refraction Coefficients of Travelling Waves • Reference • Worked Examples • Numerical Problems • • Answers • Index

9788126579747 | ₹ 669

Antenna Theory and Applications, 4ed, An Indian Adaptation | IM | e | k

Balanis

About the Author

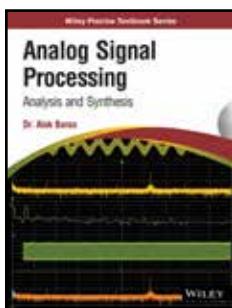

Constantine A. Balanis was with the NASA Langley Research Center in Hampton, VA, and from 1970 to 1983, he was with the Department of Electrical Engineering of West Virginia University. In 1983 he joined Arizona State University and is now Regents' Professor of Electrical Engineering. Dr. Balanis is also a life fellow of the IEEE.

Table of Contents

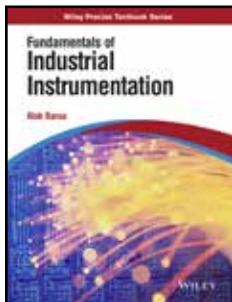
- 1 Introduction To Antennas • 1.1 Introduction • 1.2 Types of Antennas • 1.3 Radiation

Mechanism • 1.4 Current Distribution on a Thin Wire Antenna • 1.5 Historical Advancement • 2 Fundamental Parameters And Figure-Of-Merit Of Antennas • 2.1 Introduction • 2.2 Radiation Pattern • 2.3 Radiation Power Density • 2.4 Radiation Intensity • 2.5 Beamwidth • 2.6 Directivity • 2.7 Numerical Techniques • 2.8 Antenna Efficiency • 2.9 Gain, Realized Gain • 2.10 Beam Efficiency • 2.11 Bandwidth • 2.12 Polarization • 2.13 Input Impedance • 2.14 Antenna Radiation Efficiency • 2.15 Antenna Vector Effective Length and Equivalent Areas • 2.16 Maximum Directivity and Maximum Effective Area • 2.17 Friis Transmission Equation and Radar Range Equation • 2.18 Antenna Temperature • • 3 Radiation Integrals And Auxiliary Potential Functions • 3.1 Introduction • 3.2 The Vector Potential A for an Electric Current Source J • 3.3 The Vector Potential F for a Magnetic Current Source M • 3.4 Electric and Magnetic Fields for Electric (J) and Magnetic (M) Current Sources • 3.5 Solution of the Inhomogeneous Vector Potential Wave Equation • 3.6 Far-Field Radiation • 3.7 Duality Theorem • 3.8 Reciprocity and Reaction Theorems • • 4 Linear Wire And Loop Antennas • 4.1 Introduction • 4.2 Infinitesimal Dipole • 4.3 Small Dipole • 4.4 Region Separation • 4.5 Finite Length Dipole • 4.6 Half-Wavelength Dipole • 4.7 Linear Elements Near or On Infinite Perfect Electric Conductors (PEC), Perfect Magnetic Conductors (PMC) and Electromagnetic Band-Gap (EBG) Surfaces • 4.8 Ground Effects • 4.9 Loop Antennas • 4.10 Small Circular Loop • 4.11 Arrays • 4.12 Mobile Communication Systems Applications • • 5 Aperture Antennas • 5.1 Introduction • 5.2 Field Equivalence Principle: Huygens' Principle • 5.3 Radiation Equations • 5.4 Directivity • 5.5 Rectangular Apertures • 5.6 Circular Apertures • 5.7 Babinet's Principle • 5.8 Fourier Transforms in Aperture Antenna Theory • 5.9 Ground Plane Edge Effects: The Geometrical Theory of Diffraction • • 6 Horn Antennas • 6.1 Introduction • 6.2 E-Plane Sectoral Horn • 6.3 H-Plane Sectoral Horn • 6.4 Pyramidal Horn • 6.5 Conical Horn • 6.6 Corrugated Horn • 6.7 Multimode Horns • 6.8 Dielectric-Loaded Horns • 6.9 Phase Center • • 7 Reflector Antennas • 7.1 Introduction • 7.2 Plane Reflector • 7.3 Corner Reflector • 7.4 Parabolic Reflector • 7.5 Spherical Reflector • • 8 Planar And Microstrip Antennas • 8.1 Introduction • 8.2 Rectangular Patch • 8.3 Circular Patch • 8.4 Quality Factor, Bandwidth, and Efficiency • 8.5 Input Impedance • 8.6 Coupling • 8.7 Circular Polarization • • 9 Traveling Wave And Broadband Antennas • 9.1 Introduction • 9.2 Traveling Wave Antennas • 9.3 Broadband Antennas • 9.4 Frequency Independent Antennas • 9.5 Equiangular Spiral Antennas • 9.6 Log-Periodic Antennas • 9.7 Fundamental Limits of Electrically Small Antennas • 9.8 Antenna Miniaturization • 9.9 Fractal Antennas • • 10 Broadband Dipoles And Matching Techniques • 10.1 Introduction • 10.2 Biconical Antenna • 10.3 Triangular Sheet, Flexible and Conformal Bow-Tie, and Wire Simulation • 10.4 Vivaldi Antenna • 10.5 Cylindrical Dipole • 10.6 Folded Dipole • 10.7 Discone and Conical Skirt Monopole • 10.8 Matching Techniques • • 11 Arrays: Linear, Planar, And Dipole • 11.1 Introduction • 11.2 Two-Element Array • 11.3 N-Element Linear Array: Uniform Amplitude and Spacing • 11.4 N-Element Linear Array: Directivity • 11.5 Design Procedure • 11.6 N-Element Linear Array: Uniform Spacing, Nonuniform Amplitude • 11.7 Superdirective • 11.8 Planar Array • 11.9 Design Considerations • 11.10 Dipole Array • 11.11 Design of Dipole Array • 11.12 Mutual Coupling in Arrays • 11.13 Arrays and Feed Networks • • 12 Modern Antenna Structures • 12.1 Introduction • 12.2 Reconfigurable Antennas • 12.3 Ultra Wideband (UWB) Antennas • 12.4 Metamaterials Based Antennas • 12.5 Dielectric Resonator Antennas • 12.6 Substrate-Integrated Waveguide (SIW) Antennas • 12.7 Wearable Textile Antennas • 12.8 Smart Antennas • • 13 Antenna Measurements • 13.1 Introduction • 13.2 Antenna Ranges • 13.3 Radiation Patterns • 13.4 Gain Measurements • 13.5 Directivity Measurements • 13.6 Radiation Efficiency • 13.7 Impedance Measurements • 13.8 Current Measurements • 13.9 Polarization Measurements • 13.10 Scale Model Measurements • • 14 Applications Based Antennas • 14.1 Introduction • 14.2 Frequency Band Allocation for Various Applications • 14.3 Antennas for Mobile Communications • 14.4 Antennas for Satellite Communications • 14.5 Antennas for Navigation Purposes • 14.6 Antennas for Radar and Remote Sensing Applications • 14.7 Antennas for Bluetooth Applications • 14.8 Antennas for Wi-Fi Applications • 14.9 Antennas for Automobile Applications • 14.10 Antennas for Defense Applications • 14.11 Antennas for Biomedical Applications • 14.12 Antennas for Tera Hertz Applications • 14.13 Concluding Remarks • • 15 Advanced Microwave Communication And Wave Propagation • 15.1 Introduction • 15.2 Atmospheric Layers and Modes of Propagation • 15.3 Ground Wave Propagation • 15.4 Surface Wave Propagation • 15.5 Space Wave Propagation • 15.6 Ionospheric Wave Propagation • 15.7 Smart-Antenna Analogy • 15.8 Cellular Radio Systems Evolution • 15.9 Signal Propagation • • References • Problems • • Appendices

9789354248474 | ₹ 1069

Analog Signal Processing: Analysis and Synthesis, w/cd | e | k

Barua


About the Author

Dr. Alok Barua is Professor in the Department of Electrical Engineering, IIT Kharagpur. With more than twenty eight years of teaching experience in IIT, he has published many papers in his teaching and research areas - instrumentation, expert system based synthesis of circuits, testing and fault diagnosis of analog and mixed signal circuit, image processing, bioreactor, etc.

Table of Contents

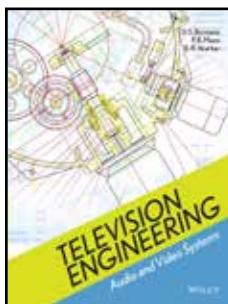
- Chapter 1 Fundamentals of Analog Signal Processing • 1.1 Introduction • 1.2 Fundamentals of an Active Filter • 1.3 Filter Types • 1.4 Operational Amplifiers • 1.5 Admittance Matrix Approach in Analysis of Analog Circuits • 1.6 Synthesis of Active Filters • 1.7 Oscillators • 1.8 Switched Capacitor and Switched Current Circuits • 1.9 Approximation Functions • Chapter 2 Analysis • 2.1 Introduction • 2.2 The Indefinite Admittance Matrix Method • 2.3 AM Analysis of Networks Constrained by Op-Amps • 2.4 Algorithm for Finding the Transfer Function of a Network Constrained by a Single Op-Amp • 2.5 Analysis of Multi-Op-Amp-Constrained RC Networks • 2.6 Algorithms • 2.7 Conclusion • Chapter 3 Synthesis • 3.1 Introduction • 3.2 Single Amplifier Filter • 3.3 Adjustment of Gain Constant in a Single Amplifier Filter • 3.4 Sensitivity • 3.5 Sallen and Key Filter • 3.6 Friend Biquad • 3.7 Two Amplifier Biquad • 3.8 Four Amplifier Biquad • 3.9 Three Amplifier Feedforward Biquad • 3.10 Introduction to the Expert System for Biquad Synthesis • 3.11 Conclusion • Chapter 4 High Pole Selectivity Filter • 4.1 Introduction • 4.2 New Enhanced Pole Selectivity Biquad with Reduced Component Spread • 4.3 Conclusion • Chapter 5 High-Order Filter Design • 5.1 Introduction • 5.2 Design Rules • 5.3 Approximation Function • 5.4 A Unifying Approach for High-Order Filter Design • 5.5 Synthesis of High-Order Bandpass Filter • 5.6 Expert System-Based Synthesis of High-Order Filter • 5.7 Conclusion • Chapter 6 Oscillators • 6.1 Introduction • 6.2 Sinusoidal Oscillator Circuits • 6.3 Digital Generation of Analog Periodic Signals • 6.4 Delta-Sigma Signal Generation • 6.5 Stimulus Generation for Testing of Analog Circuit • 6.6 Non-Linear Wave-Shaping Circuit • 6.7 Circuit Implementation of a Four-Level Comparator • 6.8 Conclusion • Chapter 7 Switched Capacitor Circuits • 7.1 Introduction • 7.2 Switched Capacitor Resistor • 7.3 Resistor Simulation • 7.4 Switched Capacitor Integrator • 7.5 Parasitic Capacitance • 7.6 Clock Feedthrough • 7.7 Effect of On-Resistance of MOS Switches • 7.8 Switched Capacitor State Variable Second-Order Filter Circuit • 7.9 Sensitivities • 7.10 Limitations of Switched Capacitor Filters • 7.11 Conclusion • Chapter 8 Switched Current Techniques • 8.1 Introduction • 8.2 Limitations of Switched Capacitor Circuit • 8.3 Switched Current Architecture and Algorithms • 8.4 Delay Cell and Integrator Module • 8.5 Switched Current Filters • 8.6 Synthesis • 8.7 Conclusion • Chapter 9 Approximation Functions • 9.1 Introduction • 9.2 Lowpass Loss Function • 9.3 Butterworth Approximation • 9.4 Chebyshev Approximation • 9.5 Inverse Chebyshev Approximation • 9.6 Elliptic Approximation • 9.7 Bessel Approximation • 9.8 Frequency Transformation • 9.9 Conclusion

9788126541980 | ₹ 869

Fundamentals of Industrial Instrumentation | e | k

Barua

About the Author


Alok Barua, Ph.D., is Professor in the Department of Electrical Engineering, IIT Kharagpur. With more than 25 years of teaching experience in IIT, he has published many papers in his teaching and research areas - instrumentation, bioreactor, image processing, testing and fault diagnosis of analog and mixed signal circuits. Professor Barua is the co-author of several

books: "Computer Aided Analysis, Synthesis and Expertise of Active Filters" (1995); "Fault Diagnosis of Analog Integrated Circuit" (2005); and recently "3D Reconstruction with Feature Level Fusion" (2010).

Table of Contents

- Chapter 1: Introduction • 1.1 Introduction • 1.2 Process Instrumentation System • 1.3 Instrument Characteristics • Chapter 2: Dynamic Characteristics • Learning Objectives • 2.1 Introduction • 2.2 Zero-Order Instrument • 2.3 First-Order Instrument • 2.4 Second-Order System • Problems • Chapter 3: Strain, Load, and Torque Measurement • Learning Objectives • 3.1 Introduction • 3.2 Strain Gauge • 3.3 Load Cell • 3.4 Cantilever Beam Type Load Cell • 3.5 Intelligent Load Cells • 3.6 Torque Measurement • Problem • Chapter 4: Temperature Sensors • Learning Objectives • 4.1 Introduction • 4.2 Thermistor • 4.3 Thermocouple • 4.4 Resistance Thermometer • Problems • Chapter 5: Displacement Measurement • Learning Objectives • 5.1 Introduction • 5.2 Potentiometer • 5.3 Linear Variable Differential Transformer (LVDT) • 5.4 Capacitive Transducers • Problems • Chapter 6: Pressure Sensors • Learning Objectives • 6.1 Introduction • 6.2 Bourdon Gauge • 6.3 Bellows Gauge • 6.4 Diaphragm Pressure Transducer • 6.5 Low Pressure Measurement • Problems • Chapter 7: Flowmeter • Learning Objectives • 7.1 Introduction • 7.2 Differential Pressure Flowmeters • 7.3 Orifice Meter • 7.4 Flow Nozzle/Dall Tube/Venturi Meter • 7.5 Pitot Tube • 7.6 Elbow Meter • 7.7 Rotameter • 7.8 Weir • 7.9 Variable Reluctance Tachogenerator • 7.10 Turbine Flowmeter • 7.11 Electromagnetic Flowmeter • 7.12 Ultrasonic Flowmeter • 7.13 Hot-Wire Anemometer • Problems • Chapter 8: Flapper-Nozzle System • Learning Objectives • 8.1 Introduction • 8.2 Application as a Displacement Measuring Device • 8.3 Static Sensitivity • 8.4 Force Balance Differential Pressure Transmitter • 8.5 Flapper Nozzle with Air Relay • 8.6 Current-to-Pressure (I/P) Transducer • Chapter 9: Signal Conditioning Circuits • Learning Objectives • 9.1 Active Filters • 9.2 Single Amplifier Filter • 9.3 Negative Feedback Circuits • 9.4 Inductors Simulator • 9.5 Low-Pass Filter • 9.6 High-Pass Filter • 9.7 Band-Pass Filter • 9.8 State Variable Filter • 9.9 Sample-and-Hold Circuit • 9.10 Logarithmic Amplifier • 9.11 Antilogarithmic Amplifier • 9.12 Analog Switch • 9.13 Analog Multiplexer and Demultiplexer • Chapter 10: Piezoelectric Sensors • Learning Objectives • 10.1 Introduction • 10.2 Piezoelectric Phenomenon • 10.3 Piezoelectric Materials • 10.4 Piezoelectric Transducers • 10.5 Measuring Circuit • 10.6 Piezoelectric Accelerometers • 10.7 Unimorph • 10.8 Bimorphs • 10.9 Actuator Stacks • 10.10 Sandwich Piezoelectric Transducers • 10.11 Pyroelectricity • 10.12 Limitations of Piezoelectric Materials • Chapter 11: Ultrasonic Sensors • Learning Objectives • 11.1 Introduction • 11.2 Analysis • 11.3 Equivalent Circuit of the Transmitter • 11.4 Transmission of Ultrasound • 11.5 Measurement of Ultrasound • 11.6 Special Application • Chapter 12: Measurement of Magnetic Field • Learning Objectives • 12.1 Principle of Measurement of Magnetic Field • 12.2 Hall Effect • Problems • Chapter 13: Optoelectronic Sensors • Learning Objectives • 13.1 Photoconductivity • 13.2 Photocurrent • 13.3 The Semiconductor Photodiode • 13.4 Sensors Based on Optical Fibre • Chapter 14: pH and Viscosity Measurement • Learning Objectives • 14.1 Introduction to pH • 14.2 Why is pH Measurement Important? • 14.3 pH Probe • 14.4 Measurement of Viscosity • Problem • Chapter 15: Dissolved Oxygen Sensors • Learning Objectives • 15.1 Introduction • 15.2 Dissolved Oxygen Sensing • 15.3 Principle of Operation of Polarographic Electrode • 15.4 Principle of Operation of Galvanic Electrode • 15.5 Limitations of Single-Layer Electrode Model • 15.6 Design of Electrodes • 15.7 Details of Some Commercially Available DO₂ Sensors • 15.8 Electrode Metals • 15.9 Electrolytes in DO₂ Probe • 15.10 Membrane • 15.11 Signal Conditioning Circuits • 15.12 General Design Considerations • 15.13 Calibration of DO₂ Sensors • Chapter 16: Gas Chromatography • Learning Objectives • 16.1 Introduction • 16.2 Different Methods in Chromatography • 16.3 Basics of Chromatography • 16.4 Liquid Chromatography • Chapter 17: Pollution Measurement • Learning Objectives • 17.1 Introduction • 17.2 Sample Collection • 17.3 Aerosol Contaminants • 17.4 Gaseous Contaminants • 17.5 Carbon Monoxide Detection • 17.6 NO_x Measurement • 17.7 Sulphur Dioxide Analyzer • 17.8 Ozone Detection • 17.9 Detection of Hydrocarbons • 17.10 Air Quality Index • 17.11 Measurement and Calculation • Chapter 18: Smart Sensors • Learning Objectives • 18.1 Integrated, Smart, and Intelligent Sensors • 18.2 Logical Function • 18.3 Integration of Signal Processing • 18.4 Self-Calibrating Micro Sensors • 18.5 Self-Testing of Smart Sensors • 18.6 Multisensing • 18.7 Communication • 18.8 Applications of Smart Sensors • Bibliography • Solutions to Problems • Objective Type Questions and Answers • Appendix I: Tables for Orifice Meter and Venturimeter • Appendix II: Thermocouple Tables • Index

9788126528820 | ₹ 889

Television Engineering: Audio and Video Systems | e | k

Bormane

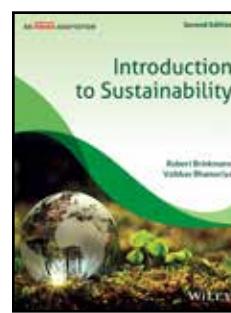
About the Author

Dr. D. S. Bormane is currently Principal and Professor in the Department of Electronics and Telecommunication, Rajarshi Shahu College of Engineering, Pune. He has a total teaching experience of 28 years. He is also working as Member of Research & Recognition Committee for Computer at Pune University.

Table of Contents

- Preface • 1. Introduction • 1.1 History • 1.2 TV Broadcasting History • 1.3 Modern Trends in TV • 2. Fundamentals of Television System • 2.1 Introduction • 2.2 Basics of Sound and Picture • 2.3 Color Television Signal Transmission • 2.4 Camera Tubes • 2.5 Characteristics of Human Eye • 2.6 Resolution • 2.7 Brightness • 2.8 Persistence of Vision • 2.9 Flicker • 2.10 Aspect Ratio • 2.11 Vertical Resolution • 2.12 Kell Factor • 2.13 Horizontal Resolution • 2.14 Scanning • 2.15 Vertical Trace and Retrace • 3. Composite Video Signal • 3.1 Introduction • 3.2 Composite Video Signal • 3.3 Horizontal Blanking Pulse • 3.4 Vertical Blanking Pulse • 3.5 Summary of Composite Video Signal • 3.6 Composite Video Signal Characteristics • 4. Television Signal Bandwidth and Transmission • 4.1 Introduction • 4.2 TV Signal Transmission and Modulation • 4.3 Vestigial Sideband Transmission • 4.4 Amplitude Correction • 4.5 TV Channel Bandwidth • 4.6 TV Broadcast Bands and Channels • 5. Television Standards • 5.1 Introduction • 5.2 CCIR Standard • 5.3 National Television Standards Committee • 5.4 Phase Alternate Lines • 5.5 SECAM (Sequence Couleur à Mémoire) • 5.6 SECAM on PAL • 5.7 Advanced Television Systems Committee (ATSC) • 5.8 Comparison between NTSC, PAL and SECAM Systems • 6. Monochrome Television Receiver • 6.1 Introduction • 6.2 Block Diagram of Monochrome Receiver • 6.3 Monochrome TV Receiver Controls • 6.4 Use of ICs in a TV Receiver • 7. Television Cameras • 7.1 Introduction • 7.2 Principle Working of TV Camera • 7.3 Characteristics of Camera Tubes • 7.4 Image Orthicon • 7.5 Vidicon • 7.6 Plumbicon Camera Tube • 7.7 Silicon Diode Array Vidicon/Silicon Vidicon • 7.8 Saticon Camera Tube • 7.9 Newvicon Camera Tube • 7.10 Chalnicon Camera Tube • 7.11 Charge-Coupled Device (CCD) Cameras • 7.12 Comparison of Camera Tubes • 7.13 Generation and Video Processing of Camera Pick-Up Signals • 8. Picture Tubes • 8.1 Introduction • 8.2 Basics for Generation of Electron Beam in a CRT • 8.3 Monochrome Picture Tube • 8.4 Color Picture Tubes • 9. Essentials of Color Television • 9.1 Introduction • 9.2 Basic Block Diagram of Color TV • 9.3 Transmission of Color TV Signals • 9.4 Color Fundamentals • 9.5 Color TV Signals • 9.6 Quadrature Amplitude Modulation • 9.7 Frequency Interleaving • 10. Color Television Receivers and Systems • 10.1 Introduction • 10.2 Color TV Receiver Block Diagram • 10.3 NTSC System • 10.4 SECAM System • 10.5 PAL System • 11. Television Antenna and Propagation • 11.1 Introduction • 11.2 Half-Wave Dipole • 11.3 Resonant Antenna • 11.4 Basics of Antenna • 11.5 Folded Dipole Antenna • 11.6 Parasitic Elements • 11.7 Transmitting Antenna • 11.8 Receiving Antenna • 11.9 Antenna Feeders • 11.10 Antenna Impedance Matching • 11.11 Balanced-to-Unbalanced (Balun) Transformer • 11.12 TV Propagation • 11.13 Reception Problems and Their Solution • 12. Studio Equipment and Testing Equipment • 12.1 Introduction • 12.2 Studio Equipment • 12.3 Telecine • 12.4 Testing Equipment • 12.5 Pattern Generator • 12.6 Testing of the TV Receiver • 13. Sound Recording and Reproduction • 13.1 Introduction • 13.2 Characteristics of Sound • 13.3 Block Diagram of Disc Recording System • 13.4 Principle of Disc Recording • 13.5 Production of Disc Records • 13.6 Types of Grooves • 13.7 Disc Reproduction System • 13.8 Playback Needles • 13.9 Pick-Up Cartridge • 13.10 Equalization in Recording/Playback System • 13.11 Magnet Recording and Reproduction • 13.12 Block Diagram of Tape Recording and Playback System • 13.13 Recorded Wavelength, Gap Width, and Tape Speed • 13.14 Cassette Tape and Tape Material • 13.15 Dolby A and B Systems • 13.16 Optical Recording of Sound • 13.17 DVD Player • 13.18 Advanced Audio Systems • 13.19 Summary of Optical Generations • 14. Fundamentals of Acoustics • 14.1 Introduction • 14.2 Acoustics • 14.3 Reverberation • 14.4 Acoustical Design Parameters • 14.5 Audio Amplifiers • 14.6 Voltage Amplifier Circuit • 14.7 Power Amplifier Circuit • 14.8 Negative Feedback in an Amplifier • 14.9 Controls in Audio Amplifiers • 14.10 Graphic Equalizer • 14.11 Hi-Fi System • 14.12 Difference between Stereophony and Monophony • 14.13 Ideal and Practical Stereophonic System • 14.14 Quadraphonic Sound System • 14.15 Hi-Fi Playback System • 14.16 Stereo Controls • 14.17 PA System • 14.18 Microphones • 14.19 Loudspeaker • 15. Digital TV and Display Devices • 15.1 Introduction • 15.2 Advantages of Digital Transmission • 15.3 Digital TV Broadcasting System • 15.4 Transmission of Digital Signal

- 15.5 MAC Signal and D2-MAC/Packet Signal • 15.6 MAC Encoding and Decoding • 15.7 Advantages of MAC Signal • 15.8 Advanced MAC Signal Transmission: D2-MAC Signal • 15.9 Digital Video and Audio Compression • 15.10 Flat Display Devices • 16. Digital TV Standards • 16.1 Introduction • 16.2 International System for Digital Television (ISDTV) • 16.3 DTT Multimedia Broadcasting (DTMB) • 17. HDTV and Advanced TV Systems • 17.1 Introduction • 17.2 HDTV Standards and Systems • 17.3 HDTV Transmitter • 17.4 HDTV Receiver • 17.5 HDTV Standards of Wide-Dimension HDTV • 17.6 MUSE (Multiple Sub-Nyquist Encoding) System • 17.7 IP Audio and Video • 17.8 IPTV Systems • 17.9 Mobile TV • 17.10 Wi-Fi Audio/Video Transmitters and Receivers • 17.11 Video Projectors • 17.12 HD Video Projectors • 17.13 Video Intercom Systems/Video Door Phones • 17.14 Cable Television • 17.15 VCR • 17.16 Direct to Home (DTH) • Annexure 1. Channel Allocation of Television Broadcasting in India • A1.1 Allocation of TV Channels to Indian Station (Courtesy: Doordarshan) • A1.2 Different Digital TV Delivery Platforms in India (Courtesy: Doordarshan) • A1.3 Spectrum for Digital TV Broadcasting (Courtesy: Doordarshan) • A1.4 Transmission of Several Programs from One Transponder / Transmitter • A1.5 Doordarshan's DVB-H Transmission (Courtesy: Doordarshan) • Annexure 2. Alignment and Servicing of TV Receiver • A2.1 Alignment of TV Receiver • A2.2 Alignment of Black and White TV Receiver • A2.3 Alignment of a Color TV Receiver • Annexure 3. Composite Video Signal and Color TV receiver • A3.1 Practical Waveforms for Composite Video Signal • A3.2 Color TV Circuit • • Index


9788126556366 | ₹ 659

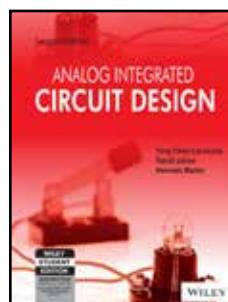
Introduction to Sustainability, 2ed, An Indian Adaptation | e | k

Brinkmann, Bhamoriya

About the Author

Robert Brinkmann is the Dean of the College of Liberal Arts and Sciences at Northern Illinois University where he is also a Professor in the Department of Geology and Environment.

Table of Contents


- 1 Roots of the Modern Sustainability Movement • Introduction to Sustainability • Nineteenth Century Environmentalism • Pinchot, Roosevelt, and Muir • Aldo Leopold and the Land Ethic • Better Living Through Chemistry, The Great Smog of 1952, and Rachel Carson • Environmental Activism of the 1960s and 1970s and the Development of Environmental Policy • The Growth of Environmental Laws in the 1960s and 1970s • The First Earth Day • International Concerns • Ozone and the World Comes Together • Globalization and the Brundtland Report • Deep Ecology • Environmental Justice • Measuring Sustainability • The Climate Change Challenge • Sustainable Development: Public Movements and Policies • Globalization and the Environment • The Road Ahead • Organization • Questions • 2 Understanding Natural Systems • The Earth, its Layers, and the Rock Cycle • The Rock Cycle • Biogeochemical Cycles • Water and the Water Cycle • The Carbon Cycle and Global Climate Change • Global Climate Change and the Carbon Cycle • The Sulfur Cycle • The Nitrogen and Phosphorus Cycles • Nitrate Pollution of Groundwater • Organisms and Ecosystems • Urban Ecosystems • Understanding the Anthropocene • Science and Sustainability • Innovation for Sustainability • Questions • 3 Measuring Sustainability • Critical Issues in Sustainability • The United Nations Millennium Goals • The United Nations Environment Program (UNEP) • The United Nations Sustainable Development Goals • The United Nations Global Biodiversity Framework (GBF) – Policy Analysis • Guiding Parameters—UN SDGs, UN Global Compact, and Paris Agreements • National sustainability planning • Canada • Bhutan • Regional Sustainability Planning • Local Sustainability Measurement • Green local governments in Florida • Specific Community Plans • PlaNYC • London and Sustainability • Small towns and sustainability • Business sustainability • Human Values and Business Ethics Perspective – Essentials for Sustainable Development • Questions • 4 Energy • World Energy Production and Consumption • Traditional or "Dirty" Energy Resources • Oil • Oil Shale and Tar Sands • Natural Gas • Coal • Coal Mining • Pollution from Coal • Green Energy • Biomass • Biomass: Wood, Manure, Peat, and Other Organic Sources • Burning of Garbage: Waste-to-Energy • Conversion of Biomass to Liquid or Gas Fuel • Wind Energy • Solar Energy • Passive Solar Energy • Active Solar Energy Concentrated Solar Power • Critiques of Solar Power • Nuclear Energy • Other Innovations • Energy Efficiency • Living off the Grid • Questions • 5 Global Climate Change and Greenhouse Gas Management • The End of

Nature? • The Science of Global Climate Change: The Greenhouse Effect • Water Vapor • Carbon Dioxide • Methane • Sinks of Carbon • Forests • Reefs • The IPCC and Evidence for Climate Change, and the Future of Our Planet • Ocean Acidification • Phenological Changes • Conducting Greenhouse Gas Inventories • Step 1 Setting Boundaries • Step 2 Defining Scope • Step 3 Choosing a Quantitative Approach • Step 4 Setting a Baseline Year • Step 5 Engaging Stakeholders • Step 6 Procuring Certification • Greenhouse Gas Equivalents Used in Greenhouse Gas Accounting • Greenhouse Gas Emission Scopes • De minimis Emissions • Computing Greenhouse Gas Credits • Climate Action Plans • Religion and Climate Change • Evangelical Environmental Network • Young Evangelicals for Climate Action • Catholic Climate Covenant • Jewish Climate Change Campaign • The International Muslim Conference on Climate Change • Buddhist Declaration on Climate Change • Hindu Declaration on Climate Change • Art, Culture, and Climate Change • Swoon • Raul Cardenas Osuna and Toro Labs • Isaac Cordal • Questions • 6 Water • Sources of Water • Consumption Trends • Sources of Water Pollution • Agricultural Pollution • Industrial Pollution • Storm Water Pollution • Sewage • Leaking Underground Tanks • Landfills • Water Management and Conservation • National and Regional Water Conservation and Management • Water as a Tool for Regional Development • Water Supply Management • Hard Path Water Management • Soft Path Water Management • Water Management and Innovation • Water Quality • Understanding Drainage Basins • Drainage Basins Out of Sync • Drainage Basin Pollution • Stream Profile and Base Level • Lakes • Seas • Oceans • Questions • 7 Food and Agriculture • Development of Modern Agriculture • Meat Production • Piggeries • Feed Lots • Chicken Houses • World Agricultural Statistics • Food Deserts and Obesity • Sustainable Alternatives to the Industrial Food Movement • Vegetarianism and Veganism • Organic Farming • Small Farm Movement • Locavores • Farm to Table • Community Sponsored Agriculture • Community Gardens • Farmers' Markets • Beekeeping • The Urban Chicken Movement • Guerilla Gardening, Freegans, and Other Radical Approaches to Food • Global vs Indian Concerns • Saving Environment vs Feeding Billions • Food Wastage • Questions • 8 Green Building • LEED Rating Systems • Site Selection • Brownfield Development • Other Aspects of Sustainable Building Siting • Water Use • Energy and Atmospheric Health • Materials and Resources • Material Re-use • Recycled Content of Construction Material • Locally Derived Materials • Renewable Materials and Certified Sustainable Wood • Waste Management • Summary • Indoor Environmental Quality • Ventilation and Air Delivery Monitoring • Construction Indoor Air Quality Management • Use of Low-emitting Materials • Indoor Chemical and Pollution Source Control • Controllability and Design of Lighting and Temperature Systems • Access to Daylight • Summary • Innovation • Regional Priorities • Expansion of Green Building Technology • Other Green Building Rating Systems • BREEAM • BREEAM new Construction • BREAAM Refurbishment • BREAAM Communities • BREEAM In-use • BREEAM Sustainable Homes • PassivHaus • Green Building Policy • Critiques of Green Building • The Greenest Building and Historic Preservation • Small House Movement • Further Reading • Questions • 9 Transportation • Transportation Options • Vehicles • Cars • Trucks • Vehicles and Fuels • New Fuels • Electric Cars • Automated Vehicles • Rail • Ship Transport • Bulk Carriers • Container Ships • Tankers • Refrigerated Ships • Roll-on/Roll-off Ships • Environmental Issues Associated with Ship Transport • Air Transport • Space Travel • Roads • Environmental Issues with Roads • Storm Water Pollution Management • Street Sweeping • Ground Stability • Mass Transit • Forms of Mass Transit • Railways • Light Rail • Buses • Bus Rapid Transit • Ferries • Transit Hubs and Transit-Oriented Development • The Future • Questions • 10 Pollution and Waste • Pollution • Chemical Pollution • Metals • Organic Compounds • Nutrients • Radioactive Pollutants • Pharmaceutical Pollutants • Heat Pollution • Light Pollution • Noise Pollution • Visual Pollution • Littering • Understanding Pollution Distribution • The US Approach to Pollution • Clean Air Act • Clean Water Act • National Environmental Policy Act • Superfund • Sewage Treatment • Sewage and Sustainability • Garbage and Recycling • Garbage Composition • Managing Garbage • Collection • Transportation • Transfer Stations • Disposal Sites • Landfills • Reducing Waste • Composting • Recycling • Paper • The Market for Recycled Materials • The Environmental Justice Critique of Recycling • Waste is Wealth • Questions • 11 Environmental Justice • Social Justice • Civil Rights and the Modern Environmental Movement in the United States • Lead Pollution and the Growth of the Urban Environmental Justice Movement • Environmental Racism in the United States • Brownfields, Community Re-development, and Environmental Justice • US EPA and Environmental Justice • Indigenous People and Environmental Justice • Exporting Environmental Problems • Environmental Justice Around the World • Environmental Justice in Europe • Environmental Justice in Asia and the Pacific • The Three Gorges Dam • Bhopal and Environmental Justice in India • Tuvalu and Global Climate Change • Environmental Justice in Africa • Environmental Justice in Latin

America and the Caribbean: Oil Pollution in Ecuador • Environmental Justice in a Globalized World • Green Tribunals in South and South-East Asia • The Cultural Ethos of Sustainability as a Dimension of Justice • Questions • 12 Sustainability Planning and Governance • Local Governments and their Structure • The Role of Citizens and Stakeholders in Local Government • Community Stakeholders • Boundaries and Types of Local Governments • Leadership • Efforts to Aid Local Governments on Sustainability Issues • Scale and Local Governments • Green Regional Development • Sustainable Development • Globalization • Development of Globalization • Drivers of Globalization • Internet and Communications • Transportation • Economic Development • Transnational Organizations • War and Sustainability • Governance and Sustainability in Oriental Societies • Further Reading • Questions • 13 Sustainability, Economics, and the Global Commons • The Global Commons • Highlights on Limits to Growth and the System Dynamics Discipline of Sustainability • Economic Processes that put the Earth Out of Balance • Social and Economic Theories • Neoclassical Economics • Environmental Critiques of Neoliberalism • Environmental Economics • Cost-Benefit Analysis and its Application in Environmental Economics • Environmental Impact Assessment • Environmental Ethics • Green Economics • Non-Capitalistic Economics • Deep Ecology • Ecofeminism • Destruction Regardless of Theory • Environmental Economics: Externalities • Measuring the Economy • Green Jobs • Circular Economy • Sustainable Hospitality Management • Sustainable Fashion Management • Sustainable Tourism Management • Questions • 14 Corporate and Organizational Sustainability Management • Cognitive Dissonance • Why are Businesses Concerned with Sustainability? • Profit • Public Relations • Altruism • Principal Sustainability Concepts and Drivers: Ecological Footprint, Ecosystem Services, Planetary • Boundaries, Life Cycle Assessment (LCA), and Systems • Corporate Social Responsibility (CSR) • Concern Over the Long-term Sustainability of the Industry • Professional Standards and Norms • Total Quality Management and Sustainability • Identifying and Developing a Set of Sustainable Key Performance Indicators (KPIs) • People, Planet, and Profits • Ray Anderson, the Father of the Green Corporation and the Growth of Green Corporate • Environmentalism • Anderson's Legacy • Greenwashing in the Corporate World • Green Consumers • Global Reporting Initiative • Sustainability Reporting in the S & P 500 • Dow Jones Sustainability Index • Sustainability Reporting • International Organization for Standardization (ISO): ISO 14000 and ISO 26000 • ISO 14000 • ISO 26000 • Case Studies of Sustainability at the Corporate Level • Walmart • Unilever • Lessons from Walmart and Unilever • Can Businesses with Unsustainable Products be Sustainable? • Technology for Sustainability: Blockchain, Big Data, Analytics, and IoT • Questions • 15 Sustainability at Universities, Colleges, and Schools* (Available online) • Curriculum at Colleges and Universities • Sustainability Curriculum at K-12 Schools • External Benchmarking • American Association for Sustainability in Higher Education • Presidents' Climate Leadership Commitments • Other External Benchmarking Organizations • Internal Initiatives • Sustainability Officers • Sustainability Committees • Food Service • Student and Faculty Activism • Building Your Own Case Study • Sustainability at Oxford: A Campus Commitment • Making School Lunches Healthier in the United States • The Cow Powered Carbon Neutral Campus • Whitman College Builds Wind Turbines on Campus Farm • Stanford University: Dumping the Car for Bikes • Green Fleets: The University of South Florida's Biodiesel Bullrunner • Community Engagement at Portland State University • Green Buildings on College Campuses: University of Florida Goes for Gold • Native and Sustainable Landscaping at One of the Largest Schools in the Nation: Valencia College • Campus Archaeology at Michigan State University • Index

9789357466356 | ₹ 1059

Analog Integrated Circuit Design, 2ed, ISV | IM | e

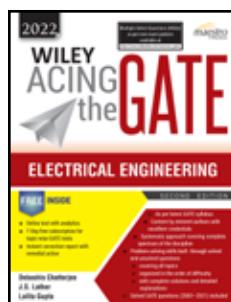

Carusone

Table of Contents

- Integrated-Circuit Devices and Modelling • Processing and Layout • Basic Current Mirrors and Single-Stage Amplifiers • Frequency Response of Electronic Circuits
- Feedback Amplifiers • Basic Opamp Design and Compensation • Biasing, References and Regulators
- Bipolar Devices and Circuits • Noise and Linearity Analysis and Modelling • Comparators • Sample-and-Hold and Trans linear Circuits • Continuous-Time Filters • Discrete-Time Signals

• Switched-Capacitor Circuits • Data Converter Fundamentals • Nyquist-Rate D/A Converters • Nyquist-Rate A/D Converters • Oversampling Converters • Phase-Locked Loops • Index

9788126543939 | ₹ 1049

Wiley Acing the GATE: Electrical Engineering, 2ed, 2022

Chatterjee

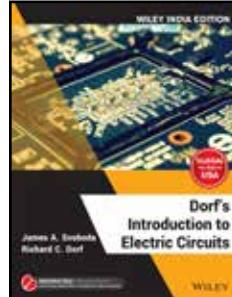
Table of Contents

- Preface • About the Authors • Acing the GATE 2018
- • Syllabus for Electrical Engineering (EE) • Section 1: Electric Circuits • 1. Electric Circuits • • Section 2: Electromagnetic Fields • 2 Electromagnetic Fields
- • Section 3: Signals and Systems • 3 Signals and Systems • • Section 4: Electrical Machines • 4 Electrical Machines • • Section 5: Power Systems • 5 Power Systems • • Section 6: Control Systems • 6 Control Systems • • Section 7: Electrical and Electronic Measurements • 7 Electrical and Electronic Measurements • • Section 8A: Analog Electronics • 8 Analog Electronics • • Section 8B: Digital Electronics • 9 Digital Electronics • • Section 9: Power Electronics • 10 Power Electronics • • Solved GATE 2018 Paper • Solved GATE 2019 Paper • Solved GATE 2020 Paper • Solved GATE 2021 Paper • Index

9789354249273 | ₹ 1069

Wiley's GATE Electrical Engineering Chapter-Wise Solved Papers (2000-2020) | e | k

Chatterjee


About the Author

Dr. Debasish Chatterjee is Professor at the Department of Electrical Engineering, Jadavpur University, Kolkata. Dr. Chatterjee is the author and co-author of more than 100 journal articles and conference papers in reputed publications. His areas of interest are Parameter Estimation and Speed Control of Induction Machines, Control of Induction Generators, Development of Improved Harmonic Elimination Techniques of Inverters

Table of Contents

- Preface • Note to the Aspirants • Chapter 1: Engineering Mathematics • Important Formulas • Questions • Answer with Explanation • Chapter 2: Electric Circuits
- Important Formulas • Questions • Answer with Explanation • Chapter 3: Electromagnetic Fields • Important Formulas • Questions • Answer with Explanation
- Chapter 4: Signals and Systems • Important Formulas • Questions • Answer with Explanation • Chapter 5: Electrical Machines • Important Formulas • Questions • Answer with Explanation • Chapter 6: Power Systems • Important Formulas • Questions • Answer with Explanation • Chapter 7: Control Systems • Important Formulas • Questions • Answer with Explanation • Chapter 8: Electrical and Electronic Measurements • Important Formulas • Questions • Answer with Explanation • Chapter 9: Analog and Digital Electronics • Important Formulas • Questions • Answer with Explanation • Chapter 10: Power Electronics • Important Formulas • Questions • Answer with Explanation Solved GATE (EE) 2019 Solved GATE (EE) 2020

9788126571857 | ₹ 599

Dorf's Introduction to Electric Circuits, Wiley India Edition | e

Dorf

Description

Known for its clear problem-solving methodology and its emphasis on design, as well as the quality and quantity of its problem sets, *Introduction to Electric Circuits* by Dorf and Svoboda will help readers to think like engineers. Abundant design examples, design problems, and the How Can We Check feature illustrate the texts focus on design. The edition continues the expanded use of problem-solving software such as PSpice and MATLAB.

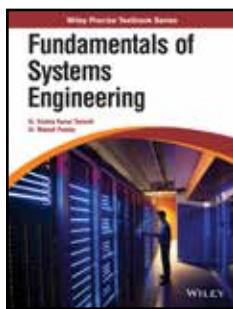
9788126573493 | ₹ 1079

Pattern Recognition, 2ed, An Indian Adaptation | IM | e | k

Duda

About the Author

Richard O. Duda is Professor in the Electrical Engineering Department at San Jose State University, San Jose, California.


Table of Contents

- 11 | INTRODUCTION TO PATTERN RECOGNITION
- 1.1 Machine Perception • 1.2 An Example • 1.3 Approaches to Pattern Classification • 1.4 Pattern Recognition Systems • 1.5 The Design Cycle • 1.6 Learning and Adaptation • 1.7 Conclusion • 2 • 32 | BAYESIAN DECISION THEORY • 2.1 Introduction • 2.2 Bayesian Decision Theory—Continuous Features • 2.3 Minimum-Error-Rate Classification • 2.4 Classifiers, Discriminant Functions, and Decision Surfaces • 2.5 The Normal Density • 2.6 Discriminant Functions for the Normal Density • 2.7 Error Probabilities and Integrals • 2.8 Error Bounds for Normal Densities • 2.9 Bayesian Decision Theory—Discrete Features • 2.10 Missing and Noisy Features • 2.11 Bayesian Belief Networks • 2.12 Compound Bayesian Decision Theory and Context • • 3 | MAXIMUM-LIKELIHOOD AND BAYESIAN PARAMETER ESTIMATION • 3.1 Introduction • 3.2 Maximum-Likelihood Estimation • 3.3 Bayesian Estimation • 3.4 Bayesian Parameter Estimation: Gaussian Case • 3.5 Bayesian Parameter Estimation: General Theory • 3.6 Problems of Dimensionality • 3.7 Component Analysis and Discriminants • 3.8 Expectation-Maximization (EM) • 3.9 Hidden Markov Models • • 4 | NONPARAMETRIC TECHNIQUES • 4.1 Introduction • 4.2 Density Estimation • 4.3 Parzen Windows • 4.4 k-Nearest-Neighbor Estimation • 4.5 The Nearest-Neighbor Rule • 4.6 Metrics and Nearest-Neighbor Classification • 4.7 Fuzzy Classification • 4.8 Reduced Coulomb Energy Networks • 4.9 Approximations by Series Expansions • • 5 | LINEAR DISCRIMINANT FUNCTIONS • 5.1 Introduction • 5.2 Linear Discriminant Functions and Decision Surfaces • 5.3 Generalized Linear Discriminant Functions • 5.4 The Two-Category Linearly Separable Case • 5.5 Minimizing the Perceptron Criterion Function • 5.6 Relaxation Procedures • 5.7 Nonseparable Behavior • 5.8 Minimum Squared-Error Procedures • 5.9 The Ho-Kashyap Procedures • 5.10 Support Vector Machines • • 6 | ARTIFICIAL NEURAL NETWORKS • 6.1 Introduction • 6.2 Feedforward Operation and Classification • 6.3 Backpropagation Algorithm • 6.4 Error Surfaces • 6.5 Backpropagation as Feature Mapping • 6.6 Backpropagation, Bayes Theory, and Probability • 6.7 Practical Techniques for Improving Backpropagation • 6.8 Additional Networks and Training Methods • 6.9 Deep Neural Networks for Pattern Recognition • 6.10 Regularization, Complexity Adjustment, and Pruning • • 7 | NONMETRIC METHODS • 7.1 Introduction • 7.2 Decision Trees • 7.3 CART • 7.4 Other Tree Methods • 7.5 Recognition with Strings • 7.6 Grammatical Methods • 7.7 Grammatical Inference • 7.8 Rule-Based Methods • • 8 | ALGORITHM-INDEPENDENT MACHINE LEARNING • 8.1 Introduction • 8.2 Lack of Inherent Superiority of any Classifier • 8.3 Bias and Variance • 8.4 Resampling for Estimating Statistics • 8.5 Resampling for Classifier Design • 8.6 Performance Metrics • 8.7 Estimating and Comparing Classifiers • 8.8 Combining Classifiers • • 9 | UNSUPERVISED LEARNING AND CLUSTERING • 9.1 Introduction • 9.2 Mixture Densities and Identifiability • 9.3 Maximum-Likelihood Estimates • 9.4

Application to Normal Mixtures • 9.5 Unsupervised Bayesian Learning • 9.6 Data Description and Clustering • 9.7 Criterion Functions for Clustering • 9.8 Hierarchical Clustering • 9.9 On-Line Clustering • 9.10 Graph-Theoretic Methods • 9.11 Component Analysis • 9.12 Low-Dimensional Representations and Multidimensional Scaling (MDS) •

- Summary • Bibliographical and Historical Remarks • Problems • Computer Exercises • Multiple Choice Questions • References • • A | MATHEMATICAL FOUNDATIONS • A.1 Notation • A.2 Linear Algebra • A.3 Lagrange Optimization • A.4 Probability Theory • A.5 Gaussian Derivatives and Integrals • A.6 Hypothesis Testing • A.7 Information Theory • A.8 Computational Complexity • • Bibliographical Remarks • References • INDEX

9789354244391 | ₹ 799

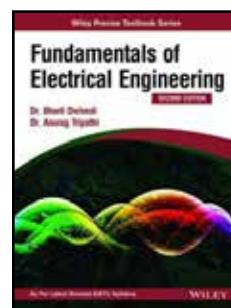

versities all over India.

Table of Contents

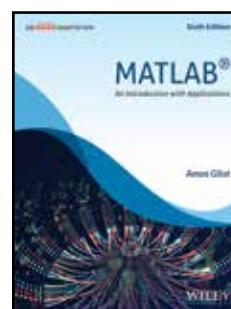
- Preface • Acknowledgements • Model Syllabus • About the Authors • • Part I Foundation of Systems Engineering • Chapter 1 Basic Concepts of Systems Engineering and the World of Modern Systems • 1.1 Systems Engineering: Introduction • 1.2 Systems Engineering v/s Traditional Engineering Disciplines • 1.3 Importance of Systems Engineering in Industries • 1.4 Origin and Evolution of Systems Engineering • 1.5 Risks Associated with Advancing Technologies in Complex System Handled by Systems Engineering • 1.6 Examples of Systems Requiring Systems Engineering • 1.7 Systems Engineer Career Development Model • 1.8 Software Systems Engineering Analogy (Waterfall Model and Spiral Model) • 1.9 Scope of Systems Engineering • • Chapter 2 Systems Engineering Landscape • 2.1 Systems Engineering Viewpoint • 2.2 Perspectives of Systems Engineering • 2.3 Systems Domains • 2.4 Systems Engineering Fields • 2.5 Systems Engineering Approaches [or Various Models Involved in Systems Engineering] • 2.6 Systems Engineering Activities and Products • • Chapter 3 Structure of Complex Systems • 3.1 Simple Systems and Complex Systems • 3.2 Structure of Complex Systems • 3.3 Hierarchy of Complex Systems • 3.4 System Building Blocks • 3.5 System Environment • 3.6 System Boundary • 3.7 Interfaces and Interactions • 3.8 Complexity in Modern Systems • • Part II Concept Development Stage • Chapter 4 System Life Cycle and System Development Method and Process • 4.1 Systems Engineering through the System Life Cycle • 4.2 System Life Cycle • 4.3 Systems Engineering Method • 4.4 Systems Engineering Process • • Chapter 5 Need Analysis • 5.1 Concept Development Phase (Initial Stage of System Life Cycle) • 5.2 Need Analysis: An Introduction • 5.3 Operations Analysis • 5.4 Functional Analysis • 5.5 Feasibility Analysis (Physical Definition) • 5.6 Needs Validation • 5.7 Analysis Pyramid • 5.8 Systems Operational Requirements • • Chapter 6 Concept Exploration Phase and Concept Definition Phase • 6.1 Introduction • 6.2 Important Terms Related to Concept Exploration Phase • 6.3 Development of Systems Requirements or Concept Exploration • 6.4 Concept Definition Phase • • Part III Engineering Development Stage • Chapter 7 Advanced Development Phase • 7.1 Advanced Development Phase • 7.2 Reducing Program Risks • 7.3 Place of Advanced Development Phase in the System Life Cycle • 7.4 System Materialization Status during Advanced Development Phase • 7.5 Systems Engineering Method in Advanced Development Phase • 7.6 Risk Reduction • • Chapter 8 Engineering Design and Integration and Evaluation • 8.1 Engineering Design Phase • 8.2 Systems Engineering Method in Engineering Design Phase • 8.3 Integration and Evaluation Phase of System Life Cycle • 8.4 Comparison of Integration and Evaluation Phase and Engineering Design Approaches • 8.5 Role of Program Participants in Integration and Evaluation Phase • 8.6 Critical Problems Associated with Integration and Evaluation Phase • 8.7 Design Materialization Status of Integration and Evaluation Phase • 8.8 Systems Engineering Method in Integration and Evaluation Phase • • Part IV Post-Development Stage • Chapter 9 Production Phase and Operations and Support

Phase • 9.1 Production Phase • 9.2 Engineering for Production • 9.3 Transition from Development to Production • 9.4 Problems Associated with Transition Process from Development to Production • 9.5 Production Processes • 9.6 Operations and Support Phase • • Summary • Glossary • Short Answer Questions • Multiple Choice Questions • Review Questions • Drill Problems • Answers • Further Reading • Model Papers • Index

9788126566549 | ₹ 559

Fundamentals of Electrical Engineering, 2ed | e | k

Dwivedi


About the Author

Dr. (Mrs.) Bharti Dwivedi is Professor and Head of the Department of Electrical Engineering, Institute of Engineering and Technology, Lucknow. With over 32 years of teaching experience, Dr. Dwivedi has taught at Government College of Engineering and Technology, Raipur; Government Engineering College, Rewa, etc. With over 60 papers published in various national and international journals and conferences, she has guided many students through their PhDs.

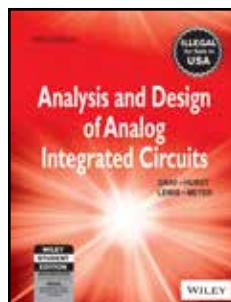
Table of Contents

- 1 DC Circuit Analysis and Network Theorems • 1.1 Concepts of Circuit and Network
- 1.2 Active and Passive Elements • 1.3 Voltage and Current Sources • 1.4 Concept of Linearity • 1.5 Unilateral and Bilateral Elements • 1.6 Source Transformation • 1.7 Kirchhoff's Laws • 1.8 Star-Delta Transformation • 1.9 Superposition Theorem • 1.10 Thevenin's Theorem • 1.11 Norton's Theorem • 1.12 Maximum Power Transfer Theorem
- 2 Steady-State Analysis of Single-Phase AC Circuits • 2.1 AC Fundamentals • 2.2 Concept of Phasors • 2.3 Power and Power Triangle • 2.4 Power Factor • 2.5 Analysis of Series Circuits • 2.6 Analysis of Parallel AC Circuits • 2.7 Analysis of Series-Parallel Circuits • 2.8 Resonance in Series R-L-C Circuit • 3 Three-Phase System • 3.1 Three-Phase System: Necessity and Advantages • 3.2 Meaning of Phase Sequence • 3.3 Star and Delta Connections • 3.4 Balanced Supply and Balanced Load • 3.5 Line and Phase Voltage/Current Relations in Three Phases • 3.6 Three-Phase Power and Its Measurement
- 3.7 Types of Measuring Instruments • 3.8 Permanent Magnet Moving Coil Instruments
- 3.9 Moving Iron Instruments • 3.10 Single-Phase Dynamometer Type Wattmeter • 3.11 Use of Shunts and Multipliers • 4 Power System, Magnetic Circuit and Single-Phase Transformers • 4.1 Need for Earthing • 4.2 Magnetic Circuit Concepts • 4.3 Single-Phase Transformer • 5 Electromechanical Energy Conversions • 5.1 Principles of Electromechanical Energy Conversion • 5.2 DC Machines • 5.3 Three-Phase Induction Motor • 5.4 Single-Phase Induction Motors • 5.5 Three-Phase Synchronous Machines
- 6 Miscellaneous Topics in Electrical Engineering • 6.1 Analysis of DC Circuits • 6.2 Analysis of AC Circuits • 6.3 Analysis of Three-Phase Unbalanced Circuits • 6.4 Cathode Ray Oscilloscope and Its Applications • 6.5 Measurement of Insulation Resistance • 6.6 Magnetic Circuits and Transformers • 6.7 Performance of DC and AC Machines • Solved Examples • Summary • Short Answer Questions • Review Questions • Problems
- Answers • Model Question Paper 1 • Model Question Paper 2 • Model Question Paper 3 • Model Question Paper 4 • Index

9788126542710 | ₹ 779

MATLAB: An Introduction with Applications, 6ed, An Indian Adaptation | IM

Gilat


Table of Contents

- Preface to the U.S. Edition • Preface to the Adapted Edition • Introduction • Introduction • The Purpose of This Book • Topics Covered • The Framework of a Typical Chapter • Software and Hardware • The Order of Topics in the Book • Chapter 1 Starting with MATLAB
- 1.1 Installing MATLAB • 1.2 System Requirements for

Prices are subject to change without prior notice.

Different Operating Platforms • 1.3 Starting MATLAB, MATLAB Windows • 1.4 Working in the Command Window • 1.5 Arithmetic Operations with Scalars • 1.6 Display Formats • 1.7 Elementary Math Built-in Functions • 1.8 Defining Scalar Variables • 1.9 Useful Commands for Managing Variables • 1.10 Script Files • 1.11 Examples of MATLAB Applications • Chapter 2 Creating Arrays • 2.1 Creating a One-Dimensional Array (Vector) • 2.2 Creating a Two-Dimensional Array (Matrix) • 2.3 Notes About Variables in MATLAB • 2.4 The Transpose Operator • 2.5 Array Addressing • 2.6 Using a Colon: In Addressing Arrays • 2.7 Adding Elements to Existing Variables • 2.8 Deleting Elements • 2.9 Built-in Functions for Handling Arrays • 2.10 Strings and Strings as Variables • Chapter 3 Mathematical Operations with Arrays • 3.1 Addition and Subtraction • 3.2 Array Multiplication • 3.3 Array Division • 3.4 Element-by-Element Operations • 3.5 Using Arrays in MATLAB Built-in Math Functions • 3.6 Built-in Functions for Analyzing Arrays • 3.7 Generation of Random Numbers • 3.8 Examples of MATLAB Applications • Chapter 4 Using Script Files and Managing Data • 4.1 The MATLAB Workspace and the Workspace Window • 4.2 Input to a Script File • 4.3 Output Commands • 4.4 The save and load Commands • 4.5 Importing and Exporting Data • 4.6 Examples of MATLAB Applications • Chapter 5 Two-Dimensional Plots • 5.1 The plot Command • 5.2 The fplot Command • 5.3 Plotting Multiple Graphs in the Same Plot • 5.4 Formatting a Plot • 5.5 Plots with Logarithmic Axes • 5.6 Plots with Error Bars • 5.7 Plots with Special Graphics • 5.8 Histograms • 5.9 Polar Plots • 5.10 Putting Multiple Plots on the Same Page • 5.11 Multiple Figure Windows • 5.12 Plotting Using the Plots Toolbar • 5.13 Examples of MATLAB Applications • Chapter 6 Programming in MATLAB • 6.1 Relational and Logical Operators • 6.2 Conditional Statements • 6.3 The switch-case Statement • 6.4 Loops • 6.5 Nested Loops and Nested Conditional Statements • 6.6 The break and continue Commands • 6.7 Examples of MATLAB Applications • Chapter 7 User-Defined Functions and Function Files • 7.1 Creating a Function File • 7.2 Structure of a Function File • 7.3 Local and Global Variables • 7.4 Saving a Function File • 7.5 Using a User-Defined Function • 7.6 Examples of Simple User-Defined Functions • 7.7 Comparison between Script Files and Function Files • 7.8 Anonymous Functions • 7.9 Function Functions • 7.10 Subfunctions • 7.11 Nested Functions • 7.12 Examples of MATLAB Applications • Chapter 8 Polynomials, Curve Fitting, and Interpolation • 8.1 Polynomials • 8.2 Curve Fitting • 8.2.1 Curve Fitting with Polynomials: The polyfit Function • 8.2.2 Curve Fitting with Functions Other than Polynomials • 8.3 Interpolation • 8.4 The Basic Fitting Interface • 8.5 Examples of MATLAB Applications • Chapter 9 Applications in Numerical Analysis • 9.1 Solving an Equation with One Variable • 9.2 Finding a Minimum or a Maximum of a Function • 9.3 Numerical Integration • 9.4 Ordinary Differential Equations • 9.5 Examples of MATLAB Applications • Chapter 10 Three-Dimensional Plots • 10.1 Line Plots • 10.2 Mesh and Surface Plots • 10.3 Plots with Special Graphics • 10.4 The view Command • 10.5 Examples of MATLAB Applications • Chapter 11 Symbolic Math • 11.1 Symbolic Objects and Symbolic Expressions • 11.2 Changing the Form of an Existing Symbolic Expression • 11.3 Solving Algebraic Equations • 11.4 Differentiation • 11.5 Integration • 11.6 Solving an Ordinary Differential Equation • 11.7 Plotting Symbolic Expressions • 11.8 Numerical Calculations with Symbolic Expressions • 11.9 Computing Partial Derivatives • 11.10 Examples of MATLAB Applications • Chapter 12 Simulink • 12.1 Introduction • 12.2 Simulink Environment Fundamentals • 12.3 Model-Based Design with Simulink • 12.4 Simulink-Supported Hardware • 12.5 Examples • Chapter 13 Machine Learning (Available Online at Wiley.com) • Appendix: Summary of Characters, Commands, and Functions • Index

9789357462174 | ₹ 899

Analysis and Design of Analog Integrated Circuits, 5ed, ISV | IM Gray

About the Author

Paul R. Gray received the BS, MS, and PhD degrees from the University of Arizona. He joined the University of California, Berkeley in 1971 with the Department of Electrical Engineering and Computer Sciences. Gray's research interests include bipolar and MOS circuit design, electro thermal interactions in integrated circuits, device modeling, telecommunications circuits, and analog-digital interfaces on analog integrated circuits. He is a member of numerous engineering and computer science organizations and is highly regarded in the field. Gray

also holds several prizes, including the IEEE R.W.G. Baker Prize, IEEE Morris K Liebman award, IEEE Solid-State Circuits award, and many more.

Table of Contents

- 1. Models for Integrated-Circuit Active Devices • 2. Bipolar, MOS, and BiCMOS Integrated-Circuit Technology • 3. Single-Transistor and Multiple-Transistor Amplifiers
- 4. Current Mirrors, Active Loads, and References • 5. Output Stages • 6. Operational Amplifiers with Single-Ended Outputs • 7. Frequency Response of Integrated Circuits • 8. Feedback • 9. Frequency Response and Stability of Feedback Amplifiers • 10. Nonlinear Analog Circuits • 11. Noise in Integrated Circuits • 12. Fully Differential Operational Amplifiers

9788126521487 | ₹ 1139

Wiley's GATE Instrumentation Engineering Chapter-wise Solved Papers (2000-2020) | k Gupta

About the Author

Dr. Lalita Gupta is Associate Professor at the Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal. Since July 2004 she has been associated as a faculty member with the Maulana Azad National Institute of Technology, Bhopal. She is a member of IEEE, IETE, ICEIT, IE. Dr.

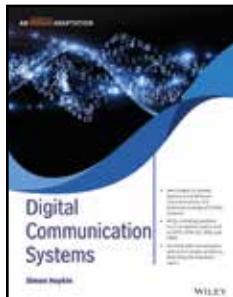
Gupta has 35 research publications in national and international journals of repute. Her area of specialisation is Signal Processing.

Table of Contents

- Engineering Mathematics • Electrical Circuits • Signals and Systems • Control Systems
- Analog Electronics • Digital Electronics • Measurement • Sensors and Industrial Instrumentation • Communication and Optical Instrumentation • Solved GATE (IN) 2020

9788126558698 | ₹ 499

Communication Systems, 5ed, ISV, An Indian Adaptation | IM | BS | e | k Haykin


Table of Contents

- Chapter 1 Prologue • 1.1 The Communication Process
- 1.2 Analog and Digital Types of Communication • 1.3 Modulation Process • 1.4 The Layered Approach
- 1.5 Shannon's Information Capacity Theorem • 1.6 A Digital Communication Problem • 1.7 Theme Example—Wireless Communications • Chapter 2 Fourier Representation of Communication Signals and Systems • 2.1 Introduction • 2.2 Introduction to Fourier Series and Discrete Spectrum • 2.3 The Fourier Transform and Continuous Spectrum • 2.4 Properties of the Fourier Transform • 2.5 The Inverse Relationship Between Time and Frequency • 2.6 Dirac Delta Function • 2.7 Fourier Transforms of Periodic Signals • 2.8 Transmission of Signals Through Linear Systems

• 2.9 Filters • 2.10 Low-Pass and Band-Pass Signals • 2.11 Band-Pass Systems • 2.12 Phase and Group Delay • 2.13 Sources of Information • 2.14 Numerical Computation of the Fourier Transform • 2.15 Theme Example—Channel Estimation of a Wireless LAN Channel • 2.16 Summary and Discussion • Chapter 3 Amplitude Modulation • 3.1 Introduction • 3.2 Amplitude Modulation • 3.3 Double Sideband-Suppressed Carrier Modulation • 3.4 Quadrature-Carrier Multiplexing • 3.5 Single Sideband and Vestigial Sideband Methods of Modulation • 3.6 Theme Example—VSB Transmission of Analog and Digital Television • 3.7 Frequency Translation • 3.8 Frequency-Division Multiplexing • 3.9 The Superheterodyne Receiver • 3.10 Practical AM Communication Systems • 3.11 AM Broadcasting and Broadcasting Standards for India • 3.12 Summary and Discussion • Chapter 4 Phase and Frequency Modulation • 4.1 Introduction • 4.2 Basic Definitions • 4.3 Frequency Modulation • 4.4 Generation of FM Signals • 4.5 Demodulation of FM

Signals • 4.6 Phase-Locked Loop • 4.7 Nonlinear Effects in FM Systems • 4.8 Practical FM Communication Systems • 4.9 FM Broadcasting and Broadcasting Standards for India • 4.10 Theme Example—Analog and Digital FM Cellular Telephones • 4.11 Summary and Discussion • Chapter 5 Random Variables and Processes • 5.1 Introduction • 5.2 Probability • 5.3 Random Variables • 5.4 Statistical Averages • 5.5 Random Processes • 5.6 Stationary Random Processes • 5.7 Mean, Correlation, and Covariance Functions • 5.8 Ergodic Processes • 5.9 Transmission of a Random Process Through a Linear Filter • 5.10 Power Spectral Density • 5.11 Gaussian Process • 5.12 Theme Example—Stochastic Model of a Mobile Radio Channel • 5.13 Summary and Discussion • Chapter 6 Noise in Communication Systems • 6.1 Introduction • 6.2 Noise • 6.3 Narrow-Band Noise • 6.4 Receiver Model • 6.5 Noise in DSB-SC Receivers • 6.6 Noise in AM Receivers • 6.7 Noise in FM Receivers • 6.8 Pre-emphasis and De-emphasis in FM • 6.9 Theme Example—Link Budget of FM Satellite Link • 6.10 Summary and Discussion • Chapter 7 Digital Representation of Analog Signals • 7.1 Introduction • 7.2 Why Digitize Analog Sources? • 7.3 The Sampling Process • 7.4 Pulse Modulation Techniques • 7.5 Bandwidth–Noise Trade-Off • 7.6 Time-Division Multiplexing • 7.7 Theme Example—PPM in Impulse Radio • 7.8 The Quantization Process • 7.9 Pulse-Code Modulation • 7.10 Delta Modulation • 7.11 Linear Prediction • 7.12 Differential Pulse-Code Modulation • 7.13 Adaptive Differential Pulse-Code Modulation • 7.14 MPEG Audio Coding Standard • 7.15 Theme Example—Digitization of Video and MPEG • 7.16 Summary and Discussion • Chapter 8 Signal-Space Analysis • 8.1 Introduction • 8.2 Geometric Representation of Signals • 8.3 Conversion of the Continuous AWGN Channel into a Vector Channel • 8.4 Likelihood Functions • 8.5 Coherent Detection of Signals in Noise: Maximum Likelihood Decoding • 8.6 Correlation Receiver • 8.7 Probability of Error • 8.8 Summary and Discussion • Chapter 9 Baseband Transmission of Digital Signals • 9.1 Introduction • 9.2 Baseband Pulses and Matched Filter Detection • 9.3 Probability of Error Due to Noise • 9.4 Intersymbol Interference • 9.5 Eye Pattern • 9.6 Nyquist's Criterion for Distortionless Transmission • 9.7 Correlative-Level Coding • 9.8 Baseband M-ary PAM Transmission • 9.9 Tapped-Delay-Line Equalization • 9.10 Theme Example—100BASE-TX—Transmission of 100 Mbps Over Twisted Pair • 9.11 Summary and Discussion • Chapter 10 Band-Pass Transmission of Digital Signals • 10.1 Introduction • 10.2 Band-Pass Transmission Model • 10.3 Transmission of Binary PSK and FSK • 10.4 M-ary Data Transmission Systems • 10.5 Comparison of Noise Performances of Various PSK and FSK Systems • 10.6 Theme Example—Orthogonal Frequency Division Multiplexing (OFDM) • 10.7 Summary and Discussion • Chapter 11 Spread Spectrum and Multiple Access • 11.1 Introduction • 11.2 Pseudo-Noise Sequences • 11.3 A Notion of Spread Spectrum • 11.4 Direct-Sequence Spread Spectrum with Coherent Binary Phase-Shift Keying • 11.5 Signal-Space Dimensionality and Processing Gain • 11.6 Probability of Error • 11.7 Frequency-Hop Spread Spectrum • 11.8 Multiple Access • 11.9 Summary and Discussion • Chapter 12 Information and Forward Error Correction • 12.1 Introduction • 12.2 Uncertainty, Information, and Entropy • 12.3 Source-Coding Theorem • 12.4 Lossless Data Compression • 12.5 Theme Example—The Lempel–Ziv Algorithm and File Compression • 12.6 Discrete Memoryless Channels • 12.7 Mutual Information • 12.8 Channel Capacity • 12.9 Channel Coding Theorem • 12.10 Capacity of a Gaussian Channel • 12.11 Error Control Coding • 12.12 Linear Block Codes • 12.13 Cyclic Codes • 12.14 Convolutional Codes • 12.15 Maximum Likelihood Decoding of Convolutional Codes • 12.16 Trellis-Coded Modulation • 12.17 Turbo Codes • 12.18 Summary and Discussion • Notes and References • Problems • Multiple Choice Questions • Appendix Mathematical Tables • Glossary • Bibliography • Index

9789354640896 | ₹ 999

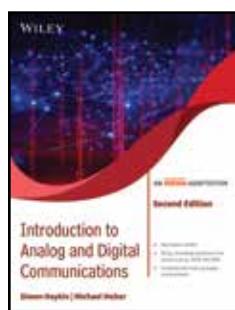
Digital Communication Systems, An Indian Adaptation | IM | e | k

Haykin

About the Author

Simon Haykin is a University Professor at McMaster University, Hamilton, Ontario, Canada. His research interests include nonlinear dynamics, neural networks and adaptive filters and their applications in radar and communications systems. Dr. Haykin is the editor for a series of books on "Adaptive and Learning Systems for Signal Processing, Communications and Control"

published by John Wiley & Sons, Inc. He is both an IEEE Fellow and Fellow of the Royal Society of Canada.


Table of Contents

- 1Chapter 1: Introduction • 1.1Historical Background • 1.2The Communication Process • 1.3Modes of Communication • 1.4Need of Modulation • 1.5Types of Modulation • 1.6Digital versus Analog Communication • 1.7Multiple-Access Techniques • 1.8Networks • 1.9Digital Communication • 1.10Self-Sustainable Modern Communication • 1.11Organization of the Book • Chapter 2: Frequency Analysis And Transmission Of Signals • 2.1Introduction • 2.2Representation of a Signal • 2.3The Fourier Series • 2.4The Fourier Transform • 2.5The Inverse Relationship between Time-Domain and Frequency-Domain Representations • 2.6The Dirac Delta Function • 2.7Fourier Transforms of Periodic Signals • 2.8Correlation of Signals • 2.9Transmission of Signals through Linear Time-Invariant Systems • 2.10Ideal Filters • 2.11Hilbert Transform • 2.12Pre-Envelopes • 2.13Complex Envelopes of Band-Pass Signals • 2.14Canonical Representation of Band-Pass Signals • 2.15Complex Low-Pass Representations of Band-Pass Systems • 2.16Putting the Complex Representations of Band-Pass Signals and Systems All Together • 2.17Linear Modulation Theory • 2.18Superheterodyne Receiver • 2.19 Phase and Group Delays • 2.20Exponential (or Angle) Modulation • 2.21Summary and Discussion • Chapter 3: Probability Theory And Random Variables • 3.1Introduction • 3.2Set Theory • 3.3Probability Theory • 3.4Random Variables • 3.5Distribution Functions • 3.6The Concept of Expectation • 3.7Second-Order Statistical Averages • 3.8The Gaussian Distribution • 3.9The Central Limit Theorem • 3.10Functions of One Random Variable • 3.11Functions of Two Random Variables • 3.12Bayesian Inference • 3.13Parameter Estimation • 3.14Hypothesis Testing • 3.15Composite Hypothesis Testing • 3.16Summary and Discussion • Chapter 4: Stochastic Processes • 4.1Introduction • 4.2Mathematical Definition of a Stochastic Process • 4.3Two Classes of Stochastic Processes: Strictly Stationary and Weakly Stationary • • • • 4.4Mean, Correlation, and Covariance Functions of Weakly Stationary Processes • 4.5Ergodic Processes • 4.6Transmission of a Weakly Stationary Process through a Linear Time-Invariant Filter • 4.7Power Spectral Density of a Weakly Stationary Process • 4.8Another Definition of the Power Spectral Density • 4.9Cross-Spectral Densities • 4.10The Poisson Process • 4.11The Gaussian Process • 4.12Noise • 4.13Noise Calculation • 4.14Noise Figure • 4.15Narrowband Noise • 4.16Sine Wave Plus Narrowband Noise • 4.17Summary and Discussion • • Chapter 5: Baseband Modulation • 5.1Introduction • 5.2Sampling Theory • 5.3Natural Sampling • 5.4Pulse-Amplitude Modulation • 5.5Pulse-Width and Pulse-Position Modulation • 5.6Quantization and Its Statistical Characterization • 5.7Pulse-Code Modulation • 5.8Noise Considerations in PCM Systems • 5.9Linear Prediction • 5.10Differential Pulse-Code Modulation • 5.11Adaptive Differential Pulse-Code Modulation • 5.12Delta Modulation • 5.13Line Codes • 5.14Time-Division Multiplexing • 5.15Summary and Discussion • Chapter 6: Signaling Over Band-Limited Channels • 6.1Introduction • 6.2Optimum Receiver Filter • 6.3Matched Filter • 6.4Error Rate due to Channel Noise in a Matched Filter Receiver • 6.5Intersymbol Interference • 6.6Signal Design for Zero ISI • 6.7Ideal Nyquist Pulse for Distortionless Baseband Data Transmission • 6.8Raised-Cosine Spectrum • 6.9Correlative-Level Coding • 6.10Post-Processing Techniques: The Eye Pattern • 6.11Optimum Linear Receiver • 6.12Adaptive Equalization • 6.13Summary and Discussion • Chapter 7: Passband Modulation • 7.1Introduction • 7.2Geometric Representation of Signals • 7.3Conversion of the Continuous AWGN Channel into a Vector Channel • 7.4Band-Pass Sampling • 7.5Optimum Receivers Using Coherent Detection • 7.6Probability of Error • 7.7Band-Pass Transmission Model • 7.8Binary Amplitude-Shift Keying Using Coherent Detection • 7.9Phase-Shift Keying Techniques Using Coherent Detection • 7.10M-ary Quadrature Amplitude Modulation • 7.11Frequency-Shift Keying Techniques Using Coherent Detection • 7.12Comparison of M-ary PSK and M-ary FSK from an Information-Theoretic Viewpoint • 7.13Detection of Signals with Unknown Phase • 7.14Noncoherent Orthogonal Modulation Techniques • 7.15Binary Frequency-Shift Keying Using Noncoherent Detection • 7.16Differential Phase-Shift Keying • 7.17BER Comparison of Signaling Schemes over AWGN Channels • 7.18Synchronization • 7.19Summary and Discussion • • Chapter 8: Spread Spectrum and Multiuser Communications • 8.1Introduction • 8.2Pseudo-Noise Sequences • 8.3A Notion of Spread Spectrum • 8.4Direct-Sequence Spread Spectrum with Coherent Binary Phase-Shift Keying • 8.5Signal-Space Dimensionality Processing Gain • 8.6Probability of Error • 8.7Frequency-Hop Spread Spectrum • 8.8Code-Division Multiple Access • 8.9Orthogonal Frequency Division Multiplexing • 8.10Satellite Communication • 8.11Radio Link Analysis • 8.12Mobile Radio • 8.13Summary and Discussion • Chapter 9: Information Theory • 9.1Introduction • 9.2Information • 9.3Entropy • 9.4Source-Coding Theorem • 9.5Lossless Data Compression Algorithms • 9.6Discrete Memoryless Channels • 9.7Mutual Information • 9.8Channel Capacity • 9.9Special Channels • 9.10Channel-Coding Theorem • 9.11Differential Entropy and Mutual Information for Continuous Random Ensembles • 9.12Information Capacity Law • 9.13Implications of the Information

Capacity Law • 9.14 Summary and Discussion • Chapter 10: Error-Control Coding • 10.1 Introduction • 10.2 Error Control Using Forward Error Correction • 10.3 Discrete Memoryless Channels • 10.4 Linear Block Codes • 10.5 Cyclic Codes • 10.6 Convolutional Codes • 10.7 Optimum Decoding of Convolutional Codes • 10.8 Maximum Likelihood Decoding of Convolutional Codes • 10.9 Maximum a Posteriori Probability Decoding of Convolutional Codes • 10.10 Turbo Codes • 10.11 Low-Density Parity-Check Codes • 10.12 Trellis-Coded Modulation • 10.13 Turbo Decoding of Serial Concatenated Codes • 10.14 Summary and Discussion • Problems • Multiple Choice Questions • Appendix A Advanced Probabilistic Models • Appendix B Bounds on The Q-Function • Appendix C Bessel Functions • Appendix D Method of Lagrange Multipliers • Appendix E Multiple-Input, Multiple-Output Systems • Appendix F Interleaving • Appendix G The Peak-Power Reduction Problem In Of dm • Appendix H Nonlinear Solid-State Power Amplifiers • Appendix I Monte Carlo Integration • Appendix J Mathematical Tables • • Glossary • Bibliography • Index • Credits

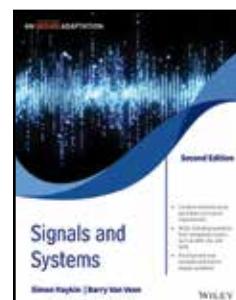
9789354242465 | ₹ 979

Introduction to Analog and Digital Communications, 2ed, An Indian Adaptation | IM | BS | e | k

Haykin

About the Author

Simon Haykin, (University of Wisconsin—Madison)


Table of Contents

• Chapter 1 Introduction • 1.1 Overview • 1.2 Functional Elements of Communication Systems • 1.3 Primary Resources and Operational Requirements • 1.4

Underpinning Theories of Communication Systems • 1.5 Applications • 1.6 Concluding Remarks • Chapter 2 Fourier Representation of Signals and Systems • 2.1 Fourier Series • 2.2 The Fourier Transform • 2.3 Properties of the Fourier Transform • 2.4 The Inverse Relationship Between Time and Frequency • 2.5 Dirac Delta Function • 2.6 Fourier Transforms of Periodic Signals • 2.7 Transmission of Signals Through Linear Systems: Convolution Revisited • 2.8 Ideal Low-Pass Filters • 2.9 Correlation and Spectral Density: Energy Signals • 2.10 Power Spectral Density • 2.11 Positive and Negative Frequencies • 2.12 Hilbert Transform • 2.13 Pre-Envelopes and Complex Envelopes of Band-Pass Signals • 2.14 Complex Low-Pass Representations of Band-Pass Systems • 2.15 Numerical Computation of the Fourier Transform • 2.16 Summary and Discussion • Chapter 3 Amplitude Modulation • 3.1 Amplitude Modulation • 3.2 Virtues, Limitations, and Modifications of Amplitude Modulation • 3.3 Double Sideband-Suppressed Carrier Modulation and Demodulation • 3.4 Costas Receiver • 3.5 Quadrature-Carrier Multiplexing • 3.6 Single-Sideband Modulation and Demodulation • 3.7 Vestigial Sideband Modulation and Demodulation • 3.8 Baseband Representation of Modulated Waves and Band-Pass Filters • 3.9 Theme Examples • 3.10 Summary and Discussion • Chapter 4 Angle Modulation • 4.1 Basic Definitions • 4.2 Properties of Angle-Modulated Waves • 4.3 Relationship Between PM and FM Waves • 4.4 Narrow-Band Frequency Modulation • 4.5 Wide-Band Frequency Modulation • 4.6 Transmission Bandwidth of FM Waves • 4.7 Generation of FM Waves • 4.8 Demodulation of FM Signals • 4.9 Theme Example: FM Stereo Multiplexing and FM Cellular Telephones • 4.10 Summary and Discussion • Chapter 5 Pulse Modulation: Transition from Analog to Digital Communications • 5.1 Sampling Process • 5.2 Pulse-Amplitude Modulation • 5.3 Pulse-Position Modulation • 5.4 Completing the Transition from Analog to Digital • 5.5 Quantization Process • 5.6 Pulse-Code Modulation • 5.7 Delta Modulation • 5.8 Differential Pulse-Code Modulation • 5.9 Line Codes • 5.10 Theme Examples • 5.11 Summary and Discussion • Chapter 6 Baseband Data Transmission • 6.1 Baseband Transmission of Digital Data • 6.2 The Intersymbol Interference Problem • 6.3 The Nyquist Channel • 6.4 Raised-Cosine Pulse Spectrum • 6.5 Baseband Transmission of M-ary Data • 6.6 The Eye Pattern • 6.7 Computer Experiment: Eye Diagrams for Binary and Quaternary Systems • 6.8 Theme Example: Equalization • 6.9 Summary and Discussion • Chapter 7 Digital Band-Pass Modulation Techniques • 7.1 Some Preliminaries • 7.2 Geometric Representation of Signals • 7.3 Gram-Schmidt Orthogonalization Procedure • 7.4 Binary Amplitude-Shift Keying • 7.5 Phase-Shift Keying • 7.6 Frequency-Shift Keying • 7.7 Summary of Three Binary Signaling Schemes • 7.8 Noncoherent Digital Modulation Schemes • 7.9 M-ary Digital Modulation Schemes • 7.10 Mapping of Digitally Modulated Waveforms onto Constellations of

Signal Points • 7.11 Theme Examples • 7.12 Summary and Discussion • Chapter 8 Probability, Random Processes, and Noise • 8.1 Probability and Random Variables • 8.2 Expectation • 8.3 Transformation of Random Variables • 8.4 Gaussian Random Variables • 8.5 The Central Limit Theorem • 8.6 Random Processes • 8.7 Correlation of Random Processes • 8.8 Spectra of Random Signals • 8.9 Gaussian Processes • 8.10 White Noise • 8.11 Narrowband Noise • 8.12 Summary and Discussion • Chapter 9 Noise in Analog Communications • 9.1 Noise in Communication Systems • 9.2 Signal-to-Noise Ratios • 9.3 Band-Pass Receiver Structures • 9.4 Noise in DSB-SC Receivers • 9.5 Noise in AM Receivers Using Envelope Detection • 9.6 Noise in SSB Receivers • 9.7 Noise in FM Receivers • 9.8 FM Pre-emphasis and De-emphasis • 9.9 Summary and Discussion • Chapter 10 Noise in Digital Communications • 10.1 Bit Error Rate • 10.2 Detection of a Single Pulse in Noise • 10.3 Optimum Receivers Using Coherent Detection • 10.4 Optimum Detection of Binary PAM in Noise • 10.5 Optimum Detection of BPSK • 10.6 Detection of QPSK and QAM in Noise • 10.7 Optimum Detection of Binary FSK • 10.8 Differential Detection in Noise • 10.9 Summary of Digital Performance • 10.10 Error Detection and Correction • 10.11 Summary and Discussion • Chapter 11 System and Noise Calculations • 11.1 Electrical Noise • 11.2 Noise Figure • 11.3 Equivalent Noise Temperature • 11.4 Cascade Connection of Two-Port Networks • 11.5 Free-Space Link Calculations • 11.6 Terrestrial Mobile Radio • 11.7 Summary and Discussion • Additional Problems • Advanced Problems • Multiple Choice Questions • Answers to Drill Problems • Answers to Multiple Choice Questions • Appendix 1 Power Ratios and Decibel • Appendix 2 Bessel Functions • Appendix 3 The Q-function and Its Relationship to the Error Function • Appendix 4 Schwarz's Inequality • Appendix 5 Mathematical Tables • Appendix 6 MATLAB Scripts for Computer Experiments to Problems in Chapters 6–10 • Glossary • Bibliography • Index

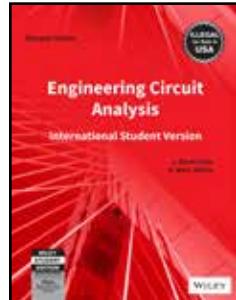
9789354644337 | ₹ 1049

Signals and Systems, 2ed, An Indian Adaptation | IM | e | k

Haykin

About the Author

Simon Haykin, (University of Wisconsin—Madison)


Table of Contents

• CHAPTER 1 Introduction • 1.1 What Is a Signal? • 1.2 Classification of Signals • 1.3 Basic Operations on Signals • 1.4 Elementary Signals • 1.5 What Is a Signal? • 1.6 Overview of Specific Systems • 1.7 Systems Viewed as Interconnections of Operations • 1.8 Properties of Systems • 1.9 Noise • 1.10 Theme Examples • 1.11 Exploring Concepts with MATLAB • 1.12 Summary • • CHAPTER 2 Time-Domain Representations of Linear Time-Invariant Systems • 2.1 Introduction • 2.2 The Convolution Sum • 2.3 Convolution Sum Evaluation Procedure • 2.4 The Convolution Integral • 2.5 Convolution Integral Evaluation Procedure • 2.6 Interconnections of LTI Systems • 2.7 Relations between LTI System Properties and the Impulse Response • 2.8 Step Response • 2.9 Differential and Difference Equation Representations of LTI Systems • 2.10 Solving Differential and Difference Equations • 2.11 Characteristics of Systems Described by Differential and Difference Equations • 2.12 Block Diagram Representations • 2.13 State-Variable Descriptions of LTI Systems • 2.14 Exploring Concepts with MATLAB • 2.15 Summary • • CHAPTER 3 Fourier Representations of Signals and Linear Time-Invariant Systems • 3.1 Introduction • 3.2 Complex Sinusoids and Frequency Response of LTI Systems • 3.3 Fourier Representations for Four Classes of Signals • 3.4 Discrete-Time Periodic Signals: The Discrete-Time Fourier Series • 3.5 Continuous-Time Periodic Signals: The Fourier Series • 3.6 Discrete-Time Nonperiodic Signals: The Discrete-Time Fourier Transform • 3.7 Continuous-Time Nonperiodic Signals: The Fourier Transform • 3.8 Properties of Fourier Representations • 3.9 Finding Inverse Fourier Transforms by Using Partial-Fraction Expansions • 3.10 Parseval Relationships • 3.11 Time-Bandwidth Product • 3.12 Duality • 3.13 Exploring Concepts with MATLAB • 3.14 Summary • • CHAPTER 4 Applications of Fourier Representations to Mixed Signal Classes • 4.1 Introduction • 4.2 Fourier Transform Representations of Periodic Signals • 4.3 Convolution and Multiplication with Mixtures of Periodic and Nonperiodic Signals • 4.4 Fourier Transform Representation of Discrete-Time Signals • 4.5 Sampling • 4.6 Reconstruction of Continuous-Time Signals from Samples • 4.7 Discrete-Time Processing of Continuous-Time Signals • 4.8 Fourier Series Representations of Finite-Duration Nonperiodic Signals • 4.9 The Discrete-Time

Fourier Series Approximation to the Fourier Transform • 4.10 Efficient Algorithms for Evaluating the DTFS • 4.11 Exploring Concepts with MATLAB • 4.12 Summary • • CHAPTER 5 Laplace Transform • 5.1 Introduction • 5.2 The Laplace Transform • 5.3 The Unilateral Laplace Transform • 5.4 Properties of the Unilateral Laplace Transform • 5.5 Inversion of the Unilateral Laplace Transform • 5.6 Solving Differential Equations with Initial Conditions • 5.7 Laplace Transform Methods in Circuit Analysis • 5.8 Properties of the Bilateral Laplace Transform • 5.9 Properties of the Region of Convergence • 5.10 Inversion of the Bilateral Laplace Transform • 5.11 The Transfer Function • 5.12 Causality and Stability • 5.13 Determining the Frequency Response from Poles and Zeros • 5.14 Exploring Concepts with MATLAB • 5.15 Summary • • CHAPTER 6 Z-Transform • 6.1 Introduction • 6.2 The z-Transform • 6.3 Properties of the Region of Convergence • 6.4 Properties of the z-Transform • 6.5 Inversion of the z-Transform • 6.6 The Transfer Function • 6.7 Causality and Stability • 6.8 Determining the Frequency Response from Poles and Zeros • 6.9 Computational Structures for Implementing Discrete-Time LTI Systems • 6.10 The Unilateral z-Transform • 6.11 Exploring Concepts with MATLAB • 6.12 Summary • • CHAPTER 7 Application to Communication Systems • 7.1 Introduction • 7.2 Types of Modulation • 7.3 Benefits of Modulation • 7.4 Full Amplitude Modulation • 7.5 Double Sideband-Suppressed Carrier Modulation • 7.6 Quadrature-Carrier Multiplexing • 7.7 Other Variants of Amplitude Modulation • 7.8 Pulse-Amplitude Modulation • 7.9 Multiplexing • 7.10 Phase and Group Delays • 7.11 Exploring Concepts with MATLAB • 7.12 Summary • • CHAPTER 8 Application to Filters and Equalizers • 8.1 Introduction • 8.2 Conditions for Distortionless Transmission • 8.3 Ideal Low-Pass Filters • 8.4 Design of Filters • 8.5 Approximating Functions • 8.6 Frequency Transformations • 8.7 Passive Filters • 8.8 Digital Filters • 8.9 FIR Digital Filters • 8.10 IIR Digital Filters • 8.11 Linear Distortion • 8.12 Equalization • 8.13 Exploring Concepts with MATLAB • 8.14 Summary • • CHAPTER 9 Application to Linear Feedback Systems • 9.1 Introduction • 9.2 What Is Feedback? • 9.3 Basic Feedback Concepts • 9.4 Sensitivity Analysis • 9.5 Effect of Feedback on Disturbance or Noise • 9.6 Distortion Analysis • 9.7 Summarizing Remarks on Feedback • 9.8 Operational Amplifiers • 9.9 Control Systems • 9.10 Transient Response of Low-Order Systems • 9.11 The Stability Problem • 9.12 Routh-Hurwitz Criterion • 9.13 Root Locus Method • 9.14 Nyquist Stability Criterion • 9.15 Bode Diagram • 9.16 Sampled-Data Systems • 9.17 Exploring Concepts with MATLAB • 9.18 Summary • • APPENDIX A Selected Mathematical Identities • A.1 Trigonometry • A.2 Complex Numbers • A.3 Geometric Series • A.4 Definite Integrals • A.5 Matrices • • APPENDIX B Partial-Fraction Expansions • B.1 Partial-Fraction Expansions of Continuous-Time Representations • B.2 Partial-Fraction Expansions of Discrete-Time Representation • • APPENDIX C Tables of Fourier Representations and Properties • C.1 Basic Discrete-Time Fourier Series Pairs • C.2 Basic Fourier Series Pairs • C.3 Basic Discrete-Time Fourier Transform Pairs • C.4 Basic Fourier Transform Pairs • C.5 Fourier Transform Pairs for Periodic Signals • C.6 Discrete-Time Fourier Transform Pairs for Periodic Signals • C.7 Properties of Fourier Representations • C.8 Relating the Four Fourier Representations • C.9 Sampling and Aliasing Relationships • • APPENDIX D Tables of Laplace Transforms and Properties • D.1 Basic Laplace Transforms • D.2 Laplace Transform Properties • • APPENDIX E Tables of z-Transforms and Properties • E.1 Basic z-Transforms • E.2 z-Transform Properties • • APPENDIX F Introduction to MATLAB • F.1 Basic Arithmetic Rules • F.2 Variables and Variable Names • F.3 Vectors and Matrices • F.4 Plotting in MATLAB • F.5 M-files • F.6 Additional Help • • INDEX

9789354243158 | ₹ 1049

Engineering Circuit Analysis, 11ed, ISV | IM | e


Irwin

Table of Contents

- Preface • Chapter 1 Basic Concepts • 1.1 System of Units • 1.2 Basic Quantities • 1.3 Circuit Elements • Chapter 2 Resistive Circuits • 2.1 Ohm's Law • 2.2 Kirchhoff's Laws • 2.3 Single-Loop Circuits • 2.4 Single-Node-Pair Circuits • 2.5 Series and Parallel Resistor Combinations • 2.6 Wye Delta Transformations • 2.7 Circuits with Dependent Sources • 2.8 Design Example
- Chapter 3 Nodal and Loop Analysis Techniques • 3.1 Nodal Analysis • 3.2 Loop Analysis • Chapter 4 Operational Amplifiers • 4.1 Introduction • 4.2 Op-Amp Models • 4.3 Fundamental Op-Amp Circuits • Chapter 5 Additional Analysis Techniques • 5.1 Introduction • 5.2 Superposition • 5.3 Thévenin's and Norton's Theorems • 5.4 Maximum

Power Transfer • 5.5 Design Example • Chapter 6 Capacitance and Inductance • 6.1 Capacitors • 6.2 Inductors • 6.3 Capacitor and Inductor Combinations • 6.4 Design Example • Chapter 7 First- and Second-Order Transient Circuits • 7.1 Introduction • 7.2 First-Order Circuits • 7.3 Second-Order Circuits • 7.4 Design Example • Chapter 8 AC Steady-State Analysis • 8.1 Sinusoids • 8.2 Sinusoidal and Complex Forcing Functions • 8.3 Phasors • 8.4 Phasor Relationships for Circuit Elements • 8.5 Impedance and Admittance • 8.6 Phasor Diagrams • 8.7 Basic Analysis Using Kirchhoff's Laws • 8.8 Analysis Techniques • Chapter 9 Steady-State Power Analysis • 9.1 Instantaneous Power • 9.2 Average Power • 9.3 Maximum Average Power Transfer • 9.4 Effective or rms Values • 9.5 The Power Factor • 9.6 Complex Power • 9.7 Power Factor Correction • 9.8 Single-Phase Three-Wire Circuits • 9.9 Safety Considerations • 9.10 Design Example • Chapter 10 Magnetically Coupled Networks • 10.1 Mutual Inductance • 10.2 Energy Analysis • 10.3 The Ideal Transformer • 10.4 Safety Considerations • Chapter 11 Polyphase Circuits • 11.1 Three-Phase Circuits • 11.2 Three-Phase Connections • 11.3 Source/Load Connections • 11.4 Power Relationships • 11.5 Power Factor Correction • Chapter 12 Variable Frequency Network Performance • 12.1 Variable Frequency-Response Analysis • 12.2 Sinusoidal Frequency Analysis • 12.3 Resonant Circuits • 12.4 Scaling • 12.5 Filter Networks • Chapter 13 The Laplace Transform • 13.1 Definition • 13.2 Two Important Singularity Functions • 13.3 Transform Pairs • 13.4 Properties of the Transform • 13.5 Performing the Inverse Transform • 13.6 Convolution Integral • 13.7 Initial-Value and Final-Value Theorems • 13.8 Solving Differential Equations with Laplace Transforms • Chapter 14 Application of the Laplace Transform to Circuit Analysis • 14.1 Laplace Circuit Solutions • 14.2 Circuit Element Models • 14.3 Analysis Techniques • 14.4 Transfer Function • 14.5 Steady-State Response • Chapter 15 Fourier Analysis Techniques • 15.1 Fourier Series • 15.2 Fourier Transform • Chapter 16 Two-Port Networks • 16.1 Admittance Parameters • 16.2 Impedance Parameters • 16.3 Hybrid Parameters • 16.4 Transmission Parameters • 16.5 Parameter Conversions • 16.6 Interconnection of Two-Ports • Chapter 17 Diodes • 17.1 Introduction • 17.2 Modeling Techniques • 17.3 Analysis Using the Diode Equation • 17.4 Diode Rectifiers • 17.5 Zener Diodes • Appendix • Complex Numbers • Index

9788126576258 | ₹ 1159

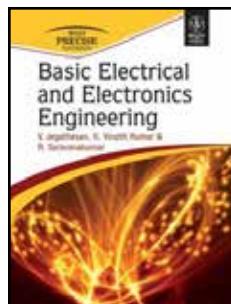
Modeling and Simulation using MATLAB - Simulink, 2ed, w/ cd | e | k

Jain

About the Author

Dr. Shailendra Kumar Jain is an Associate Professor in Department of Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal. He has around 16 years of teaching and research experience. His areas of specialization are: Power Electronics, Electrical Drives, Power Quality Improvement, Active Power Filter/

High Power Factor Converters/STATCOM/Multilevel Inverters, Microprocessor and Microcontrollers Applications, Artificial Intelligence, Distributed Generation, etc.


Table of Contents

- Preface • Preface to the First Edition • • 1 Simulation Mechanism and Simulation Tools • 1.1 Virtual Experimentation • 1.2 Simulation Mechanics • 1.3 Exploring Simulation Tools • 1.4 Advantages and Disadvantages of MATLAB • 1.5 Scope of the Book • • 2 Introduction to MATLAB • 2.1 Introduction • 2.2 Starting and Ending MATLAB • 2.3 MATLAB Desktop • 2.4 Help Browser • 2.5 Types of Files • 2.6 MATLAB Search Path • 2.7 Command Input Assistance • 2.8 Exploring Function Browser • • 3 MATLAB Basics • 3.1 Basic Arithmetic Operations • 3.2 Variables and Arrays • 3.3 Handling Arrays (Vectors and Matrix) • 3.4 Some useful Built-in Functions • 3.5 Operators and Special Characters • 3.6 Control Structures • 3.7 Input/Output Commands • 3.8 File Handling • • 4 Introduction to Plotting • 4.1 Introduction • 4.2 The plot Command • 4.3 Formatting a Plot • 4.4 Multiple Plots • 4.5 Adding Legend to a Plot • 4.6 Sub-Plots • 4.7 Plotting Complex Data • 4.8 Additional 2-D Plots • 4.9 Plotting a Function • 4.10 Three-Dimensional Plots • 4.11 Formatting a Plot using the Plot Editor • 4.12 Interactive Plotting Using Plotting Tools • • 5 Programming in MATLAB • 5.1 Introduction • 5.2 MATLAB Editor • 5.3 MATLAB Programming • 5.4 Debugging MATLAB Programs • 5.5 MATLAB Debugger • 5.6 Functions and Function Files • 5.7 Differential Equation Solver • 5.8 Calculus Functions using Symbolic Mathematics • 5.9 Programming

Prices are subject to change without prior notice.

Examples • 6 Basic Electrical and Networks Applications • 6.1 Analysis of Electrical Networks • 6.2 Network Theorems • 6.3 Solution of Network Problems (Solution of Linear Differential Equations) • 7 Introduction to Simulink • 7.1 Introduction • 7.2 Getting Simulink • 7.3 Creating and Simulating a Simulink Model • 7.4 Simulink Solution of Differential Equation • 7.5 Solvers • 7.6 Keystrokes or Mouse Action for Handling Blocks and Lines • 7.7 Assigning Variables • 7.8 Observing Variables during Simulation • 7.9 Storing/Saving Data • 7.10 Linking Script File/M-file with Model File • 7.11 Data Import/Export • 7.12 Creating and Masking Subsystems • 7.13 Solution Using Laplace Transform Approach • 7.14 Simulation of Non-Linear System • 7.15 Equivalent Circuit • 8 Control System Applications • 8.1 Introduction • 8.2 Important MATLAB Functions • 8.3 Use of Laplace Transform • 8.4 Writing Transfer Function (TF) • 8.5 Pole-Zero Mapping • 8.6 Block Diagram Reduction • 8.7 Time Response Analysis • 8.8 Step Response using MATLAB • 8.9 Ramp Response • 8.10 Impulse Response • 8.11 Parabolic Response • 8.12 State Space Approach • 8.13 Response of Arbitrary Input • 8.14 Root Locus • 8.15 Bode Plots • 8.16 Nyquist Plot • 9 Power Electronics Applications • 9.1 Introduction • 9.2 SimPowerSystems™ Toolbox • 9.3 Building and Simulating a Simple Circuit • 9.4 Interfacing the Electrical Circuit with Simulink • 9.5 Diode Circuits and Rectifiers 441 • 9.6 Simulation of Battery Charger • 9.7 Simulation of Single-Phase Full-Wave Rectifier • 9.8 Effect of Source Inductances • 9.9 Simulation of Controlled Converters • 9.10 Simulation Model for the Measurement of Power Factor Angle • 9.11 Simulation of DC-AC Inverters • 9.12 AC Voltage Controllers • 9.13 Virtual Experimentation • 10 Script File Approach to Model and Simulate Circuits • 10.1 Introduction • 10.2 Generating a Periodic Signal and Finding its Average and RMS Value • 10.3 Modeling and Simulation of General Electrical Circuits • 10.4 Script File Approach to Simulate Power Converters • 10.5 Simulation of Three-Phase Rectifier (Classical Approach) • 10.6 Use of MATLAB Function • 11 Fuzzy Logic and Applications • 11.1 Introduction • 11.2 Classical Control Approach • 11.3 Advantages and Applications of Fuzzy Logic • 11.4 Fuzzy Logic System • 11.5 Implication and Aggregation Methods • 11.6 Defuzzification Methods • 11.7 MATLAB® Fuzzy Logic Toolbox™ • 11.8 Building Fuzzy Inference Systems (FIS) Using Graphical User Interface (GUI) • 11.9 Fuzzy Logic Control Applications • 11.10 Exploring FIS from the Command Prompt • 11.11 Building FIS using Custom Functions • 11.12 Working with FLC in Simulink Environment • 11.13 Design of Fuzzy Control Rule • 11.14 Design Methodology and Control Implementation • Chapter Summary • List of Important Commands • Important Fuzzy Terminology • Exercises • Appendix A: Graphical User Interface • A.1 Introduction • A.2 Accessing GUI Template • List of Important Commands • Bibliography • Index

9788126551972 | ₹ 949

Basic Electrical and Electronics Engineering | BS | e

Jegathesan

About the Author

Dr. V. Jegathesan received his B.E. degree in Electrical and Electronics Engineering from Bharathiar University, Coimbatore, Tamil Nadu, India in 1999. He has obtained M.E. from Bharathiar University, Coimbatore, Tamil Nadu, India in 2002 and his doctoral degree from Anna University, Chennai, Tamil Nadu, India in 2010. Presently, he is working as an Assistant Professor (SG) in

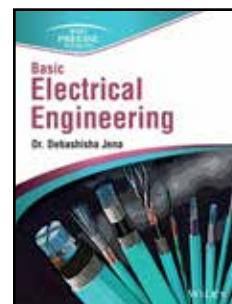

Department of Electrical and Electronics Engineering in Karunya Institute of Technology and Sciences (Karunya University), Coimbatore, Tamil Nadu, India. Dr. Jegathesan has 12 years of teaching experience from Karunya University. His present research interests are Electric Circuits and Networks, Development of Heuristic Algorithm for Power Electronics Applications, Application of Non-traditional Methods to Power Electronics, Power Electronics and Drives. He has already published various research papers in international journals and also in international conferences. He is a member of IEEE (USA), Indian Society for Technical Education, International Association of Engineers (IAENG), International Association of Computer Science and Information Technology (IACSIT).

Table of Contents

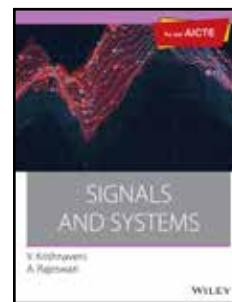
- Basics of Electrical Engineering • DC Circuits • Magnetic Circuits • Principles of Electrical Machines • AC Circuits • Polyphase Systems • Electrical Machines • Measuring Instrument • Domestic Wiring • Power System • Essentials of an Electronic Circuit • Basic Semiconductor Devices and Circuits • Special Semiconductor Devices • Transducers •

Linear and Digital Integrated Circuits • Fundamentals of Computer • Fundamentals of Communication

9788126529513 | ₹ 799

Basic Electrical Engineering | e | k

Jena


About the Author

Dr. Debashisha Jena is an Assistant Professor in the Department of Electrical and Electronics Engineering, NIT Surathkal. He received Bachelor of Electrical Engineering degree (1996) & Master of Technology in Electrical Engineering (2004) from University College of Engineering, Burla, India. He did his Ph.D. (2010) in Control System Engineering from the Department of Electrical Engineering, NIT, Rourkela. He was awarded GSEP fellowship in 2008 for research in control and automation in the University of Saskatchewan, Canada. He has 11 years of teaching experience in different Engineering colleges in India. He has also published more than 30 papers in reputed journals and national / international conferences. His research interests include Evolutionary Computation, System Identification and Neuro-evolutionary computation.

Table of Contents

- Fundamental of Electrical Circuits • Electrical Circuit Analysis • Time Domain DC Circuit Analysis • Magnetic Circuit • Single-Phase AC Circuit • Three-Phase AC Circuit
- Transformer • Induction Motor • DC Machines • Three-Phase Synchronous Machines
- Electrical Measurement and Measuring Instruments • Electromechanical Energy Conversion • Operational Amplifiers • Power System and Home Electric System • Appendix

9788126536139 | ₹ 829

Signals and Systems: As per AICTE | e

Krishnaveni

About the Author

Dr. V. Krishnaveni, is lecturer (selection grade) at the Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore. Her areas of interest and research are Signals and Systems, Digital Signal Processing, Biomedical Signal Processing, Communications Engineering

Table of Contents

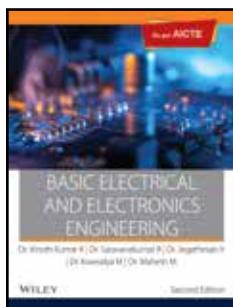
- Preface • 1. Introduction to Signals and Systems • 1.1 Introduction • 1.2 Signals • 1.3 Systems • 1.4 Classification of Signals • 1.5 Classification of Systems • 2. Continuous-Time and Discrete-Time Signals • 2.1 Introduction • 2.2 Signals Operations • 2.3 Basic Signals • 2.4 Classification of Continuous-Time and Discrete-Time Signals • 3. Continuous-Time and Discrete-Time Systems • 3.1 Introduction • 3.2 Interconnection of Systems • 3.3 Properties of Systems • 4. Linear Time-Invariant Systems • 4.1 Introduction • 4.2 Response of DT LTI Systems: The Convolution Sum • 4.3 Response of CT-LTI Systems: The Convolution Integral • 4.4 Properties of LTI Systems • 5. Fourier Analysis of Continuous-Time Signals and Systems • 5.1 Introduction • 5.2 Response of LTI Systems to Complex Exponentials • 5.3 Fourier Representations for Four Types of Signals • 5.4 Fourier Series Representation of CT Periodic Signals: CTFS • 5.5 Magnitude and Phase Spectra of Periodic Signals • 5.6 Determining the Fourier Series Coefficients ak: CTFS Analysis Equation • 5.7 Convergence of CTFS • 5.8 Gibbs' Phenomenon • 5.9 Properties of CTFS • 5.10 Application of Fourier Series • 5.11 Representation of CT Aperiodic Signal: CTFT • 5.12 Convergence of CTFT • 5.13 Fourier Transform for Periodic Signals
- 5.14 Properties of CTFT • 5.15 LTI-CT Systems Characterized by Linear Constant Coefficient Differential Equations • 6. Sampling • 6.1 Introduction • 6.2 Representation of CT Signal by Its Samples • 6.3 Impulse Train Sampling • 6.4 Zero-Order Hold Sampling • 6.5 Relationship between Analog Frequency (W) and Digital Frequency (?) • 6.6 Quantization • 6.7 Encoding of Quantized Samples • 6.8 A Complete DSP System

- 7. Fourier Analysis of Discrete-Time Signals and Systems • 7.1 Introduction • 7.2 Response of DT-LTI Systems to Complex Exponentials • 7.3 Fourier Series Representation of DT Periodic Signals: DTFS • 7.4 Magnitude and Phase Spectrum of DT Periodic Signals • 7.5 Determination of Fourier Series Coefficients ak: DTFS Analysis Equation • 7.6 Convergence of Issues in DTFS • 7.7 Properties of DTFS • 7.8 Application of DTFS
- 7.9 Representation of DT Aperiodic Signals: DTFT • 7.10 Convergence of DTFT • 7.11 Fourier Transform for Periodic Signals • 7.12 Properties of DTFT • 7.13 LTI-DT Systems Characterized by Linear Constant Coefficient Difference Equations • 8. Laplace Transform
- 8.1 Introduction • 8.2 Laplace Transform of CT Signals • 8.3 Relationship between CTFT and Laplace Transform • 8.4 Properties of ROC for Laplace Transforms • 8.5 Properties of Laplace Transform • 8.6 Inverse Laplace Transform • 8.7 Analysis of LTI Systems by using Laplace Transform • 8.8 Solving Differential Equations by using Laplace Transform • 8.9 Unilateral Laplace Transform • 9. z-Transform • 9.1 Introduction • 9.2 z-Transform of DT Signals • 9.3 z-Transform and ROC of Finite-Duration Sequences • 9.4 z-Transform and ROC of Infinite-Duration Sequences • 9.5 Relationship between DTFT and z-Transform
- 9.6 Properties of Region of Convergence • 9.7 Properties of z-Transform • 9.8 Inverse z-Transform • 9.9 Analysis of LTI Systems by using z-Transform • 9.10 Unilateral z-Transform • Answers • Appendix A • Appendix B • Index

9788126509829 | ₹ 939

Quality Control | e | k

Kulkarni


About the Author

Vinay A. Kulkarni is a lecturer, and teaches at the Department of Production Engineering, D.Y. Patil College of Engineering, Pune. He was awarded a gold medal for completing his M.Tech. in Production Engineering (with specialization in Production Management). Besides publishing several technical research papers in national and international journals, he has presented at several national and international conferences. He is a member of various professional bodies and has worked as a resource person at Indian Institute of Production Engineers, Pune.

Table of Contents

- Quality Concepts • Quality Milestones • Juran's Trilogy • Cost of Quality and Value of Quality • Total Quality Management • Statistical Quality Control and Acceptance Sampling • Taguchi's Quality Engineering • Six Sigma • Reliability, Availability and Maintainability • Quality Culture: A Global Paradigm Shift

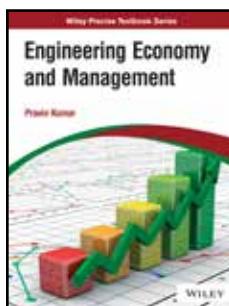
9788126519071 | ₹ 859

Basic Electrical and Electronics Engineering, 2ed | e | k

Kumar

About the Author

Dr. Vinoth Kumar K is working as an Associate Professor in the Department of Electrical and Electronics Engineering at New Horizon College of Engineering, Bengaluru. He is having 12.8 years of teaching as well as research experience and his research area includes Condition monitoring of electrical machines, Signal and Model-Based Techniques, Soft computing techniques in Power electronics applications, Neuro-Fuzzy Computing, Computational based classification for breast cancer, Photonic Crystal Fiber, and Renewable Energy.


Table of Contents

- Preface • About the Authors • Chapter 1 Basics of Electrical Engineering • 1.1 Electrical Quantities • 1.2 Definitions About Various Quantities • 1.3 SI Units • • Chapter 2 DC Circuits • 2.1 Introduction • 2.2 Circuit Laws • 2.3 Series and Parallel Circuits • 2.4 Nodal and Mesh Analysis • 2.5 Delta to Wye Transformation • 2.6 Wye to Delta Transformation • • Chapter 3 Network Theorems • 3.1 Superposition Theorem • 3.2 Thevenin's Theorem • 3.3 Norton's Theorem • 3.4 Maximum Power Transfer Theorem • 3.5 Millman's Theorem • 3.6 Reciprocity Theorem • 3.7 Substitution Theorem • 3.8 Compensation

- Theorem • 3.9 Tellegen's Theorem • Chapter 4 DC Transients • 4.1 Basics of Response • 4.2 Time-Domain Analysis of R-L Circuit • 4.3 Time-Domain Analysis of R-C Circuit • 4.4 Time-Domain Analysis of R-L-C Circuit • Chapter 5 Magnetic Circuits • 5.1 Definitions of Magnetic Quantities • 5.2 Analysis of Magnetic Circuit • 5.3 Magnetic Leakage • 5.4 Retentivity • 5.5 Magnetic Hysteresis • 5.6 Magnetization Cycle • 5.7 Hysteresis Loss • 5.8 Steinmetz Law • 5.9 Eddy Current Loss • Chapter 6 Principles of Electrical Machines • 6.1 Functions of Electrical Machines • 6.2 Permanent Magnet • 6.3 Electromagnet • 6.4 Laws of Electromagnetic Induction • 6.5 Electrochemical Energy Conversion • Chapter 7 AC Circuits • 7.1 Introduction • 7.2 Generation of Alternating E.M.F. • 7.3 Equation of Alternating Voltage • 7.4 Alternating Quantity (Current or Voltage) • 7.5 Cycle • 7.6 Time Period (T) • 7.7 Frequency (F) • 7.8 Angular Frequency • 7.9 Maximum or Peak Value or Amplitude • 7.10 Average Value • 7.11 Root Mean Square Value • 7.12 Form Factor • 7.13 Peak Factor • 7.14 Expression for RMS Value, Average Value of Sinusoidal Alternating Quantity • 7.15 Expression for RMS, Average Value of Half-Wave Rectified AC • 7.16 Phase Representation of Alternating Quantity • 7.17 Resonance • 7.18 Series Resonance • 7.19 Parallel Resonance • Chapter 8 Polyphase Systems • 8.1 Two-Phase System • 8.2 Three-Phase System • 8.3 Three-Phase System of Connections • 8.4 Phase Sequence • 8.5 Balanced or Unbalanced Three-Phase System • 8.6 Symmetrical or Unsymmetrical Systems • 8.7 Voltages and Currents • 8.8 Systems of Connections • 8.9 Star- or Wye-Connected System • 8.10 Delta Connected Systems • 8.11 Comparison Between Star and Delta • 8.12 Line Voltage Vector Diagrams with Load Current-Star/Delta • 8.13 Balanced Star Load with Impedance • 8.14 Balanced Delta Load with Impedance • 8.15 Power Measurement in Single-Phase System • 8.16 Power Measurement in Three-Phase System • 8.17 Two-Wattmeter Method of Power Measurement • 8.18 Two-Wattmeter Method Measurement • 8.19 Unbalanced Loads in Star • 8.20 Symmetrical Components • Chapter 9 Electrical Machines • 9.1 Introduction • 9.2 DC Machines • 9.3 Transformer • 9.4 Three-Phase Induction Motor • 9.5 Single-Phase Induction Motor • 9.6 Synchronous Motor • 9.7 Autotransformer • 9.8 Universal Motor • 9.9 Linear Induction Motor • 9.10 Stepper Motor • 9.11 Servomotor • 9.12 BLDC Motor • Chapter 10 Basics of Measuring Instruments • 10.1 Introduction • 10.2 Classification • 10.3 Principle of Analog Instrument • 10.4 Moving Coil Instruments • 10.5 Moving Iron Instrument • 10.6 Use of Voltmeters and Ammeters • 10.7 Dynamometer Type Wattmeter • 10.8 Induction Type Energy Meter • 10.9 Megger • 10.10 Measurement Errors • Chapter 11 Basics of Domestic Wiring and Batteries • 11.1 Introduction • 11.2 Factors Affecting Choice of Wiring System • 11.3 Wiring Materials and Accessories • 11.4 Types of Wiring • 11.5 Rules for Wiring • 11.6 Specification of Wires • 11.7 Two-way and Three-way Control of Lamps • 11.8 Fluorescent Tube Wiring • 11.9 Simple Domestic Layout • 11.10 Earthing • Chapter 12 Basics of Power Systems • 12.1 Introduction • 12.2 Types of Power Stations • 12.3 Transmission • 12.4 Distribution • Chapter 13 Basics of Electrical Components • 13.1 Resistors • 13.2 Fixed Resistors • 13.3 Variable Resistors • 13.4 Color Coding • 13.5 Capacitors • 13.6 Dissipation Factor • 13.7 Inductors • 13.8 Chokes • Chapter 14 Basics of Semiconductor Devices and Power Electronics • 14.1 Classification of Materials • 14.2 Properties of Semiconductors • 14.3 Classification of Semiconductors • 14.4 P-N Junction • 14.5 P-N Junction Diode • 14.6 Rectifiers • 14.7 Zener Diode • 14.8 Filters • 14.9 Bipolar Transistor • 14.10 Field Effect Transistor • 14.11 Basic Concepts of Power Electronics Converters • 14.12 DC-DC Converters • 14.13 Voltage Source Inverter • 14.14 Pulse Width Modulation • • Chapter 15 Basics of Special Semiconductor Devices • 15.1 Silicon Controlled Rectifiers (SCRs) • 15.2 Triode for Alternating Current (TRIAC) • 15.3 Unijunction Transistor (UT) • 15.4 Opto-Electronic Devices • Chapter 16 Transducers • 16.1 Basic Requirements of Transducers • 16.2 Classification of Transducers • 16.3 Displacement Transducers • 16.4 Temperature Transducers • 16.5 Piezoelectric Transducers • 16.6 Hall Effect Transducer • 16.7 Sensor and Actuator • Chapter 17 Basics of Linear and Digital Integrated Circuits • 17.1 Integrated Circuits • 17.2 Linear Integrated Circuits • 17.3 IC Timer • 17.4 Digital Integrated Circuits • 17.5 Decimal and Binary Numbers • 17.6 Octal and Hexadecimal Numbers • Chapter 18 Basics of Computers • 18.1 Input Devices • 18.2 Central Processing Unit (CPU) • 18.3 Output Devices • 18.4 Memory Devices • 18.5 Memory Terminology • 18.6 Mass Storage Data System • 18.7 Computer Input Units • 18.9 Plotters • 18.10 Computer Output on Microfilm • 18.11 Digital to Analog Converter • 18.12 Classification of Computers • 18.13 Microprocessors • Chapter 19 Basics of Communication • 19.1 Analog and Digital Signal • 19.2 Data Transmission • 19.3 Modulation • 19.4 Demodulation • 19.5 Pulse Modulation • 19.6 Digital Data Transmission • 19.7 Data Communication System • 19.8 MODEMS • 19.9 Communication System • 19.10 Computer Network • 19.11 Integrated Services Digital Network (ISDN) • 19.12 Internet • Summary • Multiple Choice Questions • Review Questions • Answers • Index

9789354643194 | ₹ 839

Prices are subject to change without prior notice.

Engineering Economy and Management | e | k

Kumar

About the Author

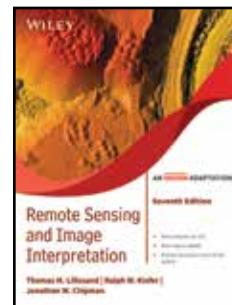

Pravin Kumar is working as an Associate Professor in the Department of Mechanical Engineering, Delhi Technological University, Delhi. He obtained his PhD in Supply Chain Management from IIT Delhi and M. Tech. in Industrial Management from IIT (BHU) Varanasi. He has more than 19 years of teaching and research experience. His research area is supply chain and operations management. He has published more than 50 research papers in international journals.

Table of Contents

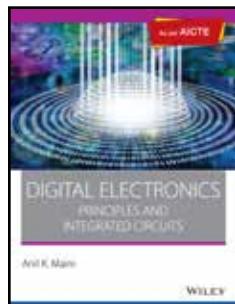
- Preface • About the Author • Chapter 1 Introduction to Engineering Economics • 1.1 Introduction • 1.2 Concept of Efficiency • 1.3 Theory of Demand • 1.4 Elasticity of Demand • 1.5 Supply and Law of Supply • 1.6 Indifference Curves • 1.7 Budget Line • 1.8 Welfare Analysis • • Chapter 2 Managerial Economics • 2.1 Introduction • 2.2 Scope of Managerial Economics • 2.3 Techniques of Managerial Economics • 2.4 Applications of Managerial Economics • • Chapter 3 Money, National Income, and Goods and Services Tax • 3.1 Money • 3.2 National Income • 3.3 Goods and Services Tax • • Chapter 4 Poverty, Unemployment, and Inflation • 4.1 Scarcity • 4.2 Poverty • 4.3 Unemployment • 4.4 Inflation • • Chapter 5 Banking Systems • 5.1 Introduction to Banking Systems • 5.2 Types of Banks • 5.3 Quantitative Instruments for Credit Control • 5.4 Types of Banking • • Chapter 6 Market Structures • 6.1 Introduction • 6.2 Perfect Competition • 6.3 Monopoly • 6.4 Monopolistic Competition • 6.5 Oligopoly • 6.6 Duopoly • 6.7 Monopsony • 6.8 Monopoly and Monopsony: A Comparison • • Chapter 7 Marketing Management • 7.1 Introduction • 7.2 Marketing Mix • 7.3 Market Segmentation • 7.4 Exchange and Transactions • 7.5 Marketing Research • 7.6 Scope of Marketing • 7.7 Product Life Cycle • 7.8 Demand Forecasting • • Chapter 8 Concepts in Management • 8.1 Introduction • 8.2 Characteristics of Management • 8.3 Scope of Management • 8.4 Classical School of Management • 8.5 Functions of Management • 8.6 Levels of Management • 8.7 Skills of Management • 8.8 Managerial Roles • 8.9 Administration and Management • • Chapter 9 Human Resource Management • 9.1 Human Resource Management • 9.2 Human Resource Planning • 9.3 Recruitment and Selection • 9.4 Job Design • 9.5 Merit Rating • • Chapter 10 Corporate Social Responsibility and Business Ethics • 10.1 Corporate Social Responsibility • 10.2 Types of Corporate Social Responsibilities • 10.3 Ethics • • Chapter 11 Production and Operations Management • 11.1 Production and Operations Management • 11.2 Objectives of Production Management • 11.3 Production Systems • 11.4 Facility Location • 11.5 Plant Layout • • Chapter 12 Demand Forecasting and Cost Estimation • 12.1 Introduction • 12.2 Forecasting Horizons • 12.3 Steps to Forecasting • 12.4 Forecasting Methods • 12.5 Seasonal Adjustments • 12.6 Forecasting Performance Measures • 12.7 Cost Estimation • 12.8 Elements of Cost • 12.9 Computation of Material Variances • 12.10 Break-Even Analysis • • Chapter 13 Time Value of Money • 13.1 Introduction • 13.2 Simple Interest • 13.3 Compound Interest • 13.4 Present Worth Analysis • 13.5 Future Worth Analysis • 13.6 Annual Cash Flow Analysis • 13.7 Rate of Return Analysis • 13.8 Arithmetic Gradient • 13.9 Geometric Gradient • 13.10 Continuous Compounding • 13.11 Normal and Effective Interest Rate • 13.12 Perpetual Payment • • Chapter 14 Project Evaluation • 14.1 Introduction • 14.2 Determining Minimum Attractive Rate of Return • 14.3 Payback (Payout) Period Method • 14.4 Benefit-Cost Ratio • • Chapter 15 Comparison Among Alternatives • 15.1 Introduction • 15.2 Basis for Comparison of Alternatives • 15.3 Study Period • 15.4 Useful Lives of Alternatives Are Equal to the Study Period • 15.5 Useful Lives of Alternatives Are Unequal • 15.6 B-C Ratio Method for Comparison of Alternatives • • Chapter 16 Depreciation and Taxes • 16.1 Introduction • 16.2 Some Important Terms Used in Depreciation • 16.3 Classical Depreciation Methods • 16.4 Modified Accelerated Cost Recovery System • 16.5 Taxes • • Chapter 17 Replacement Analysis • 17.1 Introduction • 17.2 Reasons for Replacement Analysis • 17.3 Lives of Assets • 17.4 Determining the Economic Life of a Challenger • 17.5 Determining the Economic Life of a Defender • 17.6 After-Tax Replacement Studies • • Chapter 18 Concept of Financial Statement • 18.1 Introduction • 18.2 Sources of Company Information • 18.3 Sources of International Economic Data • 18.4 Financial Analysis • 18.5 Financial Statement • 18.6 Trading Account • 18.7 Profit and Loss Account • 18.8 Balance Sheet Requirements • 18.9 Distinction between Profit and Loss Account and Balance Sheet • • Chapter 19 Financial Ratios • 19.1 Introduction • 19.2 Types of

Financial Ratios • 19.3 Advantages and Limitations of Ratio Analysis • • Chapter 20 Capital Budgeting • 20.1 Introduction • 20.2 Capital Financing and Allocation Functions • 20.3 Sources of Capital Funds • 20.4 Capital Asset Pricing Model • 20.5 Weighted Average Cost of Capital • 20.6 Leasing Decisions • 20.7 Capital Allocation • • Chapter 21 Decision Making • 21.1 Introduction • 21.2 Types of Decision-Making Environments • 21.3 Decision Tree Analysis • 21.4 Multiple Criteria Decision Making • • Summary • Points to Remember • Multiple-Choice Questions • State whether True/False • Fill in the Blanks • Review Questions • Exercises • Appendix A • Statistical Tables and Procedures • Appendix B End-of-Period Compound Interest Tables • Appendix C Answers to Objective Type Questions • Bibliography • Index

9788126579921 | ₹ 859

Remote Sensing and Image Interpretation, 7ed, An Indian Adaptation | IM | e | k

Lillesand


Table of Contents

- Chapter 1 Concepts and Foundations of Remote Sensing • 1.1 Introduction • 1.2 Energy Sources and Radiation Principles • 1.3 Energy Interactions in the Atmosphere • 1.4 Energy Interactions with Earth Surface Features • 1.5 Data Acquisition and Digital Image Concepts • 1.6 Reference Data • 1.7 Satellite Navigation Systems • 1.8 Characteristics of Remote Sensing Systems • 1.9 Successful Application of Remote Sensing • 1.10 Geographic Information Systems (GIS) • 1.11 Spatial Data Frameworks for GIS and Remote Sensing • 1.12 Visual Image Interpretation • Chapter 2 Elements of Photographic Systems • 2.1 Introduction • 2.2 Early History of Aerial Photography • 2.3 Photographic Basics • 2.4 Digital Photography • 2.5 Aerial Cameras • 2.6 Spatial Resolution of Camera Systems • 2.7 Aerial Videography • 2.8 Conclusion • Chapter 3 Basic Principles of Photogrammetry • 3.1 Introduction • 3.2 Basic Geometric Characteristics of Aerial Photographs • 3.3 Photographic Scale • 3.4 Ground Coverage of Aerial Photographs • 3.5 Area Measurement • 3.6 Relief Displacement of Vertical Features • 3.7 Image Parallax • 3.8 Ground Control for Aerial Photography • 3.9 Determining the Elements of Exterior Orientation of Aerial Photographs • 3.10 Production of Mapping Products from Aerial Photographs • 3.11 Flight Planning • 3.12 Conclusion • Chapter 4 Multispectral, Thermal, and Hyperspectral Sensing • 4.1 Introduction • 4.2 Across-Track Scanning • 4.3 Along-Track Scanning • 4.4 Example Across-Track Multispectral Scanner and Imagery • 4.5 Example Along-Track Multispectral Scanner and Imagery • 4.6 Geometric Characteristics of Across-Track Scanner Imagery • 4.7 Geometric Characteristics of Along-Track Scanner Imagery • 4.8 Thermal Imaging • 4.9 Thermal Radiation Principles • 4.10 Interpreting Thermal Imagery • 4.11 Radiometric Calibration of Thermal Images and Temperature Mapping • 4.12 FLIR Systems • 4.13 Hyperspectral Sensing • 4.14 Conclusion • Chapter 5 Earth Resource Satellites Operating in the Optical Spectrum • 5.1 Introduction • 5.2 General Characteristics of Satellite Remote Sensing Systems Operating in the Optical Spectrum • 5.3 Moderate Resolution Systems • 5.4 Landsat-1 to -7 • 5.5 Landsat-8 • 5.6 Future Landsat Missions and the Global Earth Observation System of Systems • 5.7 SPOT-1 to -5 • 5.8 SPOT-6 and -7 • 5.9 Evolution of Other Moderate Resolution Systems • 5.10 Moderate Resolution Systems Launched Prior to 1999 • 5.11 Moderate Resolution Systems Launched Since 1999 • 5.12 High Resolution Systems • 5.13 Hyperspectral Satellite Systems • 5.14 Meteorological Satellites Frequently Applied to Earth Surface Feature Observation • 5.15 NOAA POES Satellites • 5.16 JPSS Satellites • 5.17 GOES Satellites • 5.18 Ocean Monitoring Satellites • 5.19 Earth Observing System • 5.20 Space Station Remote Sensing • 5.21 Space Debris • Chapter 6 Microwave, Lidar, and Geophysical Sensing • 6.1 Introduction • 6.2 Radar Development • 6.3 Imaging Radar System Operation • 6.4 Synthetic Aperture Radar • 6.5 Geometric Characteristics of Radar Imagery • 6.6 Transmission Characteristics of Radar Signals • 6.7 Other Radar Image Characteristics • 6.8 Radar Image Interpretation • 6.9 Interferometric Radar • 6.10 Radar Remote Sensing from Space • 6.11 Seasat-1 and the Shuttle Imaging Radar Missions • 6.12 Almaz-1 • 6.13 ERS, Envisat, and Sentinel-1 • 6.14 JERS-1, ALOS, and ALOS-2 • 6.15 Radarsat • 6.16 TerraSAR-X, TanDEM-X, and PAZ • 6.17 The COSMO-SkyMed Constellation • 6.18 Other High-Resolution Spaceborne Radar Systems • 6.19 Shuttle Radar Topography Mission • 6.20 Spaceborne Radar System Summary • 6.21 Radar Altimetry • 6.22 Passive Microwave Sensing • 6.23 Basic

Principles of Lidar • 6.24 Lidar Data Analysis and Applications • 6.25 Spaceborne Lidar • 6.26 Space Gravity Data Analysis and Applications • Chapter 7 Digital Image Analysis • 7.1 Introduction • 7.2 Preprocessing of Images • 7.3 Image Enhancement • 7.4 Contrast Manipulation • 7.5 Spatial Feature Manipulation • 7.6 Multi-Image Manipulation • 7.7 Image Classification • 7.8 Supervised Classification • 7.9 The Classification Stage • 7.10 The Training Stage • 7.11 Unsupervised Classification • 7.12 Hybrid Classification • 7.13 Classification of Mixed Pixels • 7.14 The Output Stage and Postclassification Smoothing • 7.15 Object-Based Classification • 7.16 Neural Network Classification • 7.17 Classification Accuracy Assessment • 7.18 Change Detection • 7.19 Image Time Series Analysis • 7.20 Data Fusion and GIS Integration • 7.21 Hyperspectral Image Analysis • 7.22 Biophysical Modeling • 7.23 Conclusion • Chapter 8 Applications of Remote Sensing • 8.1 Introduction • 8.2 Land Use/Land Cover Mapping • 8.3 Basic Geological Applications • 8.4 Mineral Exploration • 8.5 Groundwater and Springs • 8.6 Soil Mapping • 8.7 Agricultural Applications • 8.8 Forestry Applications • 8.9 Rangeland Applications • 8.10 Water Resource Applications • 8.11 Snow and Ice Applications • 8.12 Glaciers and Climate Change Applications • 8.13 Marine and Coastal Applications • 8.14 Wetland Mapping • 8.15 Wildlife Ecology Applications • 8.16 Urban and Regional Planning Applications • 8.17 Archaeological Applications • 8.18 Natural Disaster Assessment • 8.19 Environmental Assessment and Protection • 8.20 Global Navigation Satellite Systems • 8.21 Planetary Sciences Applications • 8.22 Conclusion • Chapter 9 Geographic Information Systems • 9.1 Introduction to GIS • 9.2 Spatial Data Models and Structures • 9.3 Geospatial Data Input and Management • 9.4 Visualization and Data Exploration • 9.5 Spatial Data Transformation and Analysis • 9.6 Spatial Data Modeling • 9.7 Planning, Implementation, and Management of GIS • 9.8 Current Issues and Trends in GIS • 9.9 Conclusion • Review Questions • Multiple Choice Questions • SI Units Frequently Used in Remote Sensing • Works Cited • Index

9789354642104 | ₹ 1189

Digital Electronics: Principles and Integrated Circuits: As per AICTE | e Maini

About the Author


Dr Anil Kumar Maini is a senior scientist and former Director of Laser Science and Technology Centre, a premier laser and optoelectronics research and development laboratory of Defence Research and Development Organisation of Ministry of Defence. He has worked on a wide range of electronics, optoelectronics and laser systems and his areas of expertise include optoelectronic sensor systems, laser systems, power electronics, digital electronics and related technologies.

Table of Contents

- Chapter-1: Number Systems And Codes • 1.1. Analogue Versus Digital • 1.2. Introduction To Number Systems • 1.3. Decimal Number System • 1.4. Binary Number System • 1.5. Octal Number System • 1.6. Hexadecimal Number System • 1.7. Number Systems – Some Common Terms • 1.8. Number Representation In Binary • 1.9. Finding The Decimal Equivalent • 1.10. Decimal-To-Binary Conversion • 1.11. Decimal-To-Octal Conversion • 1.12. Decimal-To-Hexadecimal Conversion • 1.13. Binary-Octal And Octal-Binary Conversions • 1.14. Hex-Binary And Binary-Hex Conversion • 1.15. Hex-Octal And Octal-Hex Conversions • 1.16. The Four Axioms • 1.17. Floating-Point Numbers • 1.18. Binary Coded Decimal • 1.19. EXCESS-3 CODE • 1.20. GRAY CODE • 1.21. ALPHANUMERIC CODES • 1.22. SEVEN-SEGMENT DISPLAY CODE • 1.23. ERROR DETECTION AND CORRECTION CODES • • Chapter-2: Digital Arithmetic • 2.1. Basic Rules Of Binary Addition And Subtraction • 2.2. Addition Of Larger Bit Binary Numbers • 2.3. Subtraction Of Larger Bit Binary Numbers • 2.4. Bcd Addition And Subtraction In Excess-3 Code • 2.5. Binary Multiplication • 2.6. Binary Division • 2.7. Floating-Point Arithmetic • • Chapter-3: Logic Gates And Related Devices • 3.1. Positive And Negative Logic • 3.2. Truth Table • 3.3. Logic Gates • 3.4. Universal Gates • 3.5. Gates With Open Collector/ Drain Outputs • 3.6. Tristate Logic Gates • 3.7. And-Or-Invert Gates • 3.8. Schmitt Gates • 3.9. Special Output Gates • 3.10. Fan-Out Of Logic Gates • 3.11. Buffers And Transceivers • 3.12. Ieee/Ansi Standard Symbols • 3.13 Application-Relevant Information • • Chapter-4: Logic Families • 4.1. Logic Families – Significance And Types • 4.2. Characteristic Parameters • 4.3. Transistor Transistor Logic (Ttl) • 4.4.

Emitter Coupled Logic • 4.5. Cmos Logic Family • 4.6. Bicmos Logic • 4.7. Nmos And Pmos Logic • 4.8. Integrated Injection Logic (I2l) Family • 4.9. Comparison Of Different Logic Families • 4.10. Guidelines To Using Ttl Devices • 4.11. Guidelines To Handling And Using Cmos Devices • 4.12. Interfacing With Different Logic Families • 4.13. Classification Of Digital Ics • 4.14. Application-Relevant Information • • Chapter-5: Boolean Algebra And Simplification Techniques • 5.1. Introduction To Boolean Algebra • 5.2. Postulates Of Boolean Algebra • 5.3. Theorems Of Boolean Algebra • 5.4. Simplification Techniques • 5.5. Quine-Mccluskey Tabular Method • 5.6. Karnaugh Map Method • • Chapter-6: Arithmetic Circuits • 6.1. Combinational Circuits • 6.2. Implementing Combinational Logic • 6.3 Arithmetic Circuits - Basic Building Blocks • 6.4. Adder - Subtractor • 6.5. Bcd Adder • 6.6. Carry Propagation-Look-Ahead Carry Generator • 6.7. Arithmetic Logic Unit (Alu) • 6.8. Multipliers • 6.9. Magnitude Comparator • 6.10. Application-Relevant Information • • Chapter-7: Combinational Logic Circuits • 7.1. Multiplexer • 7.2. Encoders • 7.3. Demultiplexers And Decoders • 7.4. Parity Generation And Checking • 7.5. Application-Relevant Information • • Chapter-8: Flip-Flops And Related Devices • 8.1. Multivibrator • 8.2. Integrated Circuit (Ic) Multivibrators • 8.3. R-S Flip-Flop • 8.4. Level-Triggered And Edge-Triggered Flip-Flops • 8.5. J-K Flip-Flop • 8.6. Toggle Flip-Flop (T Flip-Flop) • 8.7. D Flip-Flop • 8.8. Synchronous And Asynchronous Inputs • 8.9. Flip-Flop Timing Parameters • 8.10. Flip-Flop Applications • 8.11. Application-Relevant Data • • Chapter-9: Counters And Registers • 9.1. Ripple (Asynchronous) Counter • 9.2. Synchronous Counter • 9.3. MODULUS OF A COUNTER • 9.4. Binary Ripple Counter - Operational Basics • 9.5. Synchronous (Or Parallel) Counters • 9.6. Up/Down Counters • 9.7. Decade And Bcd Counters • 9.8. Presettable Counters • 9.9. Decoding A Counter • 9.10. Cascading Counters • 9.11. Designing Counters With Arbitrary Sequences • 9.12. Shift Register • 9.13. Shift Register Counters • 9.14. Ieee/Ansi Symbology For Counters And Registers • 9.15. Application-Relevant Information • • Chapter-10: Data Conversion Circuits – D/A And A/D Converters • 10.1. Digital-To-Analogue Converters • 10.2. D/A Converter Specifications • 10.3. Types Of D/A Converters • 10.4. Modes Of Operation • 10.5. Bcd-Input D/A Converter • 10.6. Integrated Circuit D/A Converters • 10.7. D/A Converter Applications • 10.8. A/D Converters • 10.9. A/D Converter Specifications • 10.10. A/D Converter Terminology • 10.11. Types Of A/D Converters • 10.12. Integrated Circuit A/D Converters • 10.13. A/D Converter Applications • • Chapter-11: Programmable Logic Devices • 11.1. Fixed Logic Versus Programmable Logic • 11.2. Programmable Logic Devices: An Overview • 11.3. Programmable Roms • 11.4. Programmable Logic Array (Pla) • 11.5. Programmable Array Logic (Pal) • 11.6. Generic Array Logic (Gal) • 11.7. Complex Programmable Logic Devices • 11.8. Field-Programmable Gate Arrays • 11.9. Programmable Interconnect Technologies • 11.10. Design And Development Of Programmable Logic Hardware • 11.11 Programming Languages • • Chapter-12: Microprocessors • 12.1. Introduction To Microprocessors • 12.2. Evolution Of Microprocessors • 12.3. Inside A Microprocessor • 12.4. Basic Microprocessor Instructions • 12.5. Addressing Modes • 12.6. Microprocessor Selection • 12.7. Programming Microprocessors • 12.8. Risc Versus Cisc Processors • 12.9. 8-Bit Microprocessors • 12.10. 16-Bit Microprocessors • 12.11. 32-Bit Microprocessors • 12.12. Pentium Series Of Microprocessors • 12.13. Microprocessors For Embedded Applications • 12.14. Peripheral Devices • • Chapter-13: Microcontrollers • 13.1. Introduction To Microcontroller • 13.2. Inside The Microcontroller • 13.3. Microcontroller Architecture • 13.4. Power Saving Modes • 13.5 Interfacing Peripheral Devices With A Microcontroller • • Chapter-14: Memory Devices • 14.1. Anatomy Of A Computer • 14.2. A Computer System • 14.3. Computer Memory • 14.4. Random Access Memory (Ram) • 14.5. Read Only Memory (Rom) • 14.6. Expanding Memory Capacity • 14.7. Secondary Storage Or Auxiliary Storage

9788126508631 | ₹ 859

Electronic Devices and Circuits, 2ed | IM | e | k Maini

About the Author

Dr Anil Kumar Maini is a senior scientist and former Director of Laser Science and Technology Centre, a premier laser and optoelectronics research and development laboratory of Defence Research and Development Organisation of Ministry of Defence. He has worked on a wide range of electronics, optoelectronics and laser

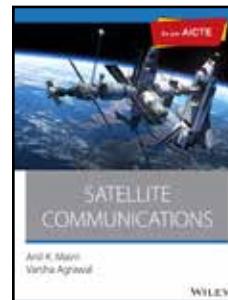

systems and his areas of expertise include optoelectronic sensor systems, laser systems, power electronics, digital electronics and related technologies.

Table of Contents

- 1 Passive Electronic Components • 1.1 Resistors • 1.2 Series- and Parallel-Connected Resistors • 1.3 Resistor Specifications • 1.4 Standard Resistance Values • 1.5 Resistor Colour Code • 1.6 Classification of Resistors • 1.7 Varistors • 1.8 Thermistors • 1.9 Variable Resistors • 1.10 Resistor Noise • 1.11 Capacitors • 1.12 Equivalent Circuit of a Capacitor • 1.13 Series- and Parallel-Connected Capacitors • 1.14 Capacitor Specifications • 1.15 Standard Values of Capacitors • 1.16 Marking and Colour Coding of Capacitors • 1.17 Capacitance Value of Different Conductor-Dielectric Configurations
- 1.18 Types of Fixed Capacitors • 1.19 Supercapacitors • 1.20 Variable Capacitors • 1.21 Capacitors: Application Areas • 1.22 Inductors • 1.23 Electrical Equivalent Circuit of an Inductor • 1.24 Self- and Mutual Inductance • 1.25 Hysteresis Loop and Magnetic Properties of Materials • 1.26 Hard and Soft Magnetic Materials • 1.27 Diamagnetic, Paramagnetic and Ferromagnetic Materials • 1.28 Inductor and Transformer Core Materials • 1.29 Inductance Values of Common Geometric Configurations • 1.30 Standard Inductor Values • 1.31 Colour Coding of Inductors • 1.32 Fixed, Variable and Preset Inductors • 1.33 Series- and Parallel-Connected Inductors • 1.34 Transformers • 1.35 Transformer Losses • 1.36 Classification of Transformers • 1.37 Autotransformers and Variacs • 1.38 Designing a Power Transformer • 1.39 Pulse Transformers • • 2 Electromechanical Components and Batteries • 2.1 Electrical Switches • 2.2 Types of Switches • 2.3 Terminology Used with Switches • 2.4 Relays • 2.5 Types of Relays • 2.6 Performance Specifications of Relays • 2.7 Connectors • 2.8 Cables • 2.9 Fuses • 2.10 Batteries • 2.11 Primary and Secondary Batteries • 2.12 Specifications of a Battery • 2.13 Primary Batteries • 2.14 Types of Secondary Batteries • 2.15 Memory Effect • 2.16 Charging Requirements: Lead-Acid Batteries • 2.17 Series, Parallel and Series-Parallel Connection of Batteries • 2.18 Smart Batteries • 2.19 Fuel Cells • • 3 Introduction to Semiconductor Physics • 3.1 Insulators, Conductors and Semiconductors • 3.2 Semiconductor Types • 3.3 Law of Mass Action • 3.4 Current Transport in a Semiconductor • 3.5 Mobility • 3.6 Resistivity • 3.7 Generation and Recombination of Carriers • 3.8 Poisson's Equation • 3.9 Continuity Equation • 3.10 Hall Effect • • 4 Semiconductor Diodes • 4.1 P-N Junction • 4.2 Band Structure of a P-N Junction • 4.3 Ideal Diode • 4.4 Practical Diode • 4.5 Current Components in a P-N Diode • 4.6 V-I Characteristics of a Diode • 4.7 Temperature Dependence of the V-I Characteristics • 4.8 Diode Specifications • 4.9 Diode Resistance • 4.10 Diode Junction Capacitance • 4.11 Diode Equivalent Circuits • 4.12 Load-Line Analysis of a Diode Circuit • 4.13 Breakdown Diodes • 4.14 Varactor Diodes • 4.15 Tunnel Diodes • 4.16 Schottky Diodes • 4.17 Point-Contact Diodes and Power Diodes • 4.18 Light-Emitting Diodes • 4.19 Photodiodes • 4.20 Connecting Diodes in Series and in Parallel • 4.21 Diode Numbers and Lead Identification • 4.22 Diode Testing • • 5 Bipolar Junction Transistors • 5.1 Bipolar Junction Transistor versus Vacuum Triode • 5.2 Transistor Construction and Types • 5.3 Transistor Operation • 5.4 Transistor Biased in the Active Region • 5.5 Transistor Configurations • 5.6 Ebers-Moll Model of Transistors • 5.7 Transistor Specifications and Maximum Ratings • 5.8 Lead Identification • 5.9 Transistor Testing • 5.10 Phototransistors • 5.11 Power Transistors • 5.12 Transistor Construction Techniques • • 6 Transistor Biasing and Thermal Stabilization • 6.1 Operating Point • 6.2 Common-Emitter Configuration • 6.3 Common-Base Circuit • 6.4 Common-Collector Circuit • 6.5 Bias Stabilization • 6.6 Bias Compensation • 6.7 Thermal Runaway • 6.8 Transistor Switch • • 7 Field Effect Transistors • 7.1 Bipolar Junction Transistors versus Field Effect Transistors • 7.2 Junction Field Effect Transistors • 7.3 Metal Oxide Field Effect Transistors • 7.4 FET Parameters and Specifications • 7.5 Differences between JFETs and MOSFETs • 7.6 Handling MOSFETs • 7.7 Biasing JFETs • 7.8 Biasing MOSFETs • 7.9 FET Applications • 7.10 Testing FETs • 7.11 Dual-Gate MOSFET • 7.12 VMOS Devices • 7.13 CMOS Devices • 7.14 Insulated Gate Bipolar Transistors (IGBTs) • • 8 UJTs and Thyristors • 8.1 Unijunction Transistor • 8.2 PNPN Diode • 8.3 Silicon-Controlled Rectifier • 8.4 DIAC and TRIAC • 8.5 Thyristor Parameters • 8.6 Thyristors as Current-Controllable Devices • 8.7 Thyristors in Series • 8.8 Thyristors in Parallel • 8.9 Applications of Thyristors • 8.10 Gate Turn-OFF Thyristors • 8.11 Programmable Unijunction Transistor • • 9 Optoelectronic Devices • 9.1 Optoelectronic Devices • 9.2 Photosensors • 9.3 Photoconductors • 9.4 Photodiodes • 9.5 Phototransistors • 9.6 PhotoFET, PhotosCR and PhotoTRIAC • 9.7 Photoemissive Sensors • 9.8 Thermal Sensors • 9.9 Displays • 9.10 Light-Emitting diodes • 9.11 Liquid-Crystal Displays • 9.12 Cathode Ray Tube Displays • 9.13 Emerging Display Technologies • 9.14 Optocouplers • • 10 Small Signal Analysis of Amplifiers • 10.1 Amplifier Bandwidth: General Frequency Considerations • 10.2 Hybrid h-Parameter Model for an Amplifier • 10.3 Transistor Hybrid Model • 10.4 re Transistor Model • 10.5 Analysis of a Transistor Amplifier using

- Complete h-Parameter Model • 10.6 Analysis of Transistor Amplifier Configurations using Simplified h-Parameter Model • 10.7 Small Signal Analysis of FET Amplifiers • 10.8 Cascading Amplifiers • 10.9 Darlington Amplifiers • 10.10 Cascode Amplifiers • 10.11 Low-Frequency Response of Amplifiers • 10.12 Low-Frequency Response of Cascaded Amplifier Stages • • 11 High-Frequency Response of Small Signal Amplifiers • 11.1 High-Frequency Model for the Common-Emitter Transistor Amplifier • 11.2 Common-Emitter Short-Circuit Current Gain • 11.3 Miller's Theorem • 11.4 Common-Emitter Current Gain with Resistive Load • 11.5 High-Frequency Response of Common-Collector Transistor Amplifier • 11.6 High-Frequency Response of an FET Amplifier • 11.7 High-Frequency Response of Cascaded Amplifier Stages • 11.8 Amplifier Rise Time and Sag • • 12 Large Signal Amplifiers • 12.1 Large Signal Amplifiers • 12.2 Class A Amplifiers • 12.3 Class B Amplifiers • 12.4 Class AB Amplifiers • 12.5 Class C Amplifiers • 12.6 Class D Amplifiers • 12.7 Thermal Management of Power Transistors • • 13 Feedback Amplifiers • 13.1 Classification of Amplifiers • 13.2 Amplifier with Negative Feedback • 13.3 Advantages of Negative Feedback • 13.4 Feedback Topologies • 13.5 Voltage-Series (Series-Shunt) Feedback • 13.6 Voltage-Shunt (Shunt-Shunt) Feedback • 13.7 Current-Series (Series-Series) Feedback • 13.8 Current-Shunt (Shunt-Series) Feedback • • 14 Sinusoidal Oscillators • 14.1 Classification of Oscillators • 14.2 Conditions for Oscillations: Barkhausen Criterion • 14.3 Types of Oscillators • 14.4 RC Phase Shift Oscillator • 14.5 Buffered RC Phase Shift Oscillator • 14.6 Bubba Oscillator • 14.7 Quadrature Oscillator • 14.8 Twin-T Oscillator • 14.9 Wien Bridge Oscillator • 14.10 LC Oscillators • 14.11 Armstrong Oscillator • 14.12 Hartley Oscillator • 14.13 Colpitt Oscillator • 14.14 Clapp Oscillator • 14.15 Crystal Oscillator • 14.16 Voltage-Controlled Oscillators • 14.17 Frequency Stability • • 15 Wave-Shaping Circuits • 15.1 Basic RC Low-Pass Circuit • 15.2 RC Low-Pass Circuit as Integrator • 15.3 Basic RC High-Pass Circuit • 15.4 RC High-Pass Circuit as Differentiator • 15.5 Basic RL Circuit as Integrator • 15.6 Basic RL Circuit as Differentiator • 15.7 Diode Clipper Circuits • 15.8 Diode Clammer Circuits • 15.9 Multivibrators • 15.10 Function Generators • 15.11 Integrated Circuit (IC) Multivibrators • • 16 Linear Power Supplies • 16.1 Constituents of a Linear Power Supply • 16.2 Designing Mains Transformer • 16.3 Rectifier Circuits • 16.4 Filters • 16.5 Linear Regulators • 16.6 Linear IC Voltage Regulators • 16.7 Regulated Power Supply Parameters • • 17 Switched Mode Power Supplies • 17.1 Switched Mode Power Supplies • 17.2 Flyback Converters • 17.3 Forward Converter • 17.4 Push-Pull Converter • 17.5 Switching Regulators • 17.6 Connecting Power Converters in Series • 17.7 Connecting Power Converters in Parallel • • 18 Introduction to Operational Amplifiers • 18.1 Operational Amplifier • 18.2 Inside of the Opamp • 18.3 Ideal Opamp versus Practical Opamp • 18.4 Performance Parameters • 18.5 Types of Opamps • • 19 Operational Amplifier Application Circuits • 19.1 Inverting Amplifier • 19.2 Non-Inverting Amplifier • 19.3 Voltage Follower • 19.4 Summing Amplifier • 19.5 Difference Amplifier • 19.6 Averager • 19.7 Integrator • 19.8 Differentiator • 19.9 Rectifier Circuits • 19.10 Clipper Circuits • 19.11 Clammer Circuits • 19.12 Peak Detector Circuit • 19.13 Absolute Value Circuit • 19.14 Comparator • 19.15 Active Filters • 19.16 Phase Shifters • 19.17 Instrumentation Amplifier • 19.18 Non-Linear Amplifier • 19.19 Relaxation Oscillator • 19.20 Current-To-Voltage Converter • 19.21 Voltage-To-Current Converter • 19.22 Sine Wave Oscillators • • Key Terms • Objective-Type Exercises • Review Questions • Problems • Answers • • Index

9788126578085 | ₹ 1039

Satellite Communications: As per AICTE | e

Maini

About the Author

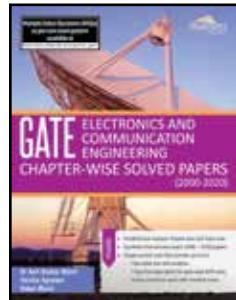

Dr Anil Kumar Maini is a senior scientist and former Director of Laser Science and Technology Centre, a premier laser and optoelectronics research and development laboratory of Defence Research and Development Organisation of Ministry of Defence. He has worked on a wide range of electronics, optoelectronics and laser systems and his areas of expertise include optoelectronic sensor systems, laser systems, power electronics, digital electronics and related technologies.

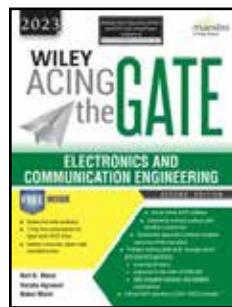
Table of Contents

- Preface • 1. Introduction to Satellites and Their Applications • 1.1 What is a Satellite?
- 1.2 History of Evolution of Satellites • 1.3 Evolution of Launch Vehicles • 1.4 Future Trends • 2 Satellite Orbits and Trajectories • 2.1 Definition of an Orbit and a Trajectory
- 2.2 Orbiting Satellites: Basic Principles • 2.3 Orbital Parameters • 2.4 Injection Velocity and Resulting Satellite Trajectories • 2.5 Types of Satellite Orbits • 3 Satellite Launch and In-Orbit Operations • 3.1 Acquiring the Desired Orbit • 3.2 Satellite Launch Sequence • 3.3 Orbital Perturbations • 3.4 Satellite Stabilization • 3.5 Orbital Effects on Satellite's Performance • 3.6 Eclipses • 3.7 Look Angles of a Satellite • 3.8 Earth Coverage and Ground Tracks • 4 Satellite Hardware • 4.1 Satellite Subsystems • 4.2 Mechanical Structure • 4.3 Propulsion Subsystem • 4.4 Thermal Control Subsystem • 4.5 Power Supply Subsystem • 4.6 Attitude and Orbit Control • 4.7 Tracking, Telemetry and Command Subsystem • 4.8 Payload • 4.9 Antenna Subsystem • 4.10 Space Qualification and Equipment Reliability • 5 Communication Techniques • 5.1 Types of Information Signals • 5.2 Amplitude Modulation • 5.3 Frequency Modulation • 5.4 Pulse Communication Systems • 5.5 Sampling Theorem • 5.6 Shannon–Hartley Theorem • 5.7 Digital Modulation Techniques • 5.8 Multiplexing Techniques • 6 Multiple Access Techniques • 6.1 Introduction to Multiple Access Techniques • 6.2 Frequency Division Multiple Access (FDMA) • 6.3 SCPC Systems • 6.4 MCPC Systems • 6.5 Time Division Multiple Access (TDMA) • 6.6 TDMA Frame Structure • 6.7 TDMA Burst Structure • 6.8 Computing Unique Word Detection Probability • 6.9 TDMA Frame Efficiency • 6.10 Control and Coordination of Traffic • 6.11 Frame Acquisition and Synchronization • 6.12 FDMA vs. TDMA • 6.13 Code Division Multiple Access (CDMA) • 6.14 Space Domain Multiple Access (SDMA) • 7 Satellite Link Design Fundamentals • 7.1 Transmission Equation • 7.2 Satellite Link Parameters • 7.3 Frequency Considerations • 7.4 Propagation Considerations • 7.5 Noise Considerations • 7.6 Interference-Related Problems • 7.7 Antenna Gain-To-Noise Temperature (G/T) Ratio • 7.8 Link Design • 8 Earth Station • 8.1 Earth Station • 8.2 Types of Earth Station • 8.3 Earth Station Architecture • 8.4 Earth Station Design Considerations • 8.5 Earth Station Testing • 8.6 Earth Station Hardware • 8.7 Satellite Tracking • 8.8 Some Representative Earth Stations • 9 Communication Satellites • 9.1 Introduction to Communication Satellites • 9.2 Communication-Related Applications of Satellites • 9.3 Frequency Bands • 9.4 Payloads • 9.5 Satellite vs. Terrestrial Networks • 9.6 Satellite Telephony • 9.7 Satellite Television • 9.8 Satellite Radio • 9.9 Satellite Data Communication Services • 9.10 Important Missions • 10 Other Applications • 10.1 Remote Sensing Satellites • 10.2 Weather Forecasting Satellites • 10.3 Navigation Satellites • 10.4 Scientific Satellites • 10.5 Military Satellites • Key Terms • Multiple-Choice Questions • Review Questions • Answers • Index

9788126520732 | ₹ 949

Wiley's GATE Electronics and Communication Engineering Chapter-wise Solved Papers (2000-2020) | e | k

Maini


About the Author

Dr Anil Kumar Maini is a senior scientist and former Director of Laser Science and Technology Centre, a premier laser and optoelectronics research and development laboratory of Defence Research and Development Organisation of Ministry of Defence. He has worked on a wide range of electronics, optoelectronics and laser systems and his areas of expertise include optoelectronic sensor systems, laser systems, power electronics, digital electronics and related technologies.

Table of Contents

- Preface • Note to the Aspirants • Engineering Mathematics • Networks, Signals and Systems • Electronic Devices • Analog Circuits • Digital Circuits • Control systems • Communications • Electromagnetics • Solved GATE (ECE) 2019 • Solved GATE (ECE) 2020

9788126571956 | ₹ 599

Wiley Acing the GATE: Electronics and Communication Engineering, 2ed, 2023

Maini

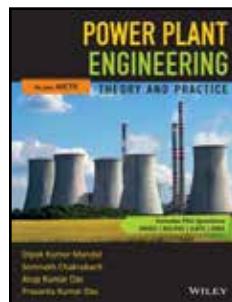
About the Author

Dr Anil Kumar Maini is a senior scientist and former Director of Laser Science and Technology Centre, a premier laser and optoelectronics research and development laboratory of Defence Research and Development Organisation of Ministry of Defence. He has worked on a wide range of electronics, optoelectronics and laser systems and his areas of expertise include optoelectronic sensor systems, laser systems, power electronics, digital electronics and related technologies.

Table of Contents

- Preface • About the Authors • Acing the GATE • Part I: Networks, Signals and Systems • 1 Network Solution Methods: Nodal and Mesh Analysis • Kirchhoff's Circuit Laws • Kirchhoff's Voltage Law • Kirchhoff's Current Law • Series, Parallel and Series-Parallel Networks • Resistors in Series • Resistors in Parallel • Capacitors in Series • Capacitors in Parallel • Inductors in Series • Inductors in Parallel • Source and Network Transformations • Source Transformation • Network Transformations • Mesh Analysis • Nodal Analysis • 2 Network Theorems • Superposition Theorem • Thevenin's Theorem • Norton's Theorem • Maximum Power Transfer Theorem • Reciprocity Theorem • Millman's Theorem • Substitution, Compensation and Tellegen's Theorems • Substitution Theorem • Compensation Theorem • Tellegen's Theorem • Wye-Delta Transformations • Delta-to-Wye Transformation • Wye-to-Delta Transformation • 3 Steady-State Sinusoidal Analysis Using Phasors • Introduction • Sinusoidal Steady-State Response in Time Domain • Element Steady-State Sinusoidal Response • Series RC Steady-State Sinusoidal Response • Series RL Steady-State Sinusoidal Response • Phasors • Impedance and Admittance Parameters in Frequency Domain • 4 Time Domain and Frequency Domain Analysis of RLC Circuits • Time Domain Analysis of RLC Circuits • First-Order RC and RL Circuits • Initially Charged Source-Free RC Circuit • Source-Free RL Circuit with Initial Current • Singularity Functions • Step Response of an RC Circuit • Step Response of an RL Circuit • Series RLC Circuit • Frequency Response of RLC Circuits • Series RL Circuits • Series RC Circuits • Parallel RC Circuit • Parallel RL Circuit • RLC Series Circuit • RLC Parallel Circuit: Parallel Resonance • 5 Solution of Network Equations Using Laplace Transform • Laplace Transform • Introduction • Properties of Laplace Transform • Analysis and Characterization of LTI Systems Using Laplace Transform • Inverse Laplace Transform • Analyzing RLC Circuits Using Laplace Methods • Kirchoff's Laws in s-Domain • Series Equivalence and Voltage Division • Parallel Equivalent and Current Division • Examples of Using Laplace Transform for Circuit Analyses • RC Circuit—Natural Response • RLC Parallel Circuit—Step Response • 6 Linear Two-Port Networks • Introduction • Driving point and Transfer functions • Open-Circuit Impedance Parameters • Condition for Reciprocity and Symmetry • Short-Circuit Admittance Parameters • Condition for Reciprocity and Symmetry • Transmission Parameters • Condition for Reciprocity and Symmetry • Inverse Transmission Parameters • Condition for Reciprocity and Symmetry • Hybrid Parameters • Condition for Reciprocity and Symmetry • Inverse Hybrid Parameters • Condition for Reciprocity and Symmetry • Interrelation Between Different Parameters • Interconnection of Two-Port Networks • Cascade Connection • Series Connection • Parallel Connection • 7 State Equations for Networks • Network Functions • Necessary Conditions for Driving-Point Functions • Necessary Conditions for Transfer Functions • Analysis of a Network Using State Equations • State Equations in Normal Form • State Matrix Differential Equation • 8 Network Graphs • Network Graphs — An Introduction • Incidence Matrix • Fundamental Cut-Set Matrix • Fundamental or f-Cut-Set Matrix • Circuit Matrix • f-Circuit or Tie-Set Matrix • Inter-Relationships Between Different Matrices • 9 Continuous-Time Signals • Fourier Series Representation of Continuous-Time Periodic Signals • Convergence of Fourier Series • Properties of Continuous-Time Fourier Series • Fourier Transform Representation of Continuous Time Periodic Signals • Convergence of Fourier Transform • Properties of Continuous-Time Fourier Transform • Sampling Theorem and Applications • Sampling with Zero-Order Hold • Aliasing Problem • 10 Discrete Time Signals • Fourier Series Representation of Discrete-Time Periodic Signals • Properties of Fourier Series of Discrete-Time Periodic Signals • Discrete-Time Fourier Transform (DTFT) • Properties of Discrete-Time Fourier Transform • Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) • Z-Transform • Properties for ROC of

z-Transforms • Properties of z-Transform • Unilateral z-Transform • Interpolation of Discrete-Time Signals • 11 Linear Time-Invariant (LTI) Systems • Introduction • Signals and Their Classification • Basic Continuous-Time and Discrete-Time Signals • Continuous and Discrete-Time Systems • Basic System Properties • LTI Systems • Discrete-Time LTI Systems • Continuous-Time LTI Systems • Properties of LTI Systems • Frequency Response of Continuous-Time LTI Systems • First-Order Continuous-Time LTI Systems • Second-Order Continuous-Time LTI Systems • Continuous-Time LTI Systems Characterized by Nth Order Differential Equations • Frequency Response of Discrete-Time LTI Systems • First-Order Discrete-Time LTI Systems • Second-Order Discrete Time LTI Systems • Discrete-Time LTI Systems Characterized by Nth Order Differential Equations • Group and Phase Delays • LTI Systems and z -Transform • LTI Systems Characterized by Difference Equations • Interconnections of LTI Systems • Filtering • Frequency-Shaping Filters • Frequency-Selective Filters • Continuous-Time Filters • Discrete-Time Filters • Part II: Electronic Devices • 12 Energy Bands in Intrinsic and Extrinsic Silicon • Semiconductor Materials • Insulators • Conductors • Semiconductors • Semiconductor Types • Intrinsic Semiconductors • Extrinsic Semiconductors • Law of Mass Action • Hall Effect • 13 Carrier Transport, Generation and Recombination • Current Transport in a Semiconductor • Drift Current • Diffusion Current • Mobility • Resistivity • Generation and Recombination of Carriers • Recombination • Poisson's Equation • Continuity Equation • 14 P-N Junctions Diodes, BJTs, MOS Capacitor and FETs • P-N Junction • Forward-Bias Condition • Reverse-Bias Condition • Band Structure of a P-N Junction • Ideal and Practical Diodes • Ideal Diode • Practical Diode • Current Components in a P—N Diode • VOLT-AMPERE (V-I) CHARACTERISTICS OF A DIODE • Temperature Dependence of the V-I Characteristics • Diode Resistance • Static Resistance • Dynamic Resistance • Average AC Resistance • Diode Junction Capacitance • Transition Capacitance • Diffusion Capacitance • Breakdown Diodes • Avalanche Diodes • Zener Diodes • Varactor Diodes • Tunnel Diodes • Schotky Diodes • Point Contact Diodes and Power Diodes • Point Contact Diodes • Power Diodes • Light-Emitting Diodes • Photodiodes • Solar Cells • Principle of Operation of a Solar Cell • Current-Voltage and Power-Voltage Characteristics of a Solar Cell • Metal-Oxide-Semiconductor (MOS) Capacitors • Transistor Construction and Types • NPN Transistor • PNP Transistor • Transistor Operation • Transistor Biased in the Active Region • Transistor Configurations • Common Base Configuration • Common-Emitter Configuration • Common-Collector Configuration • Bipolar Junction Transistors Versus Field-Effect Transistors • Junction Field-Effect Transistors • Construction and Principle of Operation • Characteristic Curves • Calculation of Pinch-Off Voltage Based On Physical Parameters • Effect of Temperature on JFET Parameters • Metal-Oxide Field-Effect Transistors • Depletion MOSFETs • Enhancement MOSFETs • FET Parameters and Specifications • Characteristic Parameters • Differences Between JFETs and MOSFETs • Handling MOSFETs • Dual-GATE Mosfet • Vmos Devices • Cmos Devices • Insulated GATE Bipolar Transistors • 15 Integrated Circuit Fabrication Process • Integrated Circuits • Integrated Circuit Fabrication Process • Lithography • Etching • Deposition • Chemical Mechanical Planarization • Oxidation • Ion Implantation • Doping • Diffusion • CMOS Fabrication • N-well CMOS process • P-Well CMOS process • Twin-Tub Process • Part III: Analog Circuits • 16 Small Signal Equivalent Circuits of Diodes, BJTs and MOSFETs • Small signal equivalent circuits of diodes • Load Line Analysis of A Diode Circuit • DC Applied Voltage • AC Applied Voltage • Photodiode Application Circuits • Breakdown diode (Zener and avalanche diodes) application circuits • Designing a Voltage Regulator • EBERS-Moll Model of BJTs • h-PARAMETER MODEL FOR BJTs • h-Parameter Model for the Common-Emitter BJT Configuration • h-Parameter Model for the Common-Collector BJT Configuration • h-Parameter Model for the Common-Base BJT Configuration • re Transistor Model • re Model for Common-Emitter BJT Configuration • re Model for Common-Base BJT Configuration • re Model for Common-collector BJT Configuration • Equivalent Model of FETs (JFETs and MOSFETs) • 17 Simple Diode Circuits • Connecting Diodes in Series • Connecting Diodes in Parallel • Clipping Circuits • Clamping Circuits • Rectifier Circuits • Characteristic Parameters • Types of Rectifiers • Voltage Multiplier Circuits • Voltage Regulator • 18 Single-Stage BJT and Mosfet Amplifiers: Biasing and Bias Stability • BJT Amplifiers • Common-Emitter Configuration • Common Base Configuration • Common Collector Configuration • BIAS Stabilization In BJTs • Stability Factor • Stability Factor (SICO) • Stability Factor (SVBE) • Stability Factor (Sb) • BIAS Compensation • Diode Compensation for Base—Emitter Voltage (VBE) • Diode Compensation for Leakage Current (ICO) • Thermistor Compensation • Operating Point Considerations in Thermal Runaway • Transistor Switch • JFET Amplifiers • Common Source Configuration • Common Drain Configuration • Common GATE Configuration • Depletion MOSFETs • Enhancement MOSFETs • Feedback Biasing Configuration • Voltage-Divider Biasing Configuration •


19 Single-Stage BJT and MOSFET Amplifiers: Mid-Frequency Small Signal Analysis and Frequency Response • Amplifiers—An Introduction • Single-Stage Amplifiers—Mid-Frequency Small Signal Analysis • Analysis of a BJT Amplifier Using Complete h -Parameter Model • Analysis of BJT Configurations Using Simplified h -Parameter Model • Common-Emitter Configuration • Common-Collector or Emitter-Follower Configuration • Common-Base Configuration • Analysis of FET Amplifiers • Common-Source FET Amplifier • Common-Drain FET Amplifier • Frequency Response of BJT amplifiers • Low-Frequency Response of BJT Amplifiers • High-Frequency Response of BJT Amplifiers • Frequency Response of FET Amplifiers • Low-Frequency Response of a FET Amplifier • Amplifier Rise Time and Sag • Rise Time • Tilt or Sag • 20 BJT and MOSFET Amplifiers: Multi-Stage, Differential, Feedback, Power and Operational • Multistage Amplifiers • BJT Cascade Amplifier • FET Cascade Amplifier • Darlington Amplifier • Cascode Amplifier • Differential Amplifiers • Feedback Amplifiers • Advantages of Negative Feedback • Feedback Topologies • Power Amplifiers • Classification • Power Amplifier Characteristics • Thermal Management of Power Transistors • Operational Amplifiers • Ideal Opamp Versus Practical Opamp • Performance Parameters • Types of Opamps • Frequency Response of Cascaded Amplifier Stages • 21 Simple Opamp Circuits • Inverting Amplifier • Non-Inverting Amplifier • Voltage Follower • Summing Amplifier • Difference Amplifier (Subtractor) • Averager • Integrator • Differentiator • Rectifier Circuits • Clipper Circuits • Clamper Circuits • Peak Detector Circuit • Absolute Value Circuit • Comparator • Opamp Comparator • Comparator with Hysteresis • Window Comparator • Phase Shifters • Instrumentation Amplifier • Non-Linear Amplifier • Relaxation Oscillator • Current-to-Voltage Converter • Voltage-to-Current Converter • 22 Active Filters • Passive Low-Pass Filters • Basic RC Low-Pass Filter • RC Low-Pass Filter Circuit as an Integrator • Passive High-Pass Filters • Basic RC High-Pass Filter • RC High-Pass Filter as Differentiator • Active Filters • First-Order Filters • Second-Order Filters • 23 Sinusoidal Oscillators • Criterion for Oscillations—Barkhausen Criterion • RC Oscillators • RC Phase-Shift Oscillator • Bubba Oscillator • Twin-T Oscillator • Wien Bridge Oscillator • LC Oscillators • Armstrong Oscillator • Hartley Oscillator • Colpitt Oscillator • Clapp Oscillator • Crystal Oscillator • 24 Function Generators, Wave-Shaping Circuits and 555 timers • Multivibrators • Bistable Multivibrator • Schmitt Trigger • Monostable Multivibrator • Astable Multivibrator • Function Generators • Square Wave Generators • Triangular Wave Generators • Sawtooth Wave Generator • 555 Timer • Astable Multivibrator Using Timer IC 555 • Monostable Multivibrator Using Timer IC 555 • 25 Voltage Reference Circuits and Power Supplies • Constituents of a Linear Power Supply • Filters • Inductor Filter • Capacitor Filter • LC Filter • CLC Filter (p -Filter) • Linear Regulators or Linear Voltage Reference Circuit • Emitter-Follower Regulator • Series-Pass Regulator • Current Limiting in Series-Pass Linear Regulators • Shunt Regulator • Linear IC Voltage Regulators • General Purpose Precision Linear Voltage Regulator • Three-Terminal Regulators • Boosting Current Delivery Capability • Switched Mode Power Supplies • Different Types of Switched Mode Power Supplies • Flyback Converters • Forward Converter • Push—Pull Converter • Switching Regulators • Buck Regulator • Boost Regulator • Inverting Regulator • Linear Versus Switched Mode Power Supplies • Regulated Power Supply Parameters • Load Regulation • Line Regulation • Output Impedance • Ripple Rejection Factor • Part IV: Digital Circuits • 26 Number Systems • Number Systems • Decimal Number System • Binary Number System • Octal Number System • Hexadecimal Number System • Representation of Binary Numbers • Sign-Bit Magnitude • 1's Complement • 2's Complement • Number Conversions • Finding Decimal Equivalent • Decimal-to-Binary Conversion • Decimal-to-Octal Conversion • Decimal-to-Hexadecimal Conversion • Octal-to-Binary and Binary-to-Octal Conversion • Hexadecimal-to-Binary and Binary-to-Hexadecimal Conversion • Hexadecimal-to-Octal and Octal-to-Hexadecimal Conversion • Floating Point Numbers • BCD Numbers • Gray Code Numbers • 27 Combinatorial Circuits: Boolean Algebra & Minimization of Functions Using Boolean Lernesties and Minimization of functions Using and Karnaugh Map • Boolean Algebra—An Introduction • Variables, Literals and Terms in Boolean Expressions • Equivalent and Complement of Boolean Expressions • Dual of a Boolean Expression • Postulates and Theorems Of Boolean Algebra • Postulates • Theorems of Boolean Algebra • Simplification of Boolean Functions • Sum-of-Products and Product-of-Sums Boolean Expressions • Expanded Forms of Boolean Expressions • Canonical Form of Boolean Expressions • S and P Nomenclature • Quine—McCluskey Tabular Method • Karnaugh Map Method • 28 Combinatorial Circuits: Logic Gates and their Implementation (TTL, ECL and CMOS) • Positive and Negative Logic • Truth Table • Logic Gates • OR GATE • AND GATE • NOT GATE • Exclusive-OR GATE • NAND GATE • NOR GATE • Exclusive-NOR GATE • INHIBIT GATE • Universal Gates • GATE with Open Collector/Drain Outputs • Tristate Logic GATE • AND-OR-INVERT Gates • Schmitt Gates • Fan-

out of Logic Gates • Buffers And Transceivers • Logic Families • Types of Logic Families • Characteristic Parameters • Transistor—Transistor Logic • Standard TTL • Low-Power TTL • High-Power TTL • Schottky TTL (74S/54S) • Low-Power Schottky TTL • Advanced Low-Power Schottky and Advanced Schottky TTL • Emitter-Coupled Logic • Logic GATE Implementation in ECL • Salient Features of ECL • CMOS Logic Family • Circuit Implementation of Logic Functions • CMOS with Open Drain Outputs • CMOS with Tristate Outputs • Floating or Unused Inputs • CMOS Subfamilies • BICMOS Logic • NMOS and PMOS Logic • Comparison of Different Logic Families • 29 Combinatorial Circuits: Arithmetic Circuits, Code Converters, Multiplexers, Demultiplexers, Decoders and PLDs (PROMs, PLAs and PALs) • Arithmetic Circuits • Half-Adder • Full-Adder • Half-Subtractor • Full-Subtractor • Controlled Inverter • Adder—Subtractor • BCD Adder • Magnitude Comparator • Multiplexers • Implementing Boolean Functions with Multiplexers • Multiplexers for Parallel-to-Serial Data Conversion • Cascading Multiplexer Circuits • Code Converters • Priority Encoder • DeMultiplexers and Decoders • Implementing Boolean Functions with Decoders • Cascading Decoder Circuits • Programmable Logic Devices • Fixed Logic Versus Programmable Logic • Programmable ROMs • Programmable Logic Array • Programmable Array Logic • 30 Sequential Circuits • Multivibrator • Bistable Multivibrator • Schmitt Trigger • Monostable Multivibrator • Astable Multivibrator • IC Timer-Based Multivibrators • Latches and Flip—Flops • R-S (RESET and SET) Latches and Flip—Flop • J-K Latches and Flip—Flops • Toggle Latch and Toggle Flip—Flop (T-Flip—Flop) • D-Flip—Flop and D-Latch • Synchronous and Asynchronous Inputs • Counters • Asynchronous (Ripple) Counter • Synchronous Counter • Modulus of a Counter • Binary Ripple Counter — Operational Basics • Binary Ripple Counters with Modulus Less than 2N • Synchronous or Parallel Counters • UP/DOWN Counters • Decade and BCD Counters • Presettable Counters • Decoding a Counter • Cascading Counters • Shift Register • Serial-In Serial-Out (SISO) Shift Register • Serial-In Parallel-Out Shift (SIPO) Register • Parallel-In Serial-Out (PISO) Shift Register • Parallel-In Parallel-Out (PIPO) Shift Register • Bidirectional Shift Register • Universal Shift Register • Shift Register Counters • Ring Counter • Shift Counter • Finite State Machine (FSM) • Designing an FSM • 31 Data converters • Sample-and-Hold Circuits • Sample-and-Hold Circuit Specifications • Sample-and-Hold Architectures • D/A Converters • Simple Resistive Divider Network for D/A Conversion • Binary Ladder Network for D/A Conversion • D/A Convertor Specifications • Resolution • Accuracy • Conversion Speed or Settling Time • Dynamic Range • Non-linearity and Differential Non-linearity • Monotonicity • Types of D/A Converters • Multiplying-type D/A Converters • Bipolar Output D/A Converters • Companding D/A Converters • Modes of Operation • Current Steering Mode of Operation • Voltage Switching Mode of Operation • BCD Input D/A Converter • A/D Converters • A/D Converter Specifications • Types of A/D Converters • Simultaneous or Flash A/D Converter • Half-Flash A/D Converter • Counter-Type A/D Converter • Tracking-Type A/D Converter • Successive Approximation Type A/D Converter • Single-Slope, Dual-Slope and Multi-Slope A/D Converters • Sigma-Delta A/D Converter • 32 8-Bit Microprocessor (8085) • Introduction to Microprocessors • Microprocessor Architecture • Arithmetic Logic Unit (ALU) • Register File • Control Unit • Basic Microprocessor Instructions • Data Transfer Instructions • Arithmetic Instructions • Logic Instructions • Control Transfer Instructions • Machine Control Instructions • Addressing Modes • Absolute or Memory Direct Addressing Mode • Immediate Addressing Mode • Register Direct Addressing Mode • Register Indirect Addressing Mode • Indexed Addressing Mode • Implicit Addressing Mode and Relative Addressing Mode • Programming Microprocessors • RISC Versus CISC Processors • 8085 Microprocessor—Architecture • 8085 Registers • Addressing Modes • 8085 Instructions • 8085 Microprocessor—Programming • Memory and I/O Interfacing with 8085 • 8085 Microprocessor • Memory Interfacing with 8085 • I/O Interfacing with 8085 • 33 Semiconductor Memories • Memory Devices • Primary Memory • Random Access Memory (RAM) • Static RAM (SRAM) • Dynamic RAM (DRAM) • RAM Applications • Read Only Memory (ROM) • ROM Architecture • Types of ROM • Applications of ROMs • Expanding Memory Capacity • Word Size Expansion • Memory Locations Expansion • Part V: Control Systems • 34 Control System Basics: Basic Control system Components, Feedback Principle, Transfer Function, Block Diagram Representations and Signal Flow Graph • Control System • Types of Control Systems • Open Loop and Closed Loop Control Systems • Linear and Non-Linear Control Systems • Continuous Time and Discrete Time Control Systems • Time Varying and Time Invariant Control Systems • Causal Systems • Response of Control System • Free and Forced Response • Steady-State, Transient and Total Response • Unit Step, Ramp and Impulse Response • Transfer Function • Feedback Principle in Control Systems • Block Diagram Representation of Control Systems • Block Diagram Reduction • Rules of Block Diagram Reduction •

• Canonical Form to Unity Feedback Form • Signal Flow Graphs • Signal Flow Graph Terminologies • Transfer Function from Signal Flow Graph • Mathematical Models of Physical Systems • 35 Transient and Steady-State Analysis of LTI systems • Classification of Feedback Control Systems • Transient and Steady-State Response Specifications • Transient Response Specifications • Steady-State Response Specifications • Time Response of First-Order Systems • Time Response of Second-Order Systems • Unit Step Response • Unit Ramp Response • Unit Impulse Response • Sensitivity Parameters • 36 Frequency Response (Nyquist Plots and Bode Plots) and Stability (Routh-Hurwitz) and Nyquist-Stability Criteria of Control Systems • Polar Plots • Nyquist Analysis • Nyquist Stability Plot • Gain Margin and Phase Margin • Gain Factor Compensation • Bode Plots • General Procedure for Constructing Bode Plots • Gain Margin and Phase Margin • Stability Analysis • Necessary Conditions for Stability • Hurwitz Stability Criterion • Routh Stability Criterion • Continued Fraction Stability Criterion • 37 Root Locus Plots • Root Locus • Angle and Magnitude Criteria • Construction of Root Locus • Gain Margin and Phase Margin • Determination of Damping Ratio • Closed-Loop Transfer Function • 38 Lag, Lead and Lag-Lead Compensation • Industrial Controllers • PID Controller • Proportional Element • Integral Element • Derivative Element • Control System Compensators • Lead Compensator • Lag Compensator • Lag-Lead Compensator • 39 State Variable Model and Solution of State Equation of LTI Systems • State Variable Analysis • State Variables and State Vector • State Equation Representation of LTI Systems • State Transition Matrix • Properties of State Transition Matrix • Solution of LTI Systems State Equations • Controllability of Linear Systems • Observability of Linear Systems • Eigen Values • State-Space Representation Using Canonical Variables • Diagonalization • Part VI: Communications • 40 Random Processes • Random Process • Random Variables • Discrete Random Variable • Continuous Random Variable • Gaussian Random Variable • Joint Distribution • Conditional Densities • Independent Random Variables • Statistical Averages (Means) • Moments • Autocorrelation • Power Spectral Density • Power of a Random Process • Noise • White Noise • Gaussian Noise • Thermal noise • Flicker Noise • Shot Noise • Filtering of Random Signals Through LTI Systems • 41 Analog Communications • Introduction • Amplitude Modulation • Frequency Spectrum of AM Signal • Power in AM Signal • Noise in AM Signal • Different Forms of Amplitude Modulation • Angle Modulation • Frequency Modulation • Frequency Spectrum of FM Signal • Narrow-Band and Wide-Band FM • Noise in FM Signal • Generation of FM Signals • Detection of FM Signals • Phase Modulation • Relation Between FM and PM • Superheterodyne Receiver • Analog Pulse Communication Systems • Pulse Amplitude Modulation (PAM) • Pulse Width Modulation (PWM) • Pulse Position Modulation (PPM) • 42 Information Theory • Entropy • Mutual Information • Mutual Information of a Discrete Memoryless Channel • Mutual Information of a Continuous Memoryless Channel • Source Encoding • Error-Free Communication Over a Noisy Channel • Channel Capacity • Channel Capacity of a Discrete Memoryless Channel • Channel Capacity of a Continuous Memoryless Channel • Shannon Hartley Theorem • 43 Digital Communications • Sampling Theorem • Digital Pulse Communication Systems Techniques • Pulse Code Modulation • Differential PCM • Delta Modulation • Adaptive Delta Modulation • Digital Modulation Techniques • Amplitude Shift Keying • Frequency Shift Keying • Phase Shift Keying • Differential Phase Shift Keying • Quadrature Phase Shift Keying • Offset QPSK • Quadrature Amplitude Modulation (QAM) • MAP and ML Decoding • Matched Filter Receiver • 44 Fundamentals of Error Correction, Timing and Frequency Synchronization and Inter-Symbol Interference • Error-Detection and Error-Correction Codes • Error-Detecting Codes • Error-Correcting Codes • Noise Channel Coding Theorem • Redundancy for Error Correction • Hamming Codes • Timing and Frequency Synchronization • Carrier Frequency Synchronization • Carrier Phase Synchronization • Symbol Timing Synchronization • Inter-Symbol Interference and its Mitigation • 45 Basics of TDMA, FDMA and CDMA • Multiplexing Techniques • Frequency-Division Multiplexing • Time-Division Multiplexing • Multiple Access Techniques • Frequency-Division Multiple Access • Time-Division Multiple Access • Code-Division Multiple Access • Space Domain Multiple Access • Part VII: Electromagnetics • 46 Electrostatics • Vector and Scalar • Coordinate Systems • Dot Product and Cross Product • Vector Differentiation • DEL Operator—Gradient-Divergence-Curl • Vector Integration • Electrostatics • Coulomb's Law • Electric Field • Electric Potential • Work and Energy in Electrostatics • Electric Dipole • Metallic Conductors • 47 Maxwell's Equations • Faraday's Law • Biot-Savart Law • Ampere's Law • Displacement Current • Maxwell's Equations • Maxwell's First Equation • Maxwell's Second Equation • Maxwell's Third Equation • Maxwell's Fourth Equation • Boundary Conditions • Boundary Conditions for E and D • Boundary Conditions for H and B • Poisson's and Laplace's Equations • Wave Equations • Poynting Vector • Poynting Theorem • 48 Plane Waves and properties • Propagation

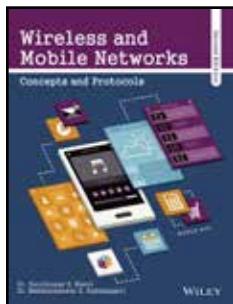
Through Interface Between Two Media-Reflection and Refraction • Normal Incidence • Oblique Incidence • Polarization • Formation of Standing Waves • Phase Velocity and Group Velocity of Electromagnetic Waves • Phase Velocity • Group Velocity • Plane Wave Propagation Through Various Media • Plane Wave Propagation in Partially Conducting Media • Plane Wave Propagation in Perfect Dielectrics • Plane Wave Propagation in Good Conductors • 49 Transmission Lines • Transmission Line Equations • Transmission Line Equivalent Circuit • Loss-Less Transmission Line Equations • Lossy Transmission Line Equations • Transmission Line Losses • Transmission Line Propagation Modes • Transmission Line Parameters • Characteristic Impedance • Propagation Constant • Reflection Coefficient • Standing Wave Ratio • Input Impedance • Impedance Transformation • Return Loss • Mismatch Loss • Types of Transmission Lines • Impedance Matching Using Transmission Lines • Single Stub Matching • Double Stub Matching • Quarter-Wave Transformer • Scattering Parameters (S-Parameters) • Smith Chart • 50 Waveguides and Light Propagation in Optical Fibres • Waveguide • Waveguide Modes • Dominant Modes • TEM Mode • Waveguide Parameters • Cut-off Wavelengths or Cut-off Frequencies • Guide Wavelength • Group Velocity and Phase Velocity • Characteristic Wave Impedance • Rectangular Waveguides • Boundary Conditions • Transverse Electric Wave Propagation • Transverse Magnetic Wave Propagation • Power Loss in Rectangular Waveguides • Circular Waveguides • Transverse Electric Wave Propagation • Transverse Magnetic Wave Propagation • Power Loss in Circular Waveguides • Propagation in Optical Fibres • Numerical Aperture • Dispersion • Types of Fibres • Dispersion Relations in Waveguides • 51 Basics of Antennas • Antenna Basics • Antenna Reciprocity • Radiation Mechanism • Antennas Types • Hertz, Dipole and Marconi Antennas • Yagi-Uda Antenna • V-Antenna and Rhombic Antenna • Reflector Antennas • Antenna Parameters and Characteristics • Radiation Pattern • Gains and Directivity • Return Loss • Beam Width • Bandwidth • Polarization • Antenna Impedance • Antenna Aperture • Resonant and Non-Resonant Antennas • Electrical and Physical Length • Half-Wave Dipole Antenna • Quarter-Wave Monopole Antenna • Small Loop Antenna • Antenna Arrays • Two-Element Array Antenna • N-Element Uniform Linear Array • Mutual Coupling in Transmitting Antenna Arrays • Friis Equation • 52 Basics of Radar • Introduction • Basic Radar System • Radar Classification—Operational Frequency Band • Basic Radar Functions • Target Detection • Target Location • Target Velocity • Accuracy and Resolution • Accuracy • Range Accuracy • Angular Position Accuracy • Resolution • Range Resolution • Cross-Range Resolution • Doppler Resolution • Radar Cross-Section • RCS Concept • Important Formulae • Solved Examples • Practice Exercise • Answers to Practice Exercise • Solved GATE Papers 2018 • Solved GATE Papers 2019 • Solved GATE Papers 2020 • Solved GATE Papers 2021 • Index

9789354644900 | ₹ 1069

Power Plant Engineering: Theory and Practice | e | k Mandal

About the Author

Dipak Kumar Mandal, Associate Professor, Department of Mechanical Engineering, College of Engineering & Management, Kolaghat, West Bengal, India


Table of Contents

- Chapter 1 Thermodynamic Vapour Power Cycles • 1.1 Introduction • 1.2 Carnot Vapour Power Cycle • 1.3 Rankine Cycle • 1.4 Steam Rate and Heat Rate
- 1.5 Comparisons between Rankine and Carnot Cycles • 1.6 Mean Temperature of Heat Addition • 1.7 Irreversibility in Rankine Cycle • 1.8 Binary Vapour Cycle • 1.9 Cogeneration • 1.10 Different Efficiency Terms used in a Steam Power Plant • Chapter 2 Practical Power Plant Cycle • 2.1 Introduction • 2.2 Reheating Cycle • 2.3 Regeneration (Internal Heating) • 2.4 Regenerative Feed Water Heating • 2.5 Types of Feed Water Heater • 2.6 Practical High-Pressure Heater and Low-Pressure Heater • 2.7 Deaerator
- 2.8 Combined Reheating and Regeneration Cycle • 2.9 HP-LP Bypass System • 2.10 Possible Methodologies for Improving the Steam Turbine Cycle Performance • 2.11 Combined Cycle Plants • Chapter 3 Fuel and Combustion • 3.1 Introduction • 3.2 Coal • 3.3 Spontaneous Combustion • 3.4 Fuel Oil • 3.5 Natural Gas as Fuel • 3.6 Emulsions as Fuel • 3.7 Industrial Waste as Fuel • 3.8 Coal Gasification • 3.9 Combustion Reactions and Air-Fuel Ratio • 3.10 Combustion Equation • 3.11 Heating Value of Fuel

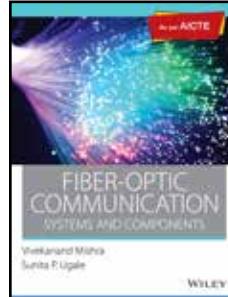
- 3.12 Thermodynamic View of a Steam Generator • 3.13 Mass Balance across a Steam Generator • 3.14 Energy Balance across a Steam Generator • 3.15 Heat of Combustion
- 3.16 Theoretical Flame Temperature • Chapter 4 Steam Generator, Feed Cycle, Air and Flue Gas Path • 4.1 Introduction • 4.2 Types of Boiling • 4.3 Classification of Boiler • 4.3.1 Fire Tube Boiler • 4.3.2 Water Tube Boiler • 4.4 Difference between Fire Tube and Water Tube Boiler • 4.5 Circulation • 4.6 Once Through Boiler • 4.7 Boiler Mountings and Accessories • 4.8 Feed Water Flow Path • 4.9 Flue Gas Path • 4.10 Fuel Flow Path • 4.11 Coal Mills • 4.12 Pulverised Fuel-Fired Boilers • 4.13 Furnace Safeguard Supervisory System • 4.14 Causes of Boiler Tripping • 4.15 Ash Collection • 4.16 Ash Handling System • 4.17 Fluidized Bed Combustion • 4.18 Different Fans in Boiler House • 4.19 Water/Steam/Air/Flue Gas Path • 4.20 Supercritical Boiler • 4.21 Abnormal Operating Conditions of Boiler • Chapter 5 Boiler Performance and Draught Systems • 5.1 Introduction • 5.2 Equivalent Evaporation and Boiler Efficiency • 5.3 Heat Balance in a Boiler • 5.4 Efficiencies of Relevant Components of Boiler • 5.5 Thermal Process Losses in a Power Plant • 5.6 Draught/Draft • 5.7 Natural Draught • 5.8 Determination of Height, Diameter of Chimney and Condition for Maximum Discharge • 5.9 Artificial Draught (by Fan) • 5.10 Control of Fan Output • 5.11 Efficiency of a Chimney • 5.12 Calculation of Power Required to Drive ID/FD Fan • 5.13 Abnormal Operating Conditions of Draught • Chapter 6 Steam Nozzles • 6.1 Introduction • 6.2 Theory of Steam Nozzles • 6.3 Steady Flow Energy Equation • 6.4 Mass Flow and Heat Drop through Nozzle • 6.5 Expansion of Steam through Nozzle with Friction, Nozzle Efficiency • 6.6 Expansion of Steam through Nozzle • 6.7 Critical Pressure Ratio and its Physical Explanation • 6.8 Subsonic and Supersonic Velocity • 6.9 Velocity of Pressure Pulse in a Fluid • 6.10 Supersaturated or Metastable Flow and Wilson Line • 6.11 Nozzles Operating in the Off Design Pressure Ratio • Chapter 7 Steam Turbine • 7.1 Introduction • 7.2 Classification of Steam Turbines • 7.3 Impulse Turbine • 7.4 Velocity Diagram for an Impulse Turbine • 7.5 Condition for Maximum Efficiency of an Impulse Turbine • 7.6 Compounding of Impulse Turbine (Multistaging) • 7.7 Velocity Diagram of a Velocity-Compounded Turbine • 7.8 Reaction Turbine • 7.9 Height of Blades for Reaction Turbine • 7.10 Reheat Factor • 7.11 Comparison between Impulse Turbine and Reaction Turbine • 7.12 Governing of Steam Turbine • 7.13 Losses in the Steam Turbine • 7.14 Main Components of Steam Turbines • 7.15 Barring Gear or Turning Gear • 7.16 Jacking Oil Pump • 7.17 Metallurgical Aspects of Turbine • 7.18 Factors of Turbine Performance and Sizing • 7.19 Limitations of the Higher Efficiency of Turbine • 7.20 Critical Speed • 7.21 Causes of Turbine Trip • 7.22 General Description of a 210 MW (LMW) Steam Turbine • 7.23 Abnormal-Operating Conditions of Turbine • Chapter 8 Condenser, Circulating Water Systems and Water Treatment • 8.1 Introduction • 8.2 Condenser • 8.3 Cooling Tower • 8.4 Auxiliary Cooling Water System • 8.5 Water Treatment in Pretreatment Plant • 8.6 Feedwater Treatment • 8.7 Sodium Slippage • 8.8 Abnormal Operating Conditions • Chapter 9 Turbogenerator • 9.1 Introduction • 9.2 Generator Cooling Systems • 9.3 Generator Sealing System • 9.4 Causes of Generator Tripping • 9.5 Abnormal Operating Conditions of Generator • Chapter 10 Mechanical Control System • 10.1 Introduction • 10.2 Drum Level Control System • 10.3 Superheater Steam Temperature Control System • 10.4 HP-LP Bypass Control System • 10.5 Hotwell Level Control System • 10.6 Deaerator Level Control System • 10.7 Heater Drip Level Control System • 10.8 Draught Control System • 10.9 Combustion Control System • 10.10 Furnace Safeguard Supervisory System • Chapter 11 Basic Nuclear Power Generation • 11.1 Introduction • 11.2 Nuclear Physics • 11.3 Types of Nuclear Reaction • 11.4 Fission Chain Reaction • 11.5 Types of Nuclear Materials • 11.6 Difference between Nuclear Fission and Fusion • 11.7 Nuclear Reactor • 11.8 Classification of Reactors • 11.9 Types of Nuclear Reactor • 11.10 Difference between Boiling Water Reactor and Pressurized Water Reactor • 11.11 Advantages and Disadvantages of Nuclear Power Plant • Chapter 12 Basic Diesel Engine and Gas Turbine • 12.1 Introduction • 12.2 Main Features of Gas Turbine Plant • Chapter 13 Basic Hydro-Electric (Hydel) • 13.1 Introduction • 13.2 Selection of Site for Hydroelectric Power Plant • 13.3 Evaporation, Precipitation and Runoff • 13.4 Hydrograph and Flow Duration Curve • 13.5 Mass Curve • 13.6 Essential Parts of a Hydroelectrical Power Plant • 13.7 Classification of Hydroelectric Power Plant • 13.8 Comparison between Base Load and Peak Load Power Plant • 13.9 Types of Turbine • 13.10 Pelton Wheel • 13.11 Francis Turbine • 13.12 Propeller and Kaplan Turbine • 13.13 Deriaz Turbines • 13.14 Comparisons of Pelton Wheel, Francis Turbine and Kaplan Turbine • 13.15 Governing of Steam Turbine • 13.16 Advantages and Disadvantages of Hydroelectric Power Plant • 13.17 Generators Used in Hydroelectric Power Plant • Chapter 14 Nonconventional Energy Systems • 14.1 Introduction • 14.2 Wind Energy • 14.3 Tidal Energy • 14.4 Solar Thermal Energy • 14.5 Solar Photo Voltaic Energy • 14.6 Geothermal Energy • 14.7 Biogas Energy • 14.8 Fuel Cell Energy Systems • 14.9 Advantages and Disadvantages of Nonconventional Energy Systems • Chapter 15 Power Plant and Its Economics • 15.1

Introduction • 15.2 Different Terms • 15.3 Load Curve • 15.4 Load Duration Curve • 15.5 Location of Power Plants • 15.6 Power Plant Economics • 15.7 Different Methods to Calculate Depreciation Cost • 15.8 Effect of Load Factor on Cost/kWh • 15.9 Performance and Operating Characteristics of Power Plant • • Summary • Multiple-Choice Questions • Review Questions • Exercises • Answers • • Index

9788126579754 | ₹ 859

Wireless and Mobile Networks, Concepts and Protocols, 2ed | IM | e | k

Manvi


About the Author

Dr. Sunilkumar S. Manvi is the Director, School of Computing and Information Technology, Reva University, Bangalore. He has published over 25 papers in referred national / international Journals and 70 papers in referred national / international conferences. Three of his papers "Agent technology applications in communications", "Multicast Routing in MANETs by using Multiagent Systems" and "Intelligent Product information presentation in E-Commerce" were among the top downloaded articles published by Elsevier Journals "Computer Communications", "Information Sciences" and "Journal of System software", respectively.

Table of Contents

- Preface • 1 Fundamentals of Wireless Communication • 1.1 Digital Communications
- 1.2 Wireless Communication System • 1.3 Wireless Media • 1.4 Frequency Spectrum
- 1.5 Technologies in Digital Wireless Communication • 1.6 Wireless Communication Channel Specifications • 1.7 Types of Wireless Communication Systems • 2 Basics of Wireless Networks • 2.1 Wireless Network • 2.2 Wireless Switching Technology • 2.3 Wireless Communication Problems • 2.4 Wireless Network Reference Model • 2.5 Wireless Networking Issues • 2.6 Wireless Networking Standards • 3 Wireless Body Area Networks • 3.1 Wireless Body Area Network (WBAN) • 3.2 Network Architecture
- 3.3 Network Components • 3.4 Design Issues • 3.5 Network Protocols • 3.6 WBAN Technologies • 3.7 WBAN Applications • 4 Wireless Personal Area Networks • 4.1 Wireless Personal Area Network (WPAN) • 4.2 Network Architecture • 4.3 WPAN Components • 4.4 WPAN Technologies and Protocols • 4.5 WPAN Applications • 5 Wireless Local Area Networks • 5.1 Network Components • 5.2 Design Requirements of WLAN • 5.3 Network Architecture • 5.4 WLAN Standards • 5.5 WLAN Protocols • 5.6 IEEE 802.11p • 5.7 WLAN Applications • 6 Wireless Metropolitan Area Networks • 6.1 Wireless Metropolitan Area Networks • 6.2 WMAN Network Architecture • 6.3 Network Protocols • 6.4 Broadband Wireless Networks • 6.5 WMAN Applications • 7 Wireless Wide Area Networks • 7.1 Cellular Networks • 7.2 Satellite Networks • 7.3 WLAN versus WWAN • 7.4 Interworking of WLAN and WWAN • 7.5 WWAN Applications • 8 Wireless Ad Hoc Networks • 8.1 Wireless Ad Hoc Networks • 8.2 Mobile Ad Hoc Networks • 8.3 Wireless Sensor Networks • 8.4 Wireless Mesh Networks • 8.5 Vehicular Ad Hoc Networks (VANETs) • 9 Research Issues in Wireless Networks • 9.1 Modulation
- 9.2 Radio Resource Management • 9.3 Channel Allocation • 9.4 Error Control and Coding • 9.5 Congestion Control • 9.6 Routing • 9.7 Addressing • 9.8 Network Access Control • 9.9 Mobility Control • 9.10 Flow Control • 9.11 Security and Privacy • 9.12 QoS Management • 9.13 Power Management • 9.14 Cross-Layer Control • 9.15 Network Modeling • 9.16 Traffic Modeling • 9.17 Simulation Modeling • 9.18 Network Measurements • 10 Delay Tolerant Networks • 10.1 Introduction • 10.2 DTN Architecture
- 10.3 DTN Issues and Challenges • 10.4 The Bundle Layer • 10.5 DTN Applications • 11 4G LTE Networks • 11.1 Introduction • 11.2 Long-Term Evolution (LTE) • 11.3 LTE Architecture • 11.4 Protocol Layer Architecture • 11.5 LTE Advanced • 11.6 5G Networks Overview • 12 Wireless Network Security • 12.1 Introduction • 12.2 Wired Equivalent Privacy (WEP) • 12.3 Wi-Fi Protected Access (WPA) • 12.4 Robust Secure Network (RSN) • 12.5 Virtual Private Network (VPN) • Ns-2 Simulator • Study of ns-2 Simulator • Installation of ns-2 Simulator • Hardware Required • Getting the Software • Installing the Package • Lists of Laboratory Experiments • Experiment 1 • Experiment 2 • Experiment 3 • Experiment 4 • Experiment 5 • Experiment 6 • Experiment 7 • Experiment 8 • Experiment 9 • Bibliography • Index

9788126558551 | ₹ 929

Fiber Optic Communication: Systems and Components: As per AICTE | e

Mishra

Table of Contents

- Overview of Optical Fiber Communication Systems • Structures, Wave Guiding, and Fabrication • Linear and Non-Linear Effects in Optical Fibers • Optical Sources
- Optical Receivers • Optical Transmission System: Concepts and Components • Optical Amplifiers • Basic Instrumentation for Optical Measurements • Optical

Sensors • Index

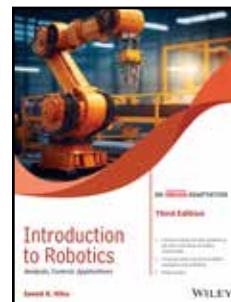
9788126510740 | ₹ 829

Power Electronics: Converters, Applications and Design, 3ed, An Indian Adaptation | IM | e | k

Mohan

About the Author

Ned Mohan is the Oscar A. Schott Professor of Power Electronics at the University of Minnesota, He has numerous patents and publications in this field. He is a Fellow of the IEEE.


Table of Contents

- Part 1 Introduction • Chapter 1 Power Electronic Systems • 1-1 Introduction • 1-2 Power Electronics versus Linear Electronics • 1-3 Scope and Applications • 1-4 Classification of Power Processors and Converters • 1-5 Interdisciplinary Nature of Power Electronics • 1-6 Convention of Symbols Used • 1-7 About the Text • Chapter 2 Overview of Power Semiconductor Switches • 2-1 Introduction • 2-2 Diodes • 2-3 Thyristors • 2-4 Desired Characteristics in Controllable Switches • 2-5 Bipolar Junction Transistors and Monolithic Darlingtons • 2-6 Metal-Oxide-Semiconductor Field Effect Transistors • 2-7 Gate-Turn-Off Thyristors • 2-8 Insulated Gate Bipolar Transistors • 2-9 MOS-Controlled Thyristors • 2-10 Comparison of Controllable Switches • 2-11 Drive and Snubber Circuits • 2-12 Justification for Using Idealized Device Characteristics • Chapter 3 Review of Basic Electrical and Magnetic Circuit Concepts • 3-1 Introduction • 3-2 Electrical Circuits • 3-3 Magnetic Circuits • Part 2 Semiconductor Devices • Chapter 4 Basic Semiconductor Physics • 4-1 Introduction • 4-2 Conduction Processes in Semiconductors • 4-3 pn Junctions • 4-4 Charge Control Description of pn-Junction Operation • 4-5 Avalanche Breakdown • Chapter 5 Power Diodes • 5-1 Introduction • 5-2 Basic Structure and I-V Characteristics • 5-3 Breakdown Voltage Considerations • 5-4 On-State Losses • 5-5 Switching Characteristics • 5-6 Schottky Diodes • Chapter 6 Bipolar Junction Transistors • 6-1 Introduction • 6-2 Vertical Power Transistor Structures • 6-3 I-V Characteristics • 6-4 Physics of BJT Operation • 6-5 Switching Characteristics • 6-6 Breakdown Voltages • 6-7 Second Breakdown • 6-8 On-State Losses • 6-9 Safe Operating Areas • Chapter 7 Power MOSFETs • 7-1 Introduction • 7-2 Basic Structure • 7-3 I-V Characteristics • 7-4 Physics of Device Operation • 7-5 Switching Characteristics • 7-6 Operating Limitations and Safe Operating Areas • 7-7 Comparison Between Power BJT and MOSFET • Chapter 8 Thyristors • 8-1 Introduction • 8-2 Basic Structure • 8-3 I-V Characteristics • 8-4 Physics of Device Operation • 8-5 Switching Characteristics • 8-6 Methods of Improving di/dt and dv/dt Ratings • Chapter 9 Gate Turn-Off Thyristors • 9-1 Introduction • 9-2 Basic Structure and I-V Characteristics • 9-3 Physics of Turn-Off Operation • 9-4 GTO Switching Characteristics • 9-5 Overcurrent Protection of GTOs • Chapter 10 Insulated Gate Bipolar Transistors • 10-1 Introduction • 10-2 Basic Structure • 10-3 I-V Characteristics • 10-4 Physics of Device Operation • 10-5 Latchup in IGBTs • 10-6 Switching Characteristics • 10-7 Device Limits and SOAs • Chapter 11 Emerging Devices and Circuits • 11-1 Introduction • 11-2 Power Junction Field Effect Transistors • 11-3 Field-Controlled Thyristor • 11-4 JFET-Based Devices versus Other Power Devices • 11-5 MOS-Controlled Thyristors • 11-6 Power Integrated Circuits • 11-7 New Semiconductor Materials for Power Devices • 11-8 Wide-Bandgap Semiconductors • Part 3 Power Electronic Circuits • Chapter 12 Diode Rectifiers: ac ? Uncontrolled dc • 12-1 Introduction • 12-2 Basic Rectifier Concepts • 12-3 Single-Phase Diode Bridge Rectifiers •

12-4 Voltage Doubler (Single-Phase) Rectifiers • 12-5 Effect of Single-Phase Rectifiers on Neutral Currents in Three-Phase, Four-Wire Systems • 12-6 Three-Phase, Full-Bridge Rectifiers • 12-7 Comparison of Single-Phase and Three-Phase Rectifiers • 12-8 Inrush Current and Overvoltages at Turn-On • 12-9 Concerns and Remedies for Line-Current Harmonics and Low Power Factor • Chapter 13 Phase-Controlled Rectifiers and Inverters: Line Frequency ac? Controlled dc • 13-1 Introduction • 13-2 Thyristor Circuits and their Control • 13-3 Single-Phase Converters • 13-4 Three-Phase Converters • 13-5 Other Three-Phase Converters • Chapter 14 dc-dc Converters • 14-1 Introduction • 14-2 Control of dc-dc Converters • 14-3 Step-Down (Buck) Converter • 14-4 Step-Up (Boost) Converter • 14-5 Buck-Boost Converter • 14-6 Cuk dc-dc Converter • 14-7 Full-Bridge dc-dc Converter • 14-8 dc-dc Converter Comparison • Chapter 15 dc-ac Inverters • 15-1 Introduction • 15-2 Basic Concepts of Switch-Mode Inverters • 15-3 Single-Phase Inverters • 15-4 Three-Phase Inverters • 15-5 Effect of Blanking Time on Voltage in PWM Inverters • 15-6 Other Inverter Switching Schemes • 15-7 Rectifier Mode of Operation • Chapter 16 Resonant Converters • 16-1 Introduction • 16-2 Classification of Resonant Converters • 16-3 Basic Resonant Circuit Concepts • 16-4 Load-Resonant Converters • 16-5 Resonant-Switch Converters • 16-6 Zero-Voltage-Switching, Clamped-Voltage Topologies • 16-7 Resonant-dc-Link Inverters with Zero-Voltage Switchings • 16-8 High-Frequency-Link Integral-Half-Cycle Converters • Chapter 17 ac-ac Converters • 17-1 Introduction • 17-2 Principle of Converter Control • 17-3 Single-Phase Full Wave ac Voltage Controller • 17-4 Three-Phase Full Wave Voltage Controller • 17-5 Cycloconverter • Part 4 Power Supply Applications • Chapter 18 Switching dc Power Supplies • 18-1 Introduction • 18-2 Linear Power Supplies • 18-3 Overview of Switching Power Supplies • 18-4 dc-dc Converters with Electrical Isolation • 18-5 Control of Switch-Mode dc Power Supplies • 18-6 Power Supply Protection • 18-7 Electrical Isolation in the Feedback Loop • 18-8 Designing to Meet the Power Supply Specifications • Chapter 19 Power Conditioners and Uninterruptible Power Supplies • 19-1 Introduction • 19-2 Power Line Disturbances • 19-3 Power Conditioners • 19-4 Uninterruptible Power Supplies (UPSS) • Part 5 Other Applications • Chapter 20 Residential and Industrial Applications • 20-1 Introduction • 20-2 Residential Applications • 20-3 Industrial Applications • 20-4 Interconnection of Renewable Energy Sources to Utility • 20-5 Grid-Connected Electric Vehicle Charging Stations • Chapter 21 Optimizing the Utility Interface with Power Electronic Systems • 21-1 Introduction • 21-2 Generation of Current Harmonics • 21-3 Current Harmonics and Power Factor • 21-4 Harmonic Standards and Recommended Practices • 21-5 Need for Improved Utility Interface • 21-6 Improved Single-Phase Utility Interface • 21-7 Improved Three-Phase Utility Interface • 21-8 Electromagnetic Interference • Part 6 Practical Converter Design Considerations • Chapter 22 Snubber Circuits • 22-1 Function and Types of Snubber Circuits • 22-2 Diode Snubbers • 22-3 Snubber Circuits for Thyristors • 22-4 Need for Snubbers with Transistors • 22-5 Turn-Off Snubber • 22-6 Overvoltage Snubber • 22-7 Turn-On Snubber • 22-8 Snubbers for Bridge Circuit Configurations • 22-9 GTO Snubber Considerations • Chapter 23 Gate and Base Drive Circuits • 23-1 Preliminary Design Considerations • 23-2 dc-Coupled Drive Circuits • 23-3 Electrically Isolated Drive Circuits • 23-4 Cascode-Connected Drive Circuits • 23-5 Thyristor Drive Circuits • 23-6 Power Device Protection in Drive Circuits • 23-7 Circuit Layout Considerations • Chapter 24 Component Temperature Control and Heat Sinks • 24-1 Control of Semiconductor Device Temperatures • 24-2 Heat Transfer by Conduction • 24-3 Heat Sinks • 24-4 Heat Transfer by Radiation and Convection • Chapter 25 Design of Magnetic Components • 25-1 Magnetic Materials and Cores • 25-2 Copper Windings • 25-3 Thermal Considerations • 25-4 Analysis of a Specific Inductor Design • 25-5 Inductor Design Procedures • 25-6 Analysis of a Specific Transformer Design • 25-7 Eddy Currents • 25-8 Transformer Leakage Inductance • 25-9 Transformer Design Procedure • 25-10 Comparison of Transformer and Inductor Sizes • Part 7 Motor Drive Applications • Chapter 26 Introduction to Motor Drives • 26-1 Introduction • 26-2 Criteria for Selecting Drive Components • Chapter 27 dc Motor Drives • 27-1 Introduction • 27-2 Equivalent Circuit of dc Motors • 27-3 Permanent-Magnet dc Motors • 27-4 dc Motors with a Separately Excited Field Winding • 27-5 Effect of Armature Current Waveform • 27-6 dc Servo Drives • 27-7 Adjustable-Speed dc Drives • Chapter 28 Induction Motor Drives • 28-1 Introduction • 28-2 Basic Principles of Induction Motor Operation • 28-3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage • 28-4 Speed Control by Varying Stator Frequency and Voltage • 28-5 Impact of Nonsinusoidal Excitation on Induction Motors • 28-6 Variable-Frequency Converter Classifications • 28-7 Variable-Frequency PWM-VSI Drives • 28-8 Variable-Frequency Square-Wave VSI Drives • 28-9 Variable-Frequency CSI Drives • 28-10 Comparison of Variable-Frequency Drives • 28-11 Line-Frequency Variable-Voltage Drives • 28-12 Reduced Voltage Starting ("Soft Start") of Induction Motors • 28-13 Speed Control by Static Slip Power Recovery • Chapter 29 Synchronous Motor Drives • 29-1 Introduction • 29-2 Basic Principles of Synchronous

Motor Operation • 29-3 Synchronous Servomotor Drives with Sinusoidal Waveforms • 29-4 Synchronous Servomotor Drives with Trapezoidal Waveforms • 29-5 Load-Commutated Inverter Drives • 29-6 Cycloconverters • Appendix Computer Simulation of Power Electronic Converters and Systems A • A-1 Introduction • A-2 Challenges in Computer Simulation • A-3 Simulation Process • A-4 Mechanics of Simulation [1] • A-5 Solution Techniques for Time-Domain Analysis • A-6 Widely Used, Circuit-Oriented Simulators • A-7 Equation Solvers • Summary • Problems • References

9789354640278 | ₹ 1139

Introduction to Robotics: Analysis, Control, Applications , 3ed , An Indian Adaptation | e | k

Niku

About the Author

Saeed Benjamin Niku is a professor of mechanical engineering at California Polytechnic State University, San Luis Obispo, California. He has taught courses in mechanics, robotics, design, and creativity.

Table of Contents

- Preface to the Adapted Edition • Preface to the US Edition • 1 Fundamentals • 1.1 Introduction • 1.2 What Is a Robot? • 1.3 Classification of Robots • 1.4 What Is Robotics?
- 1.5 Evolution of Robots and Robotics • 1.6 Robot Components • 1.7 Robot Degrees of Freedom • 1.8 Robot Joints • 1.9 Robot Coordinates • 1.10 Robot Reference Frames
- 1.11 Robot Characteristics • 1.12 Robot Workspace • 1.13 Robot Applications • 1.14 Programming Modes • 1.15 Robot Languages • 1.16 Advantages and Disadvantages of Robots • 1.17 Other Robots and Applications • 1.18 Collaborative Robots • 1.19 Social Issues • 1.20 Summary • 2 Kinematics of Serial Robots: Position Analysis • 2.1 Introduction • 2.2 Robots as Mechanisms • 2.3 Conventions • 2.4 Matrix Representation
- 2.5 Homogeneous Transformation Matrices • 2.6 Representation of Transformations • 2.7 Inverse of Transformation Matrices • 2.8 Forward and Inverse Kinematics of Robots
- 2.9 Forward and Inverse Kinematic Equations: Position • 2.10 Forward and Inverse Kinematic Equations: Orientation • 2.11 Forward and Inverse Kinematic Equations: Position and Orientation • 2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots • 2.13 The Inverse Kinematic Solution of Robots • 2.14 Inverse Kinematic Programming of Robots • 2.15 Dual-Arm Cooperating Robots • 2.16 Degeneracy and Dexterity • 2.17 The Fundamental Problem with the Denavit-Hartenberg Representation • 2.18 Design Projects • 2.19 Summary • 3 Robot Kinematics with Screw-Based Mechanics • 3.1 Introduction • 3.2 What Is a Screw? • 3.3 Rotation about a Screw Axis • 3.4 Homogenous Transformations about a General Screw Axis • 3.5 Successive Screw-Based Transformations • 3.6 Forward and Inverse Position Analysis of an Articulated Robot • 3.7 Design Projects • 3.8 Summary • 4 Kinematics Analysis of Parallel Robots • 4.1 Introduction • 4.2 Physical Characteristics of Parallel Robots • 4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach • 4.4 Forward and Inverse Kinematics of Planar Parallel Robots • 4.5 Forward and Inverse Kinematics of Spatial Parallel Robots • 4.6 Other Parallel Robot Configurations • 4.7 Design Projects • 4.8 Summary • 5 Differential Motions and Velocities • 5.1 Introduction • 5.2 Differential Relationships • 5.3 The Jacobian • 5.4 Differential versus Large-Scale Motions • 5.5 Singularities • 5.6 Differential Motions of a Frame versus a Robot • 5.7 Differential Motions of a Frame • 5.8 Interpretation of the Differential Change • 5.9 Differential Changes Between Frames • 5.10 Differential Motions of a Robot and Its Hand Frame • 5.11 Calculation of the Jacobian • 5.12 How to Relate the Jacobian and the Differential Operator • 5.13 The Inverse Jacobian • 5.14 Calculation of the Jacobian with Screw-Based Mechanics • 5.15 The Inverse Jacobian for the Screw-Based Method • 5.16 Calculation of the Jacobians of Parallel Robots • 5.17 Design Projects • 5.18 Summary • 6 Dynamic and Force Analysis • 6.1 Introduction • 6.2 Lagrangian Mechanics: A Short Overview • 6.3 Effective Moments of Inertia • 6.4 Dynamic Equations for Multiple-DOF Robots • 6.5 Static Force Analysis of Robots • 6.6 Transformation of Forces and Moments between Coordinate Frames • 6.7 Design Project • 6.8 Summary • 7 Trajectory Planning • 7.1 Introduction • 7.2 Path vs. Trajectory • 7.3 Joint-Space vs. Cartesian-Space Descriptions • 7.4 Basics of Trajectory Planning • 7.5 Joint-Space Trajectory Planning • 7.6 Cartesian-Space Trajectories • 7.7 Continuous Trajectory Recording • 7.8 Design Project • 7.9 Path Planning • 7.10 Summary • 8 Motion Control Systems • 8.1 Introduction • 8.2 Basic Components and Terminology • 8.3 Block

Diagrams • 8.4 System Dynamics • 8.5 Laplace Transform • 8.6 Inverse Laplace Transform • 8.7 Transfer Functions • 8.8 Block Diagram Algebra • 8.9 Characteristics of First-Order Transfer Functions • 8.10 Characteristics of Second-Order Transfer Functions • 8.11 Characteristic Equation: Pole/Zero Mapping • 8.12 Steady-State Error • 8.13 Root Locus Method • 8.14 Proportional Controllers • 8.15 Proportional-Plus-Integral Controllers • 8.16 Proportional-Plus-Derivative Controllers • 8.17 Proportional-Integral-Derivative Controller (PID) • 8.18 Lead and Lag Compensators • 8.19 Bode Diagram and Frequency-Domain Analysis • 8.20 Open-Loop vs. Closed-Loop Applications • 8.21 Multiple-Input and Multiple-Output Systems • 8.22 State-Space Control Methodology • 8.23 Digital Control • 8.24 Nonlinear Control Systems • 8.25 Electromechanical Systems Dynamics: Robot Actuation and Control • 8.26 Design Projects • 8.27 Summary • 8.9 Actuators and Drive Systems • 9.1 Introduction • 9.2 Characteristics of Actuating Systems • 9.3 Comparison of Actuating Systems • 9.4 Hydraulic Actuators • 9.5 Pneumatic Devices • 9.6 Electric Motors • 9.7 Microprocessor Control of Electric Motors • 9.8 Magnetostrictive Actuators • 9.9 Shape-Memory Type Metals • 9.10 Electroactive Polymer Actuators (EAPs) • 9.11 Speed Reduction • 9.12 Selection of Actuators – Case Studies • 9.13 Other Systems • 9.14 Design Projects • 9.15 Summary • 9.10 Sensors • 10.1 Introduction • 10.2 Sensor Characteristics • 10.3 Sensor Utilization • 10.4 Classification of Sensors • 10.5 Position Sensors • 10.6 Velocity Sensors • 10.7 Acceleration Sensors • 10.8 Force and Pressure Sensors • 10.9 Torque Sensors • 10.10 Microswitches • 10.11 Visible Light and Infrared Sensors • 10.12 Touch and Tactile Sensors • 10.13 Proximity Sensors • 10.14 Range Finders • 10.15 Sniff Sensors • 10.16 Vision Systems • 10.17 Voice-Recognition Devices • 10.18 Voice Synthesizers • 10.19 Remote Center Compliance (RCC) Device • 10.20 Design Project • 10.21 Selection of Sensors – Case Study • 10.22 Summary • 11.1 Image Processing and Analysis with Vision Systems • 11.1 Introduction • 11.2 Basic Concepts • 11.3 Fourier Transform and Frequency Content of a Signal • 11.4 Frequency Content of an Image: Noise and Edges • 11.5 Resolution and Quantization • 11.6 Sampling Theorem • 11.7 Image-Processing Techniques • 11.8 Histograms of Images • 11.9 Thresholding • 11.10 Spatial Domain Operations: Convolution Mask • 11.11 Connectivity • 11.12 Noise Reduction • 11.13 Edge Detection • 11.14 Sharpening an Image • 11.15 Hough Transform • 11.16 Segmentation • 11.17 Segmentation by Region Growing and Region Splitting • 11.18 Binary Morphology Operations • 11.20 Image Analysis • 11.21 Object Recognition by Features • 11.22 Depth Measurement with Vision Systems • 11.23 Specialized Lighting • 11.24 Image Data Compression • 11.25 Color Images • 11.26 Heuristics • 11.27 Applications of Vision Systems • 11.28 Design Project • 11.29 Summary • 12.1 Fuzzy Logic Control • 12.1 Introduction • 12.2 Fuzzy Control: What Is Needed • 12.3 Crisp Values vs. Fuzzy Values • 12.4 Fuzzy Sets: Degrees of Truth and Membership • 12.5 Fuzzification • 12.6 Fuzzy Inference Rules • 12.7 Defuzzification • 12.8 Simulation of a Fuzzy Logic Controller • 12.9 Applications of Fuzzy Logic in Robotics • 12.10 Genetic Algorithms • 12.11 Artificial Neural Networks (ANNs) • 12.12 Internet of Robotic Things (IoRT) • 12.13 Design Project • 12.14 Summary • 12.15 References • 12.16 Problems • 12.17 Multiple-Choice Questions • 12.18 Answer Key • 12.19 Appendix A • 12.20 Appendix B • 12.21 Index

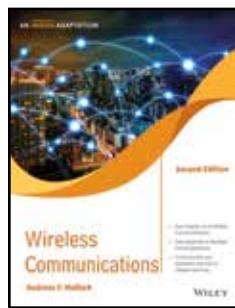
9789357461306 | ₹ 1059

Control Systems Engineering, 8ed, An Indian Adaptation | New | IM | k

Nise

About the Author

Norman S. Nise, California State Polytechnic University, Pomona, USA.


Table of Contents

• 1. INTRODUCTION • 1.1 Introduction • 1.2 System Configurations • 1.3 Servomechanism • 1.4 A History of Control Systems • 1.5 Analysis and Design Objectives • 1.6 The Design Process • 1.7 Multivariable Systems • 1.8 Computer-Aided Design • 1.9 The Control Systems Engineer • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 2. MODELING IN THE FREQUENCY DOMAIN • 2.1 Introduction • 2.2 Laplace Transform Review • 2.3 The Transfer Function • 2.4 Electrical Network Transfer Functions • 2.5 Translational Mechanical System Transfer Functions • 2.6 Rotational Mechanical System Transfer Functions • 2.7 Transfer Functions for Systems with Gears • 2.8 Electromechanical System Transfer Functions • 2.9 Electric Circuit Analogs • 2.10 Nonlinearities • 2.11 Linearization • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Hardware Interface Laboratory

• Bibliography • 3. MODELING IN THE TIME DOMAIN • 3.1 Introduction • 3.2 Some Observations • 3.3 The General State-Space Representation • 3.4 Applying the State-Space Representation • 3.5 Converting a Transfer Function to State Space • 3.6 Converting from State Space to a Transfer Function • 3.7 Linearization • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 4. TIME RESPONSE ANALYSIS • 4.1 Introduction • 4.2 Poles, Zeros, and System Response • 4.3 First-Order Systems • 4.4 Second-Order Systems: Introduction • 4.5 The General Second-Order System • 4.6 Underdamped Second-Order Systems • 4.7 System Response with Additional Poles • 4.8 System Response with Zeros • 4.9 Effects of Nonlinearities upon Time Response • 4.10 Laplace Transform Solution of State Equations • 4.11 Time Domain Solution of State Equations • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Hardware Interface Laboratory • Bibliography • 5. REDUCTION OF MULTIPLE SUBSYSTEMS • 5.1 Introduction • 5.2 Block Diagrams • 5.3 Analysis and Design of Feedback Systems • 5.4 Signal-Flow Graphs • 5.5 Mason's Rule • 5.6 Signal-Flow Graphs of State Equations • 5.7 Alternative Representations in State Space • 5.8 Similarity Transformations • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 6. STABILITY • 6.1 Introduction • 6.2 Routh-Hurwitz Criterion • 6.3 Routh-Hurwitz Criterion: Special Cases • 6.4 Routh-Hurwitz Criterion: Additional Examples • 6.5 Stability in State Space • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 7. STEADY-STATE ERRORS • 7.1 Introduction • 7.2 Steady-State Error for Unity-Feedback Systems • 7.3 Static Error Constants and System Type • 7.4 Steady-State Error Specifications • 7.5 Steady-State Error for Disturbances • 7.6 Steady-State Error for Nonunity-Feedback Systems • 7.7 Sensitivity • 7.8 Steady-State Error for Systems in State Space • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 8. ROOT LOCUS TECHNIQUES • 8.1 Introduction • 8.2 Defining the Root Locus • 8.3 Properties of the Root Locus • 8.4 Sketching the Root Locus • 8.5 Refining the Sketch • 8.6 An Example • 8.7 Transient Response Design via Gain Adjustment • 8.8 Generalized Root Locus • 8.9 Root Locus for Positive-Feedback Systems • 8.10 Pole Sensitivity • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Hardware Interface Laboratory • Bibliography • 9. DESIGN VIA ROOT LOCUS • 9.1 Introduction • 9.2 Improving Steady-State Error via Cascade Compensation • 9.3 Improving Transient Response via Cascade Compensation • 9.4 Improving Steady-State Error and Transient Response • 9.5 Feedback Compensation • 9.6 Physical Realization of Compensation • 9.7 Tuning of PID Controllers • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Hardware Interface Laboratory • Bibliography • 10. FREQUENCY RESPONSE TECHNIQUES • 10.1 Introduction • 10.2 Asymptotic Approximations: Bode Plots • 10.3 All-Pass and Non-Minimum Phase Systems • 10.4 Introduction to the Nyquist Criterion • 10.5 Sketching the Nyquist Diagram • 10.6 Stability via the Nyquist Diagram • 10.7 Gain Margin and Phase Margin via the Nyquist Diagram • 10.8 Stability, Gain Margin, and Phase Margin via Bode Plots • 10.9 Relation Between Closed-Loop Transient and Closed-Loop Frequency Responses • 10.10 Relation Between Closed- and Open-Loop Frequency Responses • 10.11 Relation Between Closed-Loop Transient and Open-Loop Frequency Responses • 10.12 Steady-State Error Characteristics from Frequency Response • 10.13 Systems with Time Delay • 10.14 Obtaining Transfer Functions Experimentally • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 11. DESIGN VIA FREQUENCY RESPONSE • 11.1 Introduction • 11.2 Transient Response via Gain Adjustment • 11.3 Lag Compensation • 11.4 Lead Compensation • 11.5 Lag-Lead Compensation • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 12. DESIGN VIA STATE SPACE • 12.1 Introduction • 12.2 Controller Design • 12.3 Controllability • 12.4 Alternative Approaches to Controller Design • 12.5 Observer Design • 12.6 Observability • 12.7 Alternative Approaches to Observer Design • 12.8 Steady-State Error Design via Integral Control • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 13. OPTIMAL CONTROL SYSTEMS (Available Online) • 13.1 Introduction • 13.2 Performance Indices • 13.3 Optimal Control Problem • 13.4 Regulator Problem • 13.5 State Regulator • 13.6 Output Regulator • 13.7 Tracking Problem • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • 14. DIGITAL CONTROL SYSTEMS (Available Online) • 14.1 Introduction • 14.2 Modeling the Digital Computer • 14.3 The z-Transform • 14.4 Transfer Functions • 14.5 Block Diagram Reduction • 14.6 Stability • 14.7 Steady-State Errors • 14.8 Transient Response on the z-Plane • 14.9 Gain Design on the z-Plane • 14.10 Cascade Compensation via the s-Plane • 14.11

Implementing the Digital Compensator • Summary • Multiple Choice Questions • Review Questions • Problems • Cyber Exploration Laboratory • Bibliography • • APPENDIX A1 List of Symbols • APPENDIX A2 Antenna Azimuth Position Control System • APPENDIX A3 Unmanned Free-Swimming Submersible Vehicle • APPENDIX A4 Key Equations • GLOSSARY • • • ONLINE APPENDICES • APPENDIX B MATLAB Tutorial • APPENDIX C Simulink Tutorial • APPENDIX D LabVIEW Tutorial • APPENDIX E MATLAB's GUI Tools Tutorial • APPENDIX F MATLAB's Symbolic Math Toolbox Tutorial • APPENDIX G Matrices, Determinants, and Systems of Equations • APPENDIX H Control System Computational Aids • APPENDIX I Derivation of a Schematic for a DC Motor • APPENDIX J Derivation of the Time Domain Solution of State Equations • APPENDIX K Solution of State Equations for $t \geq 0$ • APPENDIX L Derivation of Similarity Transformations • APPENDIX M Root Locus Rules: Derivations • ANSWERS TO SELECTED PROBLEMS • INDEX

9789357463980 | ₹ 1399

Wireless Communications, 2ed, An Indian Adaptation | IM | e | k

Molisch

About the Author

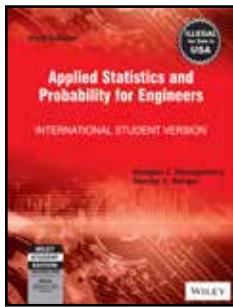

Andreas F. Molisch is Professor at the University of Southern California (USC) in Los Angeles, CA. Dr. Molisch has been an Editor of a number of journals and special issues, General Chair, Technical Program Committee Chair, or Symposium Chair of multiple international conferences, as well as Chairman of various international standardization groups. He is a Fellow of the National Academy of Inventors, Fellow of the AAAS, Fellow of the IEEE, Fellow of the IET, an IEEE Distinguished Lecturer, and a member of the Austrian Academy of Sciences.

Table of Contents

- PART I INTRODUCTION • 1 INTRODUCTION TO WIRELESS SYSTEMS • 1.1 History • 1.2 Types of Services • 1.3 Requirements for the Services • 1.4 Economic and Social Aspects
- 2 TECHNICAL CHALLENGES OF WIRELESS COMMUNICATIONS • 2.1 Multipath Propagation • 2.2 Spectrum Limitations • 2.3 Limited Energy • 2.4 User Mobility • 2.5 Noise and Interference • • PART II WIRELESS PROPAGATION CHANNELS • 3 PROPAGATION MECHANISMS • 3.1 Free Space Attenuation • 3.2 Reflection and Transmission • 3.3 Diffraction • 3.4 Scattering by Rough Surfaces • 3.5 Waveguiding • 3.6 Appendices: please see companion website (www.wileyindia.com) • • 4 STATISTICAL DESCRIPTION OF THE WIRELESS CHANNEL • 4.1 Introduction • 4.2 The Time-Invariant Two-Path Model • 4.3 The Time-Variant Two-Path Model • 4.4 Small-Scale Fading without a Dominant Component • 4.5 Small-Scale Fading with a Dominant Component • 4.6 Doppler Spectra and Temporal Channel Variations • 4.7 Temporal Dependence of Fading • 4.8 Large-Scale Fading • 4.9 Appendices: please see companion website (www.wileyindia.com) • • 5 WIDEBAND AND DIRECTIONAL CHANNEL CHARACTERIZATION • 5.1 Introduction • 5.2 The Causes of Delay Dispersion • 5.3 System-Theoretic Description of Wireless Channels • 5.4 The WSSUS Model • 5.5 Condensed Parameters • 5.6 Ultra Wideband Channels • 5.7 Directional Description • 5.8 Appendices: please see companion website (www.wileyindia.com) • • 6 CHANNEL MODELS • 6.1 Introduction • 6.2 Narrowband Models • 6.3 Wideband Models • 6.4 Directional Models • 6.5 Deterministic Channel-Modeling Methods • 6.6 Appendices: please see companion website (www.wileyindia.com) • • 7 CHANNEL SOUNDING • 7.1 Introduction • 7.2 Time-Domain Measurements • 7.3 Frequency Domain Analysis • 7.4 Modified Measurement Methods • 7.5 Directionally Resolved Measurements • 7.6 Appendices: please see companion website (www.wileyindia.com) • • 8 ANTENNAS • 8.1 Introduction • 8.2 Antennas for Mobile Stations • 8.3 Antennas for Base Stations • • PART III TRANSCEIVERS AND SIGNAL PROCESSING • 9 STRUCTURE OF A WIRELESS COMMUNICATION LINK • 9.1 Transceiver Block Structure • 9.2 Simplified Models • • 10 MODULATION FORMATS • 10.1 Introduction • 10.2 Basics • 10.3 Important Modulation Formats • 10.4 Appendices: please see companion website (www.wileyindia.com) • • 11 DEMODULATION • 11.1 Demodulator Structure and Error Probability in Additive White Gaussian Noise Channels • 11.2 Error Probability in Flat-Fading Channels • 11.3 Error Probability in Delay- and Frequency-Dispersive Fading Channels • • 12 DIVERSITY • 12.1 Introduction • 12.2 Microdiversity • 12.3 Macrodiversity and Simulcast • 12.4 Combination of Signals • 12.5 Error Probability in Fading Channels

with Diversity Reception • 12.6 Transmit Diversity • 12.7 Appendices: please see companion website (www.wileyindia.com) • • 13 CHANNEL CODING AND INFORMATION THEORY • 13.1 Fundamentals of Coding and Information Theory • 13.2 Block Codes • 13.3 Convolutional Codes • 13.4 Trellis Coded Modulation • 13.5 Bit Interleaved Coded Modulation (BICM) • 13.6 Turbo Codes • 13.7 Low Density Parity Check Codes • 13.8 Coding for the Fading Channel • 13.9 Information-Theoretic Performance Limits of Fading Channels • 13.10 Appendices: please see companion website (www.wileyindia.com) • • 14 EQUALIZERS • 14.1 Introduction • 14.2 Linear Equalizers • 14.3 Decision Feedback Equalizers • 14.4 Maximum Likelihood Sequence Estimation – Viterbi Detector • 14.5 Comparison of Equalizer Structures • 14.6 Fractionally Spaced Equalizers • 14.7 Blind Equalizers • 14.8 Appendices: please see companion website (www.wileyindia.com) • • PART IV MULTIPLE ACCESS AND ADVANCED TRANSCEIVER SCHEMES • 15 MULTIPLE ACCESS AND THE CELLULAR PRINCIPLE • 15.1 Introduction • 15.2 Frequency Division Multiple Access • 15.3 Time Division Multiple Access • 15.4 Packet Radio • 15.5 Duplexing • 15.6 Principles of Cellular Networks • 15.7 Appendices: please see companion website (www.wileyindia.com) • • 16 SPREAD SPECTRUM SYSTEMS • 16.1 Frequency Hopping Multiple Access (FHMA) • 16.2 Code Division Multiple Access • 16.3 Cellular Code-Division-Multiple-Access Systems • 16.4 Multiuser Detection • 16.5 Time Hopping Impulse Radio • 16.6 Appendix • • 17 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) • 17.1 Introduction • 17.2 Principle of Orthogonal Frequency Division Multiplexing • 17.3 Implementation of Transceivers • 17.4 Frequency-Selective Channels • 17.5 Channel Estimation • 17.6 Peak-to-Average Power Ratio • 17.7 Inter Carrier Interference • 17.8 Adaptive Modulation and Capacity • 17.9 Multiple Access – OFDMA • 17.10 Multicarrier Code Division Multiple Access • 17.11 Single-Carrier Modulation with • • 18 MULTIANTENNA SYSTEMS • 18.1 Smart Antennas • 18.2 Multiple Input Multiple Output Systems • 18.3 Multiuser MIMO • • 19 COGNITIVE RADIO • 19.1 Problem Description • 19.2 Cognitive Transceiver Architecture • 19.3 Principles of Interweaving • 19.4 Spectrum Sensing • 19.5 Spectrum Management • 19.6 Spectrum Sharing • 19.7 Overlay • 19.8 Underlay Hierarchical Access – Ultra Wide Bandwidth System Communications • • 20 RELAYING, MULTI-HOP, AND COOPERATIVE COMMUNICATIONS • 20.1 Introduction and Motivation • 20.2 Fundamentals of Relaying • 20.3 Relaying with Multiple, Parallel Relays • 20.4 Routing and Resource Allocation in Multi-Hop Networks • 20.5 Routing and Resource Allocation in Collaborative Networks • 20.6 Applications • 20.7 Network Coding • 20.8 Appendices: please see companion website (www.wileyindia.com) • • PART V STANDARDIZED WIRELESS SYSTEMS • 21 GSM – GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS • 21.1 Historical Overview • 21.2 System Overview • 21.3 The Air Interface • 21.4 Logical and Physical Channels • 21.5 Synchronization • 21.6 Coding • 21.7 Equalizer • 21.8 Circuit-Switched Data Transmission • 21.9 Establishing a Connection and Handover • 21.10 Services and Billing • 21.11 Appendices: please see companion website (www.wileyindia.com) • • 22 IS-95 AND CDMA 2000 • 22.1 Historical Overview • 22.2 System Overview • 22.3 Air Interface • 22.4 Coding • 22.5 Spreading and Modulation • 22.6 Logical and Physical Channels • 22.7 Handover • 22.8 Appendices: please see companion website (www.wileyindia.com) • • 23 WCDMA/UMTS • 23.1 Historical Overview • 23.2 System Overview • 23.3 Air Interface • 23.4 Physical and Logical Channels • 23.5 Speech Coding, Multiplexing, and Channel Coding • 23.6 Spreading and Modulation • 23.8 Appendices: please see companion website (www.wileyindia.com) • 23.A Glossary for WCDMA • • 24 3GPP LONG-TERM EVOLUTION • 24.1 Introduction • 24.2 System Overview • 24.3 Physical Layer • 24.4 Logical and Physical Channels • 24.5 Physical Layer Procedures • 24.6 LTE-A: An Overview • 24.7 Appendices: please see companion website (www.wileyindia.com) • • 25 5G MOBILE COMMUNICATIONS • 25.1 Introduction • 25.2 Overview of 5G Networks • 25.3 Massive MIMO Communications • 25.4 Millimeter-Wave Communications • 25.5 D2D Communications over 5G • 25.6 M2M Communications over 5G • • 26 WIMAX/IEEE 802.16 • 26.1 Introduction • 26.2 System Overview • 26.3 Modulation and Coding • 26.4 Logical and Physical Channels • 26.5 Multiple-Antenna Techniques • 26.6 Link Control • 26.7 Appendices: please see companion website (www.wileyindia.com) • 26.A Glossary for WiMAX • • 27 WIRELESS LOCAL AREA NETWORKS • 27.1 Introduction • 27.2 802.11a/g – Orthogonal Frequency Division Multiplexing-Based Local Area Networks • 27.3 IEEE 802.11n • 27.4 Packet Transmission in 802.11 Wireless Local Area Networks • 27.5 Alternative Wireless Local Area Networks and Future Developments • 27.6 Appendices: please see companion website (www.wileyindia.com) • 27.A Glossary for WLAN • • Exercises • Further Reading • • APPENDIX: OBJECTIVE QUESTIONS • REFERENCES • INDEX

9789354248795 | ₹ 1029

Applied Statistics and Probability for Engineers, 6ed, ISV | IM | e

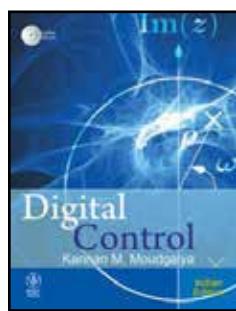

Montgomery

Table of Contents

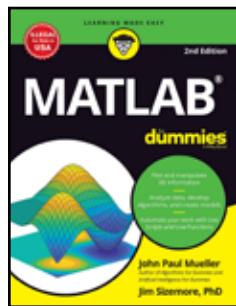
- Chapter 1 The Role of Statistics in Engineering •
- Chapter 2 Probability • Chapter 3 Discrete Random Variables and Probability Distributions • Chapter 4 Continuous Random Variables and Probability Distributions • Chapter 5 Joint Probability Distributions • Chapter 6 Descriptive Statistics • Chapter 7 Sampling Distributions and Point Estimation of Parameters •

Chapter 8 Statistical Intervals for a Single Sample • Chapter 9 Tests of Hypotheses for a Single Sample • Chapter 10 Statistical Inference for Two Samples • Chapter 11 Simple Linear Regression and Correlation • Chapter 12 Multiple Linear Regression • Chapter 13 Design and Analysis of Single-Factor Experiments: The Analysis of Variance • Chapter 14 Design of Experiments with Several Factors • Chapter 15 Statistical Quality Control • Appendices

9788126562947 | ₹ 1069

Digital Control, w/cd

Moudgalya


About the Author

Professor Kannan M. Moudgalya is an associate Dean at the Indian Institute of Technology in Bombay. He graduated in 1985 with a PhD in Chemical Engineering from Rice University, Houston and began his career as a Research Associate at the Chemical Process Modelling and Control Research Center at Lehigh University. In 1988 he became Assistant Professor at ITT, and has since worked his way up to the position of Associate Dean of Research and Development. He is the joint author of Optimization: Theory and Practice, M. C. Joshi and K. M. Moudgalya, (184265196X, Cl, 345pp, June 2004, Alpha Science International Ltd). In addition to this he has written over twenty journals and conference papers relevant to the proposal. In 2002, he won the 2018 Best Paper Presentation Award at the American Control Conference.

Table of Contents

- Preface. • Acknowledgements. • List of Matlab Code. • List of Acronyms. • I. Introduction. • 2. Modelling of Sampled Data Systems. • I: Digital Signal Processing. • 3. Linear System. • 4. Z-Transform. • 5. Frequency Domain Analysis. • II: Identification. • 6. Identification. • III: Transfer Function Approach to Controller Design. • 7. Structures and Specifications. • 8. Proportional, Integral, Derivative Controllers. • 9. Pole Placement Controllers. • 10. Special Cases of Pole Placement Control. • 11. Minimum Variance Control. • 12. Model Predictive Control. • 13. Linear Quadratic Gaussian Control. • IV: State Space Approach to controller Design. • 14. State Space Techniques in Controller Design. • Appendix A. Supplementary Material. • References. • Index. • Index of Matlab Code.

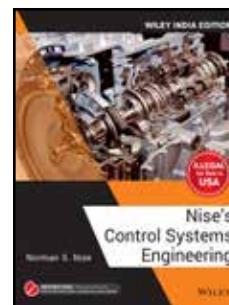
9788126522064 | ₹ 1139

MATLAB for Dummies, 2ed

Mueller

About the Author

John Paul Mueller is a freelance author and technical editor. He has writing in his blood, having produced hundreds of books and articles to date. The topics range from networking to home security and from database management to heads-down programming. During his time at Cubic Corporation, John was exposed to reliability engineering and has had a continued interest in probability ever since. He is a veteran Dummies author.


Table of Contents

- Introduction • About This Book • Foolish Assumptions • Icons Used in This Book • Beyond the Book • Where to Go from Here • Part 1: Getting Started With MATLAB • Chapter 1: Introducing MATLAB and Its Many Uses • Putting MATLAB in Its Place • Understanding how MATLAB relates to a Turing machine • Using MATLAB as more than a calculator • Determining why you need MATLAB • Discovering Who Uses MATLAB for Real-World Tasks • Knowing How to Get the Most from MATLAB • Getting the basic computer skills • Defining the math requirements • Applying what you know about other procedural languages • Understanding how this book will help you • Getting Over the Learning Curve • Chapter 2: Starting Your Copy of MATLAB • Installing MATLAB • Discovering which platforms MATLAB supports • Getting your copy of MATLAB • Performing the installation • Activating the product • Meeting the MATLAB Interface • Starting MATLAB for the first time • Considering the default Toolbar tabs • Working with the Quick Access toolbar (QAT) • Employing the Command Window • Getting additional help with MATLAB • Using the Current Folder toolbar • Viewing the Current Folder window • Changing the MATLAB layout • Chapter 3: Interacting with MATLAB • Using MATLAB as a Calculator • Entering information at the prompt • Entering a formula • Copying and pasting formulas • Changing the Command Window formatting • Suppressing Command Window output • Understanding the MATLAB Math Syntax • Adding, subtracting, multiplying, and dividing • Working with exponents • Organizing Your Storage Locker • Using ans -- the default storage locker • Creating your own storage lockers • Operating MATLAB as More Than a Calculator • Learning the truth • Using the built-in functions • Accessing the function browser • Recovering from Mistakes • Understanding the MATLAB error messages • Stopping MATLAB when it hangs • Chapter 4: Starting, Storing, and Saving MATLAB Files • Examining MATLAB's File Structure • Understanding the MATLAB files and what they do • Exploring folders with the GUI • Exploring folders with commands • Working with files in MATLAB • Accessing and Sharing MATLAB Files • Opening • Exporting • Importing • Saving Your Work • Saving variables with the GUI • Saving variables using commands • Saving commands with the GUI • Saving commands using commands • Using online storage • Part 2: Manipulating and Plotting Data in MATLAB • Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions • Working with Vectors and Matrices • Understanding MATLAB's perspective of linear algebra • Entering data • Adding and Subtracting • Understanding the Many Ways to Multiply and Divide • Performing scalar multiplication and division • Employing matrix multiplication • Dividing two vectors • Effecting matrix division • Creating powers of matrices • Using complex numbers • Working with exponents • Working with Higher Dimensions • Creating a multidimensional matrix • Accessing a multidimensional matrix • Replacing individual elements • Replacing a range of elements • Modifying the matrix size • Using cell arrays and structures • Using the Matrix Helps • Chapter 6: Understanding Plotting Basics • Considering Plots • Understanding what you can do with plots • Comparing MATLAB plots to spreadsheet graphs • Creating a plot using commands • Creating a plot using the Workspace window • Creating a plot using the Plots tab options • Using the Plot Function • Working with line color, markers, and line style • Creating multiple plots in a single command • Modifying Any Plot • Making simple changes • Adding to a plot • Deleting a plot • Working with subplots • Plotting with D Information • Using the bar() function to obtain a flat D plot • Using bar() to obtain a dimensional D plot • Using barh() and more • Enhancing Your Plots • Getting an axes handle • Modifying axes labels • Adding a title • Rotating label text • Employing annotations • Printing your plot • Using the Plot Extras • Creating axes dates using datetick() • Creating plots with colorbar() • Interacting with daspect • Interacting with pbaspect • Part 3: Streamlining MATLAB • Chapter 8: Automating Your Work • Understanding What Scripts Do • Creating less work for yourself • Defining when to use a script • Creating a Script • Writing your first script • Using commands for user input • Copying and pasting into a script • Converting the Command History into a script • Continuing long strings • Adding comments to your script • Revising Scripts • Calling Scripts • Improving Script Performance • Analyzing Scripts for Errors • Using the MATLAB Profiler to Improve Performance • Chapter 9: Expanding MATLAB's Power with Functions • Working with Built-in Functions • Learning about built-in functions • Sending data in and getting data out • Creating a Function • Understanding script and function differences • Understanding built-in function and custom function differences • Writing your first function • Using the new function • Passing data in • Passing data out • Creating and using global variables • Using subfunctions • Nesting functions • Using Other Types of Functions • Inline functions • Anonymous functions • Chapter 10:

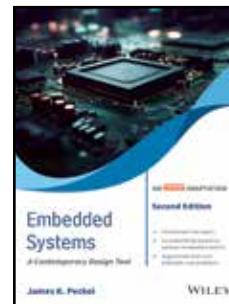
Adding Structure to Your Scripts • Making Decisions • Using the if statement • Using the switch statement • Understanding the switch difference • Deciding between if and switch • Creating Recursive Functions • Performing Tasks Repetitively • Using the for statement • Using the while statement • Starting a new loop iteration using continue • Ending processing using break • Ending processing using return • Determining which loop to use • Creating Menus • Chapter 11: Working with Live Scripts • Comparing a Live Script to a Regular Script • Working with the Live Editor • Opening the Live Editor • Working with the Output pane • Adding formatted text • Using plots within the coded area • Incorporating graphics • Incorporating controls • Running Live Script Sections • Diagnosing Coding Errors • Chapter 12: Working with Live Functions • Comparing a Live Function to a Regular Function • Understanding Live Function Flexibility Differences • Creating a Live Function • Running a Live Function • Refactoring a Live Function • Using the specialized coding buttons • Going to a specific function • Converting a Function to a Live Function • Sharing Live Functions and Live Scripts • Using an interactive document • Employing a full screen presentation • Working with plain text • Creating a static document • Performing Comparisons and Merges • Comparing Live Functions and Live Scripts • Merging Live Functions and Live Scripts • Chapter 13: Designing and Using Classes • A Brief Overview of Object-Oriented Programming (OOP) • Defining an object • Considering how properties define an object • Using methods to interact with an object • Listening to an object using events • Understanding the need for privacy • Understanding OOP in MATLAB • Comparing MATLAB OOP to other languages • Uses of classes and objects in MATLAB • Performing tasks with objects in MATLAB • Creating a Basic MATLAB Class • Starting the class • Adding properties • Specifying methods • Chapter 14: Creating MATLAB Apps • Working with the App Designer • Understanding apps • Getting apps • Starting the App Designer • Defining an Interface • Understanding the various components • Changing the component properties • Making the Interface Functional • Working with Code View • Creating a callback function • Running the App • Packaging Your App • Chapter 15: Building Projects • Considering the Need for Projects • Creating a New Project • Choosing a project type • Using the Project editor • Understanding the Project Dependencies • Running Required Checks • Checking project integrity • Looking for potential updates • Part 4: Employing Advanced MATLAB Techniques • Chapter 16: Importing and Exporting Data • Importing Data • Avoiding older import/export function calls • Performing import basics • Importing mixed strings and numbers • Importing selected rows or columns • Exporting Data • Performing export basics • Exporting scripts and functions • Working with Images • Exporting images • Importing images • Chapter 17: Printing and Publishing Your Work • Using Commands to Format Text • Modifying font appearance • Using special characters • Adding math symbols • Publishing Your MATLAB Data • Performing advanced script and function publishing tasks • Saving your figures to disk • Printing Your Work • Configuring the output page • Printing the data • Chapter 18: Recovering from Mistakes • Working with Error Messages • Responding to error messages • Understanding the MException class • Creating error and warning messages • Setting warning message modes • Understanding Quick Alerts • Relying on Common Fixes for MATLAB's Error Messages • Making Your Own Error Messages • Developing the custom error message • Creating useful error messages • Using Good Coding Practices • Part 5: Specific MATLAB Applications • Chapter 19: Solving Equations and Finding Roots • Working with the Symbolic Math Toolbox • Obtaining your copy of the Symbolic Math Toolbox • Installing the Symbolic Math Toolbox • Working with the GUI • Typing a simple command in the Command Window • Performing Algebraic Tasks • Differentiating between numeric and symbolic algebra • Solving quadratic equations • Working with cubic and other nonlinear equations • Understanding interpolation • Working with Statistics • Understanding descriptive statistics • Understanding robust statistics • Employing the Symbolic Math Toolbox for plotting • Chapter 20: Performing Analysis • Using Linear Algebra • Working with determinants • Performing reduction • Using eigenvalues • Understanding factorization • Employing Calculus • Working with differential calculus • Using integral calculus • Working with multivariate calculus • Solving Differential Equations • Using the numerical approach • Using the symbolic approach • Part 6: The Part of Tens • Chapter 21: The Top Ten Uses of MATLAB • Working with Linear Algebra • Performing Numerical Analysis • Designing a Neural Network Simulation • Getting Involved in Science • Logging Sensor Data • Exploring Research • Creating Light Animations Using Arduino • Employing Image Processing • Controlling Industrial Equipment • Performing Audio Compression Using Wavelets • Chapter 22: Ten Ways to Make a Living Using MATLAB • Working with Green Technology • Creating Speech Recognition Software • Performing Antenna Analysis and Design • Getting Disease under Control • Becoming a Computer Chip Designer •

• Working with Robots • Keeping the Trucks Rolling • Designing Equipment Used in the Field • Reducing Risks Using Simulation • Creating Security Solutions • Appendix A: MATLAB Functions • Appendix B: MATLAB's Plotting Routines • Index

9789357460354 | ₹ 959

Nise's Control Systems Engineering, Wiley India Ed | IM | e

Nise


About the Author

Norman S. Nise is at California State Polytechnic State University Pomona.

Table of Contents

- Introduction • Modeling in the Frequency Domain
- Modeling in the Time Domain • Time Response • Reduction of Multiple Subsystems • Stability • Steady-State Errors • Root Locus Techniques • Design via Root Locus • Frequency Response Techniques • Design via Frequency Response • Design via State Space • Digital Control Systems

9788126571833 | ₹ 1199

Embedded Systems : A Contemporary Design Tool, 2ed, An Indian Adaptation | New | IM | e

Peckol

About the Author

The author's background spans over 50 years as an engineer and educator in the field of software, digital, and embedded systems design and development. As an engineer in the aerospace, commercial, and medical electronics industries, the author has worked on test systems for military aircraft navigation systems

and radar systems, the Apollo color camera, various weather satellites, the Mars Viking Lander, flight control systems for a number of commercial aircraft, production of high-quality electronic test instruments and measurement systems, and several defibrillation systems. His academic experience spans more than 30 years of developing and teaching software, digital design, fuzzy logic, networking, and embedded systems design courses for students with experience ranging from limited hardware or software backgrounds to those at the junior, senior, and graduate levels.

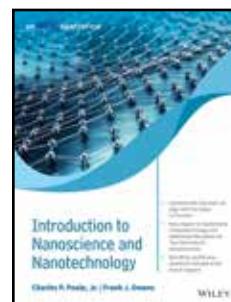
Table of Contents

- 0 Introduction to Embedded Systems • 0.1 Introduction • 0.1.1 Philosophy • 0.1.2 What Is an Embedded System? • 0.1.3 Building an Embedded System • 0.2 Embedded Systems Versus General Computing Systems • 0.3 Examples of Embedded Systems • 0.4 The Embedded System Design and Development Process • 0.4.1 Embedded System Design Stages • 0.5 Conclusion • 0.6 Summary • 0.7 Multiple Choice Questions • 0.8 Review Questions • PART 1 Hardware and Software Infrastructure 17 • Part 1 Hardware and Software Infrastructure • 1.1 Memories and the Memory Subsystem • 1.1 Introduction • 1.2 Classifying Memory • 1.3 A General Memory Interface • 1.4 ROM Overview • 1.4.1 Read Operation • 1.5 Static RAM Overview • 1.5.1 Write Operation • 1.5.2 Read Operation • 1.6 Dynamic RAM Overview • 1.6.1 Read Operation • 1.6.2 Write Operation • 1.6.3 Refresh Operation • 1.7 Chip Organization • 1.8 Terminology • 1.9 A Memory Interface in Detail • 1.10 An SRAM Design • 1.10.1 The Memory Array • 1.10.2 Reading and Writing • 1.10.3 Write • 1.10.4 Read • 1.11 A DRAM Design • 1.11.1 DRAM Timing Analysis • 1.11.1.1 Core Components • 1.11.2 DRAM Refresh 36 • 1.12 The DRAM Memory Interface • 1.12.1 Refresh Timing • 1.12.2 Refresh Address • 1.12.3 Refresh Arbitration • 1.13 An SDRAM Design • 1.13.1 Reading and Writing • 1.13.2 Burst Mode Transfer • 1.14 The Memory Map • 1.15 Memory Subsystem Architecture • 1.16 Basic Concepts of Caching • 1.16.1 Locality of Reference • 1.16.2 Cache System Architecture • 1.17 Designing a Cache System • 1.17.1 A High-Level Description • 1.18 Caching – A Direct Mapped Implementation • 1.19 Caching – An Associative Mapping Cache

Implementation • 1.20 Caching – A Block-Set Associative Mapping Cache
Implementation • 1.21 Dynamic Memory Allocation • 1.21.1 Swapping • 1.21.2 Overlays • 1.21.3 Multiprogramming • 1.21.3.1 Fixed • 1.21.3.2 Variable Number • 1.22 Testing Memories • 1.22.1 RAM Memory • 1.22.2 ROM Memory • 1.23 Summary • 1.24 Multiple Choice Questions • 1.25 Review Questions • 1.26 Problems • • 2 An Introduction to Software Modeling • 2.1 Introduction • 2.2 An Introduction to UML • 2.3 UML Diagrams • 2.4 Use Cases • 2.4.1 Writing a Use Case • 2.5 Class Diagrams • 2.5.1 Class Relationships • 2.5.1.1 Inheritance or Generalization • 2.5.1.2 Interface • 2.5.1.3 Containment • 2.6 Dynamic Modeling with UML • 2.7 Interaction Diagrams • 2.7.1 Call and Return • 2.7.2 Create and Destroy • 2.7.3 Send • 2.8 Sequence Diagrams • 2.9 Fork and Join • 2.10 Branch and Merge • 2.11 Activity Diagram • 2.12 State Chart Diagrams • 2.12.1 Events • 2.12.2 State Machines and State Chart Diagrams • 2.12.2.1 UML State Chart Diagrams • 2.12.2.2 Transitions • 2.12.2.3 Guard Conditions • 2.12.2.4 Composite States • 2.13 Dynamic Modeling with Structured Design Methods • 2.13.1 Brief Introduction to the Structured Design Philosophy • 2.13.2 Data and Control Flow Diagrams • 2.13.2.1 The Elements • 2.14 Summary • 2.15 Multiple Choice Questions • 2.16 Review Questions • 2.17 Problems • • 3 The Software Side – The Fundamentals of C • 3.1 Introduction • 3.2 Software and Its Manifestations • 3.2.1 Combining Hardware and Software • 3.2.2 High-Level Language • 3.2.3 Preprocessor • 3.2.4 Cross Compiler • 3.2.5 Assembler • 3.2.6 Linker and Loader • 3.2.7 Storing • 3.3 An Embedded C Program • 3.3.1 A Program • 3.3.2 Developing Embedded Software • 3.3.2.1 Abstraction • 3.4 C Building Blocks • 3.4.1 Fundamental Data – What's in a Name? • 3.4.1.1 Identifiers in C • 3.4.2 Defining Variables – Giving Them a Name and a Value • 3.4.3 Defining Variables – Giving Them a Type, Scope, and Storage Class • 3.4.3.1 Type • 3.4.3.2 The const Qualifier • 3.4.3.3 Variable Names Revisited • 3.4.3.4 Type Conversions • 3.4.3.5 Scope • 3.4.3.6 Storage Class • 3.5 C Program Structure • 3.5.1 Separate Compilation • 3.5.2 Translation Units • 3.5.3 Linking and Linkage • 3.5.3.1 Linking • 3.5.3.2 Linkage • 3.5.4 Where C Finds Functions • 3.5.5 Makefiles • 3.5.6 Standard and Custom Libraries • 3.5.7 Debug and Release Builds • 3.6 Operators in C • 3.6.1 Arithmetic Operators • 3.6.2 Assignment Operators • 3.6.3 Comparison/Relational Operators • 3.6.4 Logical Operators • 3.6.5 Bitwise Operators • 3.6.5.1 Bit Manipulation Operations • 3.6.5.2 Testing, Resetting, and Setting Bits • 3.6.5.3 Arithmetic Operations • 3.6.6 Miscellaneous Operators • 3.6.7 Precedence of Operators in C • 3.7 Pointer Variables and Memory Addresses • 3.7.1 Getting Started • 3.7.2 Simple Pointer Arithmetic • 3.7.2.1 Pointer Comparison • 3.7.3 Const Pointers • 3.7.4 Generic and Null Pointers • 3.7.4.1 Generic Pointers • 3.7.4.2 Null Pointers • 3.8 The Function • 3.8.1 Defining a Function • 3.8.1.1 Function Header • 3.8.1.2 Function Name • 3.8.1.3 Arguments or Parameter List • 3.8.1.4 Return • 3.8.1.5 The Function Body • 3.8.2 Using a Function • 3.8.3 Pass By Value • 3.8.4 Pass By Reference • 3.8.5 Function Name Scope • 3.8.6 Function Prototypes • 3.8.7 Nesting Functions • 3.9 Pointers to Functions • 3.10 Structures • 3.10.1 The Struct • 3.10.2 Initialization • 3.10.3 Access • 3.10.4 Operations • 3.10.5 Structs as Data Members • 3.10.5.1 Accessing Members • 3.10.5.2 Initialization and Assignment • 3.10.5.3 Functions • 3.10.6 Pointers to Structs • 3.10.6.1 Accessing Members • 3.10.7 Passing Structs and Pointers to Structs • 3.11 The Interrupt • 3.11.1 The Interrupt Control Flow • 3.11.2 The Interrupt Event • 3.11.3 The Interrupt Service Routine – ISR • 3.11.3.1 Time Constraint • 3.11.3.2 Divided Handling: Two-Level Elements • 3.11.4 The Interrupt Vector Table • 3.11.5 Control of the Interrupt • 3.11.5.1 Enable–Disable • 3.11.5.2 Recognizing an Interrupting Event • 3.11.5.3 Interrupting and Masking an Interrupting Event • 3.12 Summary • 3.13 Multiple Choice Questions • 3.14 Review Questions • 3.15 Problems • • Part 2 Developing the Foundation • • 4 System Design Constraints – Safety, Security, Reliability, and Robust Design • 4.1 Introduction • 4.2 Safety • 4.3 Reliability • 4.4 Faults, Errors, and Failures • 4.5 Another Look at Reliability • 4.6 Some Real-World Examples • 4.6.1 Big Word ... Small Register • 4.6.2 It's My Turn – Not Yours • 4.6.3 Where Do I Put My Stuff? • 4.7 Single-Point and Common Mode Failure Model • 4.8 Safe Specifications • 4.9 Safe, Secure, and Robust Designs • 4.9.1 Understanding System Requirements • 4.9.2 Managing Essential Information • 4.9.3 The Review Process • 4.9.4 Bug Lists • 4.9.5 Errors and Exceptions • 4.9.6 Use the Available Tools • 4.10 Safe and Robust Designs – The System • 4.11 System Functional Level Considerations • 4.11.1 Control and Alarm Subsystems • 4.11.2 Memory and Bus Subsystems • 4.11.3 Data Faults and the Communications Subsystem • 4.11.4 Power and Reset Subsystems • 4.11.5 Peripheral Device Subsystems • 4.11.6 Clock Subsystem • 4.12 System Architecture Level Considerations • 4.12.1 Fail Operational2/Fail Operational Capability • 4.12.1.1 Same Design • 4.12.1.2 Alternative Designs • 4.12.2 Reduced Capability • 4.12.2.1 Lightweight Redundancy • 4.12.2.2 Monitor Only • 4.13 Busses – The Subsystem Interconnect • 4.13.1 The Star Configuration • 4.13.2 The Multidrop Bus Configuration • 4.13.3 The Ring Configuration • 4.14 Data and Control Faults – Data Boundary Values •

4.14.1 Type Conformance • 4.14.2 Boundary Values • 4.15 Data and Control Faults – The Communications Subsystem • 4.15.1 Damaged Data • 4.15.1.1 Detectability • 4.15.1.2 Extent • 4.15.1.3 Response • 4.15.2 Managing Damaged Data • 4.15.2.1 Parity • 4.15.2.2 Linear Codes • 4.16 The Power Subsystem • 4.16.1 Full Operation • 4.16.2 Reduced Operation • 4.16.3 Backup Operation • 4.17 Peripheral Devices – Built-In Self-Test (BIST) • 4.17.1 Self-Tests • 4.17.2 Busses • 4.17.3 ROM Memory • 4.17.4 RAM Memory • 4.17.4.1 Peripheral Devices • 4.17.4.2 What to Do If a Test Fails? • 4.18 Failure Modes and Effects Analysis • 4.19 Security – Look Behind You • 4.20 Understanding the Problem – Looking at the System • 4.21 Analyzing the Problem – Looking at Potential Vulnerabilities • 4.22 Understanding the Problem – Looking at the Attacks • 4.22.1 Looking at the Software • 4.22.2 Looking at the Hardware • 4.23 Dealing with the Problem – Protecting Against the Attacks • 4.23.1 Protecting the Software • 4.23.1.1 First Steps • 4.23.1.2 Second Steps • 4.23.1.3 Third Steps • 4.23.1.4 Fourth Steps • 4.23.2 Software Testing Tools • 4.23.3 Protecting the Hardware • 4.23.3.1 First Steps • 4.23.3.2 Second Steps • 4.23.3.3 Third Steps • 4.23.4 Protecting a Network Interface • 4.23.4.1 First Steps • 4.23.4.2 Second Steps • 4.23.5 Firewall • 4.24 Closure • 4.25 Recent Trends • 4.26 Summary • 4.27 Multiple Choice Questions • 4.28 Review Questions • 4.29 Problems • • 5 Embedded Systems Design and Development – Hardware–Software Co-Design • 5.1 Introduction • 5.2 System Design and Development • 5.2.1 Getting Ready – Start Thinking • 5.2.2 Getting Started • 5.3 Life-Cycle Models • 5.3.1 The Waterfall Model • 5.3.2 The V Cycle Model • 5.3.3 The Spiral Model • 5.3.4 Rapid Prototyping – Incremental • 5.4 Problem Solving – Six Steps to Design • 5.5 Hardware–Software Co-Design • 5.5.1 The First Steps • 5.5.2 Traditional Embedded Systems Development • 5.6 History • 5.6.1 Advantages of the Co-Design Methodology • 5.7 Co-Design Process Overview • 5.8 The Co-Design Process • 5.9 Laying the Foundation • 5.10 Identifying the Requirements • 5.11 Formulating the Requirements Specification • 5.11.1 The Environment • 5.11.1.1 Characterizing External Entities • 5.11.2 The System • 5.11.2.1 Characterizing the System • 5.12 The System Design Specification • 5.12.1 The System • 5.12.2 Quantifying the System • 5.13 System Requirements Versus System Design Specifications • 5.14 Executing the Hardware–Software Co-Design Process • 5.15 Functional Decomposition • 5.15.1 Identifying the Functions • 5.15.2 Functional Decomposition • 5.16 Partitioning and Mapping to an Architecture • 5.16.1 Initial Thoughts • 5.16.2 Coupling • 5.16.3 Cohesion • 5.16.4 A Few More Considerations • 5.16.5 Approaches to Partitioning and Mapping • 5.16.5.1 The Approach • 5.16.5.2 The Method • 5.16.6 Evaluation of a Partition • 5.17 Architectural Design • 5.17.1 Mapping Functions to Hardware • 5.17.2 Hardware and Software Specification and Design • 5.17.2.1 Developing the Architecture • 5.18 Functional Model Versus Architectural Model • 5.18.1 The Functional Model • 5.18.2 The Architectural Model • 5.18.3 The Need for Both Models • 5.19 Modeling Tools and Languages for Co-Design • 5.19.1 Why Are We Modeling? • 5.19.2 What Are We Modeling? • 5.19.3 Characterizing the Model • 5.19.4 Classes of MoCs • 5.19.4.1 Conceptual Model • 5.19.4.2 Analytic Model • 5.19.5 A Look at Some Models • 5.19.5.1 The Logic Circuit • 5.19.5.2 The Random Access Machine – RAM • 5.19.5.3 The Turing Machine • 5.19.5.4 The Pushdown Automaton Machine • 5.19.5.5 The Basic Finite State Machine • 5.19.5.6 Communicating Finite State Machines • 5.19.5.7 Extended FSM • 5.19.5.8 Co-Design FSM • 5.19.5.9 Program State Machines • 5.19.5.10 UML State Charts • 5.19.5.11 Petri Nets • 5.19.5.12 Kahn Process Network • 5.19.5.13 Control Flow – Data Flow – CDFG Graphs • 5.20 Co-Synthesis • 5.20.1 Constraints • 5.20.2 Software Synthesis • 5.20.2.1 System Characterization • 5.20.2.2 Scheduling • 5.20.2.3 Synthesis Methods • 5.21 Implementing the System • 5.21.1 Analyzing the System Design • 5.21.1.1 Static Analysis • 5.21.1.2 Dynamic Analysis • 5.22 Co-Simulation • 5.22.1 Tools Supporting Modeling • 5.22.2 Types of Simulations • 5.22.3 Approaches • 5.22.3.1 Detailed Processor Model • 5.22.3.2 Cycle-Based Simulation – Bus Model • 5.22.3.3 Instruction Set Architecture – ISA Model • 5.22.3.4 Compiled Model • 5.22.3.5 Hardware Model • 5.22.3.6 Master Slave Model • 5.22.3.7 Distributed Co-Simulation • 5.22.3.8 Heterogeneous Modeling – The Ptolemy Project • 5.22.3.9 Domains • 5.22.3.10 Classes of MoCs • 5.23 Co-Verification • 5.23.1 Hardware–Software Co-Verification • 5.23.2 Tools Supporting Simulation and Verification • 5.23.2.1 Basic Capabilities • 5.23.2.2 Levels of Abstraction • 5.24 Other Considerations • 5.24.1 Capitalization and Reuse • 5.24.1.1 Capitalization • 5.24.1.2 Reuse • 5.24.2 Requirements Traceability and Management • 5.24.2.1 Requirements Traceability • 5.24.2.2 Requirements Management • 5.25 Archiving the Project • 5.26 Summary • 5.27 Multiple Choice Questions • 5.28 Review Questions • 5.29 Problems • • 6 Hardware Test and Debug • 6.1 Introduction • 6.2 Some Vocabulary • 6.3 Putting Together a Strategy • 6.4 Formulating a Plan • 6.5 Formalizing the Plan – Writing a Specification • 6.6 Executing the Plan – The Test Procedure and Test Cases • 6.7 Applying the Strategy – Eggless Design • 6.8 Applying The Strategy – Design

Reviews • 6.9 Applying the Strategy – Module Debug and Test • 6.9.1 Black Box Tests • 6.9.2 White Box Tests • 6.9.3 Gray Box Tests • 6.10 Applying the Strategy – The First Steps • 6.10.1 The Parts • 6.10.2 Initial Tests and Measurements – Before Applying Power • 6.10.3 Initial Tests and Measurements – Immediately After Applying Power • 6.11 Applying the Strategy – Debugging and Testing • 6.11.1 The Reset System • 6.11.2 The Clocks and Timing • 6.11.3 The Inputs and Outputs • 6.11.4 Sudden Failure During Debugging • 6.12 Testing and Debugging Combinational Logic • 6.13 Path Sensitizing • 6.13.1 Single Variable–Single Path • 6.13.1.1 Testing • 6.13.1.2 Debugging • 6.13.2 Single Variable–Two Paths • 6.14 Masking and Untestable Faults • 6.15 Single Variable–Multiple Paths • 6.16 Bridge Faults • 6.17 Debugging – Sequential Logic • 6.18 Scan Design Testing • 6.19 Boundary–Scan Testing • 6.20 Memories and Memory Systems • 6.21 Applying the Strategy – Subsystem and System Test • 6.22 Applying the Strategy – Testing for Our Customer • 6.22.1 Alpha and Beta Tests • 6.22.2 Verification Tests • 6.22.3 Validation Tests • 6.22.4 Acceptance Tests • 6.22.5 Production Tests • 6.23 Self-Test • 6.23.1 On Demand • 6.23.2 In Background • 6.24 Summary • 6.25 Multiple Choice Questions • 6.26 Review Questions • 6.27 Problems • • Part 3 Doing the Work • • 7 Real-Time Kernels and Operating Systems • 7.1 Introduction • 7.2 Tasks and Things • 7.3 Programs and Processes • 7.4 The CPU Is a Resource • 7.4.1 Setting a Schedule • 7.4.2 Changing Context • 7.5 Threads – Lightweight and Heavyweight • 7.5.1 A Single Thread • 7.5.2 Multiple Threads • 7.6 Sharing Resources • 7.6.1 Memory Resource Management • 7.6.1.1 System-Level Management • 7.6.2 Process-Level Management • 7.6.3 Reentrant Code • 7.7 Foreground / Background Systems • 7.8 The Operating System • 7.9 The Real-Time Operating System (RTOS) • 7.10 Operating System Architecture • 7.11 Tasks and Task Control Blocks • 7.11.1 The Task • 7.11.2 The Task Control Block • 7.11.3 A Simple Kernel • 7.11.4 Interrupts Revisited • 7.12 Memory Management Revisited • 7.12.1 Duplicate Hardware Context • 7.12.2 Task Control Blocks • 7.12.3 Stacks • 7.12.3.1 Runtime Stack • 7.12.3.2 Application Stacks • 7.12.3.3 Multiprocessing Stacks • 7.13 Summary • 7.14 Multiple Choice Questions • 7.15 Review Questions • 7.16 Problems • • 8 Tasks and Task Management • 8.1 Introduction • 8.2 Time, Time-Based Systems, and Reactive Systems • 8.2.1 Time • 8.2.2 Reactive and Time-Based Systems • 8.3 Task Scheduling • 8.3.1 CPU Utilization • 8.3.2 Scheduling Decisions • 8.3.3 Scheduling Criteria • 8.3.3.1 Priority • 8.3.3.2 Turnaround Time • 8.3.3.3 Throughput • 8.3.3.4 Waiting Time • 8.3.3.5 Response Time • 8.4 Scheduling Algorithms • 8.4.1 Asynchronous Interrupt Event Driven • 8.4.2 Polled and Polled with a Timing Element • 8.4.3 State Based • 8.4.4 Synchronous Interrupt Event Driven • 8.4.5 Combined Interrupt Event Driven • 8.4.6 Foreground–Background • 8.4.7 Time-Shared Systems • 8.4.7.1 First-Come First-Served • 8.4.7.2 Shortest Job First • 8.4.7.3 Round Robin • 8.4.8 Priority Schedule • 8.4.8.1 Rate–Monotonic • 8.4.8.2 Earliest Deadline • 8.4.8.3 Least Laxity • 8.4.8.4 Maximum Urgency • 8.5 Real-Time Scheduling Considerations • 8.6 Algorithm Evaluation • 8.6.1 Deterministic Modeling • 8.6.2 Queuing Models • 8.6.3 Simulation • 8.6.4 Implementation • 8.7 Tasks, Threads, and Communication • 8.7.1 Getting Started • 8.7.2 Intertask/Interthread Communication • 8.7.3 Shared Variables • 8.7.3.1 Global Variables • 8.7.3.2 Shared Buffer • 8.7.3.3 Shared Double Buffer –Ping-Pong Buffer • 8.7.3.4 Ring Buffer • 8.7.3.5 Mailbox • 8.7.4 Messages • 8.7.4.1 Communication • 8.7.4.2 Buffering • 8.8 Task Cooperation, Synchronization, and Sharing • 8.8.1 Critical Sections and Synchronization • 8.8.2 Flags • 8.8.3 Token Passing • 8.8.4 Interrupts • 8.8.5 Semaphores • 8.8.6 Process Synchronization • 8.8.7 Spin Lock and Busy Waiting • 8.8.8 Counting Semaphores • 8.9 Talking and Sharing in Space • 8.9.1 The Bounded Buffer Problem • 8.9.2 The Readers and Writers Problem • 8.10 Monitors • 8.10.1 Condition Variables • 8.10.2 Bounded Buffer Problem with Monitor • 8.11 Starvation • 8.12 Summary • 8.13 Multiple Choice Questions • 8.14 Review Questions • 8.15 Problems • • 9 Deadlocks • 9.1 Introduction • 9.2 Sharing Resources • 9.3 System Model • 9.4 Deadlock Model • 9.4.1 Necessary Conditions • 9.5 A Graph Theoretic Tool – The Resource Allocation Graph • 9.6 Handling Deadlocks • 9.7 Deadlock Prevention • 9.7.1 Mutual Exclusion • 9.7.2 Hold and Wait • 9.7.3 No Preemption • 9.7.4 Circular Wait • 9.8 Deadlock Avoidance • 9.8.1 Algorithms Based on the Resource Allocation Graph • 9.8.2 Banker's Algorithm and Safe States • 9.9 Deadlock Detection • 9.9.1 Detection in a Single-Instance Environment • 9.9.2 Deadlock Recovery • 9.9.2.1 Task Termination • 9.9.2.2 Resource Preemption • 9.10 Summary • 9.11 Multiple Choice Questions • 9.12 Review Questions • 9.13 Problems • • 10 Performance Analysis and Optimization • 10.1 Introduction • 10.2 Getting Started • 10.3 Performance or Efficiency Measures • 10.3.1 Introduction • 10.3.2 The System • 10.3.3 Some Limitations • 10.4 Complexity Analysis – A High-Level Measure • 10.5 The Methodology • 10.5.1 A Simple Experiment • 10.5.2 Working with Big Numbers • 10.5.3 Asymptotic Complexity • 10.6 Comparing Algorithms • 10.6.1 Big-O Notation • 10.6.2 Big-O Arithmetic • 10.7 Analyzing Code • 10.7.1 Constant Time Statements • 10.7.2 Looping Constructs • 10.7.2.1 For Loops • 10.7.2.2 While Loops • 10.7.3 Sequences of Statements • 10.7.4 Conditional Statements • 10.7.5


Function Calls • 10.8 Analyzing Algorithms • 10.8.1 Analyzing Search • 10.8.1.1 Linear Search • 10.8.1.2 Binary Search • 10.8.2 Analyzing Sort • 10.8.2.1 Selection Sort • 10.8.2.2 Quick Sort • 10.9 Analyzing Data Structures • 10.9.1 Array • 10.9.2 Linked List • 10.10 Instructions in Detail • 10.10.1 Getting Started • 10.10.2 Flow of Control • 10.10.2.1 Sequential • 10.10.2.2 Branch • 10.10.2.3 Loop • 10.10.2.4 Function Call • 10.10.3 Analyzing the Flow of Control – Two Views • 10.10.3.1 Sequential Flow • 10.10.3.2 Branch • 10.10.3.3 Loop • 10.10.3.4 Function Call • 10.10.3.5 Co-routine • 10.10.3.6 Interrupt Call • 10.11 Time, Etc. – A More Detailed Look • 10.11.1 Metrics • 10.12 Response Time • 10.12.1 Polled Loops • 10.12.2 Co-routine • 10.12.3 Interrupt-Driven Environment • 10.12.3.1 Preemptive Schedule • 10.12.3.2 Nonpreemptive Schedule • 10.12.4 Meeting Real-Time Constraints • 10.12.4.1 Deadline Monotonic Analysis • 10.12.4.2 Vocabulary • 10.12.4.3 Analysis • 10.12.4.4 Priority Ceiling Protocol • 10.13 Time Loading • 10.13.1 Instruction Counting • 10.13.2 Simulation • 10.13.2.1 Models • 10.13.3 Timers • 10.13.4 Instrumentation • 10.14 Memory Loading • 10.14.1 Memory Map • 10.14.2 Designing a Memory Map • 10.14.2.1 Instruction/Firmware Area • 10.14.2.2 RAM Area • 10.14.2.3 Stack Area • 10.15 Evaluating Performance • 10.15.1 Early Stages • 10.15.2 Mid-Stages • 10.15.3 Later Stages • 10.16 Thoughts on Performance Optimization • 10.16.1 Questions to Ask • 10.17 Performance Optimization • 10.17.1 Common Mistakes • 10.18 Tricks of the Trade • 10.19 Hardware Accelerators • 10.20 Introduction – Target Low Power • 10.21 Low Power – A High-Level View • 10.21.1 Zero Power Consumption • 10.21.2 Static Power Consumption • 10.21.2.1 Sources of Static Power Consumption • 10.21.2.2 Addressing Static Power Consumption • 10.21.3 Dynamic Power Consumption • 10.21.3.1 Sources of Dynamic Power Consumption – Hardware • 10.21.3.2 Sources of Dynamic Power Consumption – Software • 10.22 Addressing Dynamic Power Consumption – Hardware • 10.22.1 Power Management Schemes – Hardware • 10.22.2 Advanced Configuration and Power Interface (ACPI) • 10.22.3 Dynamic Voltage and Frequency Scaling • 10.23 Addressing Dynamic Power Consumption – Software • 10.23.1 Measuring Power Consumption • 10.23.2 Caches and Performance • 10.24 Trade-Offs • 10.25 Summary • 10.26 Multiple Choice Questions • 10.27 Review Questions • 10.28 Problems • • Part 4 Developing the Foundation • • 11 Working Outside of the Processor I: A Model of Interprocess Communication • 11.1 Communication and Synchronization with the Outside World • 11.2 First Steps: Understanding the Problem • 11.3 Interprocess Interaction Revisited • 11.4 The Model • 11.4.1 Information • 11.4.2 Places • 11.4.3 Control and Synchronization • 11.4.4 Transport • 11.5 Exploring the Model • 11.5.1 The Transport Mechanism • 11.5.1.1 The Interconnection Topology • 11.5.1.2 Star • 11.5.1.3 Ring • 11.5.2 Control and Synchronization • 11.5.3 Information Flow • 11.5.3.1 Direction of Flow • 11.5.3.2 Magnitude of the Flow • 11.5.3.3 I/O Timing • 11.5.3.4 Software Device Drivers • 11.5.4 Places • 11.6 Summary • 11.7 Multiple Choice Questions • 11.8 Review Questions • • 12 Working Outside of the Processor I: Refining the Model of Interprocess Communication • 12.1 Communication and Synchronization with the Outside World • 12.2 The Local Device Model • 12.2.1 Control, Synchronization, and Places • 12.2.1.1 A Serial Model • 12.2.1.2 A Parallel Model • 12.2.2 Information – Data • 12.2.3 Transport • 12.3 Implementing the Local Device Model – A First Step • 12.3.1 An Overview • 12.3.1.1 Main Memory Address Space • 12.3.1.2 I/O Ports • 12.3.1.3 Peripheral Processor • 12.3.2 Main Memory Address Space – Memory-Mapped I/O • 12.3.2.1 Address Bus • 12.3.2.2 Data Bus • 12.3.2.3 Control Bus • 12.3.2.4 Read • 12.3.2.5 Write • 12.3.2.6 Bidirectional Bus • 12.3.3 I/O Ports – Program-Controlled I/O • 12.3.4 The Peripheral Processor • 12.4 Implementing the Local Device Model – A Second Step • 12.4.1 Information Interchange – An Event • 12.4.2 Information Interchange – A Shared Variable • 12.4.3 Information Interchange – A Message • 12.5 Implementing an Event-Driven Exchange – Interrupts and Polling • 12.5.1 Polling • 12.5.2 Interrupts • 12.5.2.1 Single Interrupt Line with Single Device • 12.5.2.2 Single Interrupt Line with Multiple Devices • 12.5.2.3 Multiple Interrupt Lines • 12.5.3 Masking Interrupts • 12.6 A Message • 12.6.1 Asynchronous Information Exchange • 12.6.1.1 Strobes • 12.6.1.2 Strobe with Acknowledge • 12.6.1.3 Full Handshake • 12.6.1.4 Resynchronization • 12.6.1.5 Analysis • 12.6.2 Synchronous Information Exchange • 12.6.2.1 Bit Synchronization • 12.7 The Remote Device Model • 12.7.1 Places and Information • 12.7.2 Control and Synchronization • 12.7.3 Transport • 12.8 Implementing the Remote Device Model – A First Step • 12.8.1 The OSI and TCP/IP Protocol Stacks • 12.8.1.1 OSI – Physical Layer • 12.8.1.2 OSI – Data Link Layer • 12.8.1.3 TCP/IP – Host to Network • 12.8.1.4 OSI – Network Layer • 12.8.1.5 TCP/IP – Internet Layer • 12.8.1.6 OSI – Transport Layer • 12.8.1.7 TCP/IP – Transport Layer • 12.8.1.8 OSI – Session Layer • 12.8.1.9 OSI – Presentation Layer • 12.8.1.10 OSI – Application Layer • 12.8.1.11 TCP/IP – Application Layer • 12.8.2 The Models • 12.8.2.1 The Client–Server Model • 12.8.2.2 The Peer-to-Peer Model • 12.8.2.3 The Group Multicast Model • 12.9 Implementing the Remote Device Model – A Second Step • 12.9.1 The Messages • 12.9.2 The Message Structure •

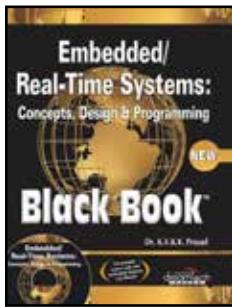
12.9.3 Message Control and Synchronization • 12.9.3.1 The Header • 12.9.3.2 The Transfer Scheme • 12.10 Working with Remote Tasks • 12.10.1 Preliminary Thoughts on Working with Remote Tasks • 12.10.1.1 Local vs. Remote Addresses and Data • 12.10.1.2 Repeated Task Execution • 12.10.1.3 Node Failure, Link Failure, Message Loss • 12.10.2 Procedures and Remote Procedures • 12.10.2.1 Calling a Remote Procedure – RPC Semantics • 12.10.2.2 The Transport • 12.10.2.3 Message Source and Destination • 12.10.2.4 The Protocol • 12.10.2.5 RPC Interface Definition • 12.10.3 Node Failure, Link Failure, Message Loss • 12.10.3.1 Node Failure and Loss • 12.10.3.2 Message Loss • 12.11 Group Multicast Revisited • 12.11.1 Atomic Multicast • 12.11.2 Reliable Multicast • 12.12 Connecting to Distributed Processes – Pipes, Sockets, and Streams • 12.12.1 Pipes • 12.12.2 Sockets • 12.12.3 Stream Communication • 12.13 Summary • 12.14 Multiple Choice Questions • 12.15 Review Questions • 12.16 Problems • • 13 Working Outside of the Processor II: Interfacing to Local Devices • 13.1 Shared Variable I/O – Interfacing to Peripheral Devices • 13.2 The Shared Variable Exchange • 13.3 Generating Analog Signals • 13.3.1 Binary Weighted Digital-to-Analog Converter • 13.3.2 R/2R Ladder Digital-to-Analog Converter • 13.4 Measuring Voltage • 13.4.1 Dual Slope Analog-to-Digital Conversion • 13.4.2 Successive Approximation Analog-to-Digital Conversion • 13.4.2.1 Sample and Hold • 13.4.3 VCO Analog-to-Digital Conversion • 13.5 Measuring Resistance • 13.6 Measuring Current • 13.7 Measuring Temperature • 13.7.1 Sensors • 13.7.2 Making the Measurement • 13.7.3 Working with Nonlinear Devices • 13.8 Generating Digital Signals • 13.8.1 Motors and Motor Control • 13.8.2 DC Motors • 13.8.3 Servo Motors • 13.8.4 Stepper Motors • 13.9 Controlling DC and Servo Motors • 13.9.1 DC Motors • 13.9.2 Servo Motors • 13.9.3 Controlling Stepper Motors • 13.9.4 Motor Drive Circuitry • 13.9.5 Motor Drive Noise • 13.10 LEDs and LED Displays • 13.10.1 Individual LEDs • 13.10.2 Multi-LED Displays • 13.11 Measuring Digital Signals • 13.11.1 The Approach • 13.11.2 Working with Asynchronous Signals • 13.11.3 Buffering Input Signals • 13.11.4 Inside vs. Outside • 13.11.5 Measuring Frequency and Time Interval • 13.11.5.1 Measuring the Period – An Internal Implementation • 13.11.5.2 Measuring the Period – An External Implementation • 13.11.5.3 Counting for a Known Interval – An Internal Implementation • 13.11.5.4 Counting for a Known Interval – An External Implementation • 13.12 Summary • 13.13 Multiple Choice Questions • 13.14 Review Questions • 13.15 Problems • • 14 Working Outside of the Processor III: Interfacing to Remote Devices • 14.1 Common Network-Based I/O Architectures • 14.2 Network-Based Systems • 14.3 RS-232/EIA-232 – Asynchronous Serial Communication • 14.3.1 Introduction • 14.3.2 The EIA-232 Standard • 14.3.2.1 What It Is ... • 14.3.2.2 What They Think It Is ... • 14.3.3 EIA-232 Addressing • 14.3.4 Asynchronous Serial Communication • 14.3.5 Configuring the Interface • 14.3.6 Data Recovery and Timing • 14.3.7 EIA-232 Interface Signals • 14.3.8 An Implementation • 14.4 The Universal Serial Bus – Synchronous Serial Communication • 14.4.1 Background • 14.4.2 The Universal Serial Bus Architecture • 14.4.3 The Universal Serial Bus Protocol • 14.4.4 USB Devices • 14.4.5 Transfer Types • 14.4.6 Device Descriptors • 14.4.7 Network Configuration • 14.4.8 USB Transactions • 14.4.9 USB Interface Signals • 14.4.10 The Physical Environment • 14.4.10.1 Low-Speed Cables • 14.4.10.2 High-Speed Cables • 14.4.10.3 Cables and Cable Power • 14.4.11 Detecting Device Attachment and Speed • 14.4.12 Differential Pair Signaling • 14.4.13 Implementation • 14.5 I2C – A Local Area Network • 14.5.1 The Architecture • 14.5.2 Electrical Considerations • 14.5.3 Basic Operation • 14.5.4 Flow of Control • 14.5.5 Multiple Masters • 14.5.5.1 Arbitration • 14.5.5.2 Synchronization • 14.5.6 Using the I2C Bus • 14.6 The Controller Area Network – The CAN Bus • 14.6.1 The Architecture • 14.6.2 Electrical Considerations • 14.6.3 Message Types • 14.6.4 Message Format • 14.6.5 Basic Operation • 14.6.5.1 Synchronization • 14.6.5.2 Error Management • 14.6.5.3 Transmission and Arbitration • 14.6.6 Using the CAN Bus • 14.7 Summary • 14.8 Multiple Choice Questions • 14.9 Review Questions • 14.10 Problems • • 15 Practical Considerations Signal Behavior in the Real World – Part 1 – Noise and Crosstalk • 15.1 Introduction – The Real World Again • 15.2 Noise • 15.3 Power Supply and Ground Noise • 15.3.1 Common Path Noise • 15.3.2 Power Distribution Wiring • 15.3.2.1 Resistance • 15.3.2.2 Inductance • 15.3.3 Board Level Bypass • 15.3.3.1 Computing the Board Level Bypass Capacitor • 15.3.4 Local Bypass Capacitors • 15.3.4.1 Computing the Local Bypass Capacitors • 15.3.5 Power and Ground Planes • 15.4 Crosstalk and Loops • 15.4.1 Crosstalk • 15.4.1.1 Preventing or Reducing Crosstalk • 15.4.2 Loops • 15.5 Summary • 15.6 Multiple Choice Questions • 15.7 Review Questions • 15.8 Problems • • 16 Practical Considerations Signal Behavior in the Real World – Part 2 – High-Speed Signaling • 16.1 Introduction – The Real World Yet Again • 16.2 The Problem • 16.2.1 Terminology • 16.2.1.1 Noise • 16.2.1.2 Switching Noise • 16.2.1.3 Crosstalk • 16.2.1.4 Ringing • 16.2.1.5 Attenuation or Loss • 16.2.1.6 Jitter • 16.2.1.7 Period Jitter • 16.2.1.8 Cycle-to-Cycle Jitter • 16.2.1.9 Nth-Cycle Jitter • 16.2.1.10 Aperture Time • 16.2.1.11 Reflection • 16.2.1.12 Ground Bounce • 16.2.1.13 Transmitter Output Timing Jitter •

16.2.1.14 Capacitive Loading • 16.3 The Working Environment • 16.3.1 The Signaling Environment • 16.3.2 The PCB Environment • 16.3.2.1 Microstrip • 16.3.2.2 Stripline • 16.3.2.3 Signal Propagation • 16.3.2.4 Distributed Versus Lumped • 16.3.3 Point-to-Point Wiring

9789357463966 | ₹ 1089

Introduction to Nanoscience and Nanotechnology, An Indian Adaptation | e | k

Poole

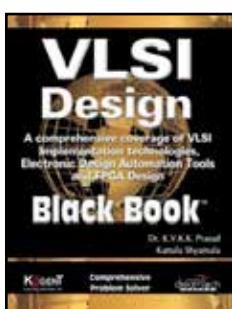

About the Author

Charles P. Poole Jr., PhD, is a professor emeritus in the Department of Physics and Astronomy at the University of South Carolina is a member of the USC nanotechnology center.

Table of Contents

• 1 Introduction 1.1 History of Nanoscience and Nanotechnology • 1.2 Definition and Classification of Nanomaterials 1.3 Present and Future Perspectives of Nanomaterials and Nanotechnology • • 2 Introduction to Solid State Physics 2.1 Structure 2.2 Energy Bands 2.3 Localized Particles • 3 Methods of Measuring Properties • 3.1 Introduction 3.2 Structure Analysis 3.3 Microscopic Techniques 3.4 Spectroscopic Techniques • 4 Properties and Synthesis of Nanoparticles 4.1 Introduction • 4.2 Metal Nanoclusters and Nanoparticles • 4.3 Semiconducting Nanoparticles • 4.4 Rare Gas and Molecular Clusters • 4.5 Methods of Synthesis • 4.6 Conclusion • 5 Carbon-Based Nanostructures • 5.1 Introduction • 5.2 Carbon Molecules • 5.3 Carbon Clusters • 5.4 Carbon Nanotubes 5.5 Applications of Carbon Nanotubes • • 6 Nanostructured Materials 6.1 Solid Disordered Nanostructures • 6.2 Nanostructured Crystals • • 7 Nanostructured Ferromagnetism • 7.1 Basics of Ferromagnetism 7.2 Effect of Bulk Nanostructuring of Magnetic Properties 7.3 Dynamics of Nanomagnets 7.4 Nanopore Containment of Magnetic Particles 7.5 Nanocarbon Ferromagnets 7.6 Giant and Colossal Magnetoresistance 7.7 Ferrofluids • 8 Optical and Vibrational Spectroscopy • 8.1 Introduction 8.2 Infrared Frequency Range 8.3 Luminescence • 9 Quantum Wells, Wires, and Dots • 9.1 Introduction 9.2 Preparation of Quantum Nanostructures 9.3 Size and Dimensionality Effects 9.4 Excitons • 9.5 Single-Electron Tunneling • 9.6 Applications • 9.7 Superconductivity • • 10 Self-Assembly and Catalysis • 10.1 Self-Assembly • 10.2 Catalysis • • 11 Organic Compounds and Polymers • 11.1 Introduction • 11.2 Forming and Characterizing Polymers • 11.3 Nanocrystals • 11.4 Polymers • 11.5 Supramolecular Structures • • 12 Biological Materials • 12.1 Introduction • 12.2 Biological Building Blocks 12.3 Nucleic Acids • 12.4 Biological Nanostructures • • 13 Nanomachines and Nanodevices • 13.1 Microelectromechanical Systems (MEMS) • 13.2 Nanoelectromechanical Systems (NEMS) • 13.3 Molecular and Supramolecular Switches • 14 Applications of Nanotechnology 14.1 Nanotechnology for Environmental Engineering • 14.2 Nanotechnology for Textile Industry • 14.3 Nanotechnology in Agriculture and Food • 14.4 Nanotechnology Applications for Air and Soil • 14.5 Nanotechnology in Industry, Defence, and Security • 14.6 Water Demands for Nanotechnology • 14.7 Therapeutics and Regenerative Medicine • 14.8 Nanotechnology and the Energy Challenge • • Summary Keywords • Multiple-Choice Questions Review Questions • Further Reading • • Appendices • • A Two-Dimensional Nanostructures • A.1 Introduction • A.2 Examples of 2D nanostructures • A.3 Synthesis of 2D Nanostructures • A.4 Applications of 2D Nanostructures • • B Formulas for Dimensionality • B.1 Introduction • B.2 Delocalization • B.3 Partial Confinement • • C Tabulations of Semiconducting Material Properties • • D Answers to Multiple-Choice Questions • • Index

9789354240201 | ₹ 1009


Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, New ed

Prasad

Table of Contents

- Introduction to Embedded Systems • Architecture of Embedded Systems • Programming for Embedded Systems • The Process of Embedded System Development • Hardware Platforms • Communication Interfaces • Embedded/Real-Time Operating System Concepts • Overview of Embedded/Real-Time Operating Systems • Target Image Creation • Representative Embedded Systems • Programming in Linux • Programming in RTLinux • Development of Navigation System • Development of Protocol Converter • Embedded Database Application • Mobile Java Applications • Embedded Software Development on 89C51 Micro-Controller Platform • Embedded Software Development on AVR Micro-Controller Platform • Embedded Systems Applications Using Intel StrongARM Platform • Future Trends

9788177224610 | ₹ 749

VLSI Design Black Book | e

Prasad

About the Author

Dr. K.V.K.K. Prasad is a Ph.D. from the Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur. He has a vast experience in working for many prestigious international projects in software development as well as product development in the areas of software radio, digital surveillance systems and telecommunication systems. He is a Senior Member of ACM and IEEE. He is the author of best-selling books "Principles of Digital Communications and Computer Networks", "Embedded/Real-time Systems: Concepts, Design and Programming", "Software Testing Tools", "Software Testing Certification Study Guide" and "Data Warehousing Tools".

Table of Contents

- Introduction to VLSI Design • Traditional Approach to Hardware Design • New Paradigms in Hardware Design • VLSI Technology: Fundamentals and Applications
- Electronic Design Automation • FPGA Design Flow • VLSI Design Technologies • Combinatorial Design Technique • Sequential Design Technique • State Machine Logic Design Technique • Design Issues • CMOS VLSI Design • MOS Technology and Fabrication Process • pMOS • nMOS • CMOS • BiCMOS • Comparison of Different Processes • Building Blocks of a VLSI Circuit • Computer Architecture • Memory Architectures • Communication Interfaces • Mixed Signal Interfaces • VLSI Design Issues
- Design Process • Design for Testability • Technology Options • Power Calculations • Package Selection • Clock Mechanisms • Mixed Signal Design • EDA Tools: An Overview
- EDA • Architecture Design • Design Entry • Synthesis Tools: XST, Synplify and Leonardo Spectrum • Functional Verification • Timing Verification • On-Chip Debugging • HDL Simulation and Synthesis • Overview of VHDL • Overview of Verilog • Simulation • Synthesis • Behavioral Modeling • Behavioral Modeling • RTL Simulation • VITAL Simulation • IC Design • PLAs • PLDs • FPGA • ASIC • Selection of an Appropriate Integrated Circuit • FPGA Design Process • Architectures of Popular FPGAs • Choosing an FPGA • FPGA Design Process • FPGA Families of Different Vendors • FPGA Design Examples • VHDL Implementation Examples • Adder • Multiplier • Multiplexer • Case Study: Xilinx Development Board • Xilinx ISE 10.1 • Development Board Architecture • Interfacing with Peripherals • Case Study: Implementation of a Communication System
- Xtreme DSP Board Overview • Design Details • Implementation Details • Simulation
- Testing Environment • Case Study: System-On-Chip Development • System-On-Chip Requirements • Design • Implementation • Future Trends • Ubiquitous Computing and Pervasive Computing Technologies • VLSI Design Trends

9788177227444 | ₹ 699

Satellite Communications, 3ed, An Indian Adaptation | IM | e | k

Pratt

About the Author

Timothy Pratt is an Emeritus Professor of the Bradley Department of Electrical and Computer Engineering at Virginia Tech, having retired in 2013. Dr. Pratt is a life-time senior member of the IEEE.

Table of Contents

- 1 Introduction • 1.1 Background • 1.2 A Brief History of Satellite Communications • 1.3 Satellite Communications in 2020 • 1.4 Overview of Satellite Communications • 1.5 Summary • 1.6 Organization of This Book • 2 Orbital Mechanics and Launchers • 2.1 Introduction • 2.2 Achieving a Stable Orbit • 2.3 Kepler's Three Laws of Planetary Motion • 2.4 Describing the Orbit of a Satellite • 2.5 Locating the Satellite in the Orbit • 2.6 Locating the Satellite With Respect to the Earth • 2.7 Orbital Elements • 2.8 Look Angle Determination • 2.9 Orbital Perturbations • 2.10 Orbit Determination • 2.11 Space Launch Vehicles and Rockets • 2.13 Orbital Effects in the Performance of Communication Systems • 2.14 Summary • 3 Satellites • 3.1 Satellite Subsystems • 3.2 Attitude and Orbit Control System • 3.3 Telemetry, Tracking, Command, and Monitoring • 3.4 Power Systems • 3.5 Communication Subsystems • 3.6 Satellite Antennas • 3.7 Equipment Reliability and Space Qualification • 3.8 Summary • 4 Satellite Link Design • 4.1 Introduction • 4.2 Transmission Theory • 4.3 System Noise Temperature and G/T Ratio • 4.4 Design of Downlinks • 4.5 Uplink Design • 4.6 Design for Specified CNR: Combining CNR and C/I Values in Satellite Links • 4.7 Summary • 5 Digital Transmission and Error Control • 5.1 Digital Transmission • 5.2 Implementing Zero ISI Transmission in the Time Domain • 5.3 Probability of Error in Digital Transmission • 5.4 Digital Transmission of Analog Signals • 5.5 Time Division Multiplexing • 5.6 Packets, Frames, and Protocols • 5.7 Error Control • 5.8 Summary • 6 Modulation and Multiple Access • 6.1 Introduction • 6.2 Digital Modulation • 6.3 Multiple Access • 6.4 Frequency Division Multiple Access • 6.5 Time Division Multiple Access • 6.6 Synchronization in TDMA Networks • 6.7 Star and Mesh Networks • 6.8 Demand Assignment Multiple Access • 6.9 Random Access • 6.10 Packet Radio Systems and Protocols • 6.11 Code Division Multiple Access • 6.12 Summary • 7 Propagation Effects on Satellite-Earth Links • 7.1 Introduction • 7.2 Propagation Phenomena • 7.3 Quantifying Attenuation and Depolarization • 7.4 Propagation Effects That Are Not Associated With Hydrometeors • 7.5 Rain and Ice Effects • 7.6 Propagation Impairment Countermeasures • 7.7 Summary • 8 Low Throughput Systems and Small Satellites • 8.1 Introduction • 8.2 Small Satellites • 8.3 Operational Use of SmallSats • 8.4 Low-Throughput Mobile Communication Satellite Systems • 8.5 VSAT Systems • 8.6 Time Over Coverage • 8.7 Orbital Debris • 8.8 Summary • 9 NGSO Satellite Systems • 9.1 Introduction • 9.2 Orbit Considerations • 9.3 Coverage and Frequency Considerations • 9.4 System Design Example • 9.5 Summary • 10 Satellite Television • 10.1 C-Band and Ku-Band Home Satellite TV • 10.2 Digital DBS-TV • 10.3 DVB-S and DVB-S2 Standards • 10.4 DBS-TV System Design • 10.5 DBS-TV Link Budget for DVB-S and DVB-S2 Receivers • 10.6 Second-Generation DBS-TV Satellite Systems Using DVB-S Signal Format • 10.7 Master Control Station and Uplink • 10.8 Summary • 11 Satellite Internet • 11.1 History of Satellite Internet Access • 11.2 Geostationary Satellite Internet Access • 11.3 NGSO Satellite Systems • 11.4 Link Budgets for NGSO Systems • 11.5 Packets and Protocols for NGSO Systems • 11.6 Gateways, User Terminals, and Onboard Processing Satellites • 11.7 End-of-Life Disposal of NGSO Satellites • 11.8 User Terminal Antennas for Ku-Band, Ka-Band, and V-Band • 11.9 IoT via Satellite • 11.10 Summary • 12 Satellite Navigation Systems • 12.1 The Global Positioning System • 12.2 Other Global Navigation Satellite Systems • 12.3 Radio and Satellite Navigation • 12.4 GPS Position Location Principles • 12.5 GPS Codes and Frequencies • 12.6 Satellite Signal Acquisition • 12.7 GPS Signal Levels • 12.8 GPS Navigation Message • 12.9 GPS C/A Code Standard Positioning System Accuracy • 12.10 Denial of Service: Jamming and Spoofing • 12.11 Summary • Exercises • Multiple Choice Questions • References • Appendices • A Decibels in Communications Engineering • B Antennas • B.1 Introduction • B.2 Gain and Beamwidth • B.3 Polarization • B.4 Low-Gain, Medium-Gain, and High-Gain Antennas • B.5 Small Antennas • B.6 Reflective Antennas • B.7 Antenna Theory • B.8 Multiple Beam Antennas • B.9 Phased Arrays • B.10 Phase Shifters • C Complementary Error Function $erfc(x)$ and Q Function $Q(z)$ • C.1 Equivalence Formulas and Tables of Values • D Digital Transmission of Analog Signals • D.1 Sampling • D.2 Bandpass Sampling •

D.3 Digital Transmission • D.4 Non-uniform Quantization: Compression and Expansion • D.5 Reducing the Bandwidth of Digital Signals • References • Glossary • Index

9789354243035 | ₹ 999

Microwave Engineering: Theory and Techniques, 4ed, An Indian Adaptation | IM | e | k

Pozar

About the Author

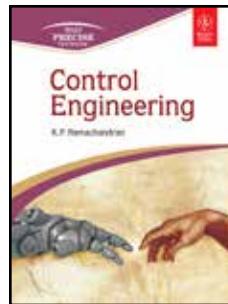

David Pozar is professor of Electrical and Computer Engineering at University of Massachusetts, Amherst. He has received numerous awards both for his teaching and for his research, including an IEEE Third Millennium award. Dr. Pozar is acknowledged as a leading figure in Microwave and RF circuit design research.

Table of Contents

- Chapter 1 REVIEW OF ELECTROMAGNETIC THEORY • 1.1 Introduction to Microwave Engineering • 1.2 Maxwell's Equations • 1.3 Fields in Media and Boundary Conditions
- 1.4 The Wave Equation and Basic Plane Wave Solutions • 1.5 General Plane Wave Solutions • 1.6 Energy and Power • 1.7 Plane Wave Reflection from a Media Interface
- 1.8 Oblique Incidence at a Dielectric Interface • 1.9 Some Useful Theorems • •
- Chapter 2 TRANSMISSION LINE THEORY • 2.1 The Lumped-Element Circuit Model for a Transmission Line • 2.2 Field Analysis of Transmission Lines • 2.3 The Terminated Lossless Transmission Line • 2.4 The Smith Chart • 2.5 Generator and Load Mismatches
- 2.6 Lossy Transmission Lines • 2.7 Transients on Transmission Lines • • Chapter 3 TRANSMISSION LINES AND WAVEGUIDES • 3.1 General Solutions for TEM, TE, and TM Waves • 3.2 Parallel Plate Waveguide • 3.3 Rectangular Waveguide • 3.4 Circular Waveguide • 3.5 Coaxial Line • 3.6 Surface Waves on a Grounded Dielectric Sheet • 3.7 stripline • 3.8 Microstrip Line • 3.9 The Transverse Resonance Technique • 3.10 Wave Velocities and Dispersion • 3.11 Summary of Transmission Lines and Waveguides • •
- Chapter 4 MICROWAVE NETWORK ANALYSIS • 4.1 Impedance and Equivalent Voltages and Currents • 4.2 Impedance and Admittance Matrices • 4.3 The Scattering Matrix • 4.4 The Transmission (ABCD) Matrix • 4.5 Signal Flow Graphs • 4.6 Discontinuities and Modal Analysis • 4.7 Excitation of Waveguides—Electric and Magnetic Currents • •
- Chapter 5 IMPEDANCE MATCHING AND TUNING • 5.1 Matching with Lumped Elements (L Networks) • 5.2 Single-Stub Tuning • 5.3 Double-Stub Tuning • 5.4 The Quarter-Wave Transformer • 5.5 The Theory of Small Reflections • 5.6 Binomial Multisection Matching Transformers • 5.7 Chebyshev Multisection Matching Transformers • 5.8 Tapered Lines • •
- Chapter 6 MICROWAVE RESONATORS • 6.1 Series and Parallel Resonant Circuits • 6.2 Transmission Line Resonators • 6.3 Rectangular Waveguide Cavity Resonators • 6.4 Circular Waveguide Cavity Resonators • 6.5 Dielectric Resonators • 6.6 Excitation of Resonators • • Chapter 7 POWER DIVIDERS AND DIRECTIONAL COUPLERS • 7.1 Basic Properties of Dividers and Couplers • 7.2 The T-Junction Power Divider • 7.3 The Wilkinson Power Divider • 7.4 Waveguide Directional Couplers • 7.5 The Quadrature (90°) Hybrid • 7.6 Coupled Line Directional Couplers • 7.7 The Lange Coupler • 7.8 The 180° Hybrid • 7.9 Other Couplers • • Chapter 8 MICROWAVE FILTERS • 8.1 Periodic Structures • 8.2 Filter Design by the Image Parameter Method • 8.3 Filter Design by the Insertion Loss Method • 8.4 Filter Transformations • 8.5 Filter Implementation • 8.6 Stepped-Impedance Low-Pass Filters • 8.7 Coupled Line Filters • • Chapter 9 THEORY AND DESIGN OF FERRIMAGNETIC COMPONENTS • 9.1 Basic Properties of Ferrimagnetic Materials • 9.2 Plane Wave Propagation in a Ferrite Medium • 9.3 Propagation in a Ferrite-Loaded Rectangular Waveguide • 9.4 Ferrite Isolators • 9.5 Ferrite Phase Shifters • 9.6 Ferrite Circulators • • Chapter 10 NOISE AND NONLINEAR DISTORTION • 10.1 Noise in Microwave Circuits • 10.2 Noise Figure • 10.3 Nonlinear Distortion • 10.4 Precipitation Titrations • • Chapter 11 ACTIVE RF AND MICROWAVE DEVICES • 11.1 Diodes and Diode Circuits • 11.2 Bipolar Junction Transistors • 11.3 Field Effect Transistors • 11.4 Microwave Integrated Circuits • 11.5 Microwave Tubes • • Chapter 12 MICROWAVE AMPLIFIER DESIGN • 12.1 Two-Port Power Gains • 12.2 Stability • 12.3 Single-Stage Transistor Amplifier Design • 12.4 Broadband Transistor Amplifier Design • 12.5 Power Amplifiers • • Chapter 13 OSCILLATORS AND MIXERS • 13.1 RF Oscillators • 13.2 Microwave Oscillators • 13.3 Oscillator Phase Noise • 13.4 Frequency Multipliers • 13.5 Mixers • • Chapter 14 INTRODUCTION TO MICROWAVE SYSTEMS • 14.1 System

Aspects of Antennas • 14.2 Wireless Communication • 14.3 Radar Systems • 14.4 Radiometer Systems • 14.5 Microwave Propagation • 14.6 Other Applications and Topics • • References • Problems • Multiple Choice Questions • • Appendices • Appendix A Prefixes • Appendix B Vector Analysis • Appendix C Bessel Functions • Appendix D Useful Results • Appendix E Other Mathematical Results • Appendix E Physical Constants • Appendix G Conductivities for Some Materials • Appendix H Dielectric Constants and Loss Tangents for Some Materials • Appendix I Properties of Some Microwave Ferrite Materials • Appendix J Standard Rectangular Waveguide Data • Appendix I Standard Coaxial Cable Data • ANSWERS TO SELECTED • PROBLEMS

9789388991087 | ₹ 1039

Control Engineering | e | k

Ramachandran

About the Author

Dr K.P. Ramachandran, works as Associate Dean (Postgraduate Studies & Research), Caledonian College of Engineering, Sultanate of Oman - Muscat. He has been associated for more than 25 years in engineering institutions and worked as a consultant to many industries. His research interests include vibration measurement, analysis and control engineering, condition monitoring of rotating machines; and has supervised many

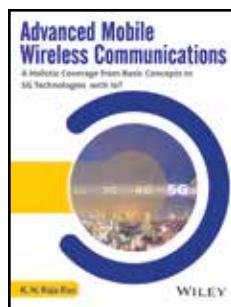

Ph.D. students in this area. He has more than 80 international journals and conference publications to his credit and has authored 3 textbooks in the areas of Mechatronics and Control Engineering. He has been conferred Sir C.V. Raman award for the best technical paper published in the Journal of Vibration & Acoustics (1997). He is associated with professional bodies such as ASME, Asset Management Council (Australia), Indian Society of Technical Education and Institution of Plant Engineers.

Table of Contents

- 1 Introduction to Control Systems • Learning Objectives • 1.1 Control System Terminology • 1.2 Basic Concepts of Control Systems • 1.3 Requirements of a Control System • 1.4 Types of Control System • Summary • Key Terms • Objective-Type Questions • Review Questions • Answers • 2 Mathematical Models • Learning Objectives • 2.1 Block Diagrams • 2.2 Laplace Transforms • 2.3 Transfer Function • 2.4 Mechanical Systems • 2.5 Electrical Systems • 2.6 Electromechanical Systems • 2.7 Stepper Motor • 2.8 Analogous Circuit Systems • 2.9 Thermal and Fluid Systems • 2.10 Hydraulic Power System • 2.11 Pneumatic System • 2.12 Comparison of Hydraulic and Pneumatic Systems • Key Terms • Summary • Objective-Type Questions • Review Questions • Numerical Problems • Answers • 3 Block Diagrams and Signal Flow Graphs • Learning Objectives • 3.1 Block Diagram of a Closed-Loop System • 3.2 Block Diagram Simplification • 3.3 Signal Flow Graphs • Summary • Key Terms • Objective-Type Questions • Review Questions • Numerical Problems • Answers • 4 Transient and Steady-State Response Analysis • Learning Objectives • 4.1 Test Signal • 4.2 Static Response • 4.3 Poles, Zeros and Stability • 4.4 Transient Response • Summary • Key Terms • Objective-Type Questions • Review Questions • Numerical Problems • Answers • 5 Frequency Response Analysis using Nyquist Diagrams • Learning Objectives • 5.1 Frequency Response Analysis • 5.2 Polar Plots • 5.3 Stability Analysis using Nyquist Diagrams • 5.4 Relative Stability, Gain Margin and Phase Margin • 5.5 Frequency Domain Specification • 5.6 M & N Circles • 5.7 Nichols Chart • Summary • Key Terms • Objective-Type Questions • Review Questions • Numerical Problems • Answers • 6 Frequency Response Analysis using Bode Diagrams • Learning Objectives • 6.1 Bode Diagrams • 6.2 Calculation of Transfer Function from Bode Plots • Summary • Key Terms • Objective Type Questions • Review Questions • Numerical Problems • Answers • 7 Root Locus Plots • Learning Objectives • 7.1 Definition • 7.2 Sketching Root Loci • 7.3 Refining the Sketch • 7.4 Effect of Adding Open-Loop Poles and Open-Loop Zeros • 7.5 Advantages of Root Locus • 7.6 Some Definitions • Summary • Key Terms • Objective-Type Questions • Review Questions • Numerical Problems • Answers • 8 Control Action and System Compensation • Learning Objectives • 8.1 Compensation • 8.2 Types of Compensation • 8.3 Compensating Networks • 8.4 Design of Compensators • Summary • Key Terms • Objective-Type Questions • Review Questions • Numerical Problems • Answers • 9 Controllers • Learning Objectives • 9.1 Controller Principles • 9.2 Two-Position Controller (ON/OFF Controller) • 9.3 Proportional Controllers • 9.4 Integral Controller • 9.5 Derivative Controller • 9.6 Composite Controller Modes • 9.7 Selection of Controllers • 9.8 PID

Controller Tuning • 9.9 Digital Controllers • 9.10 Adaptive Controllers • Summary • Key Terms • Objective-Type Questions • Review Questions • Numerical Problems • Answers • 10 State Variable Models • Learning Objectives • 10.1 State Variables of Dynamic System • 10.2 State Differential Equation using Physical Variables • 10.3 Converting a Transfer Function into State Space using Phase Variables • 10.4 Signal Flow Graph State Models • 10.5 State Space Representation using Canonical Variables • 10.6 Transfer Function from the State Equation • 10.7 Eigen Values and Eigen Vectors • 10.8 State Transition Matrix and Time Response • 10.9 Controllability and Observability • Summary • Key Terms • Objective-Type Questions • Review Questions • Numerical Problems • Answers • Appendix A Introduction to MATLAB Programming • • A.1 Application of MATLAB Programs for Control Problems • • A.2 Summary of Commands • Appendix B Basics of Matrices • • B.1 Definition of Matrices • • B.2 Addition and Subtraction of Matrices • B.3 Multiplication of Matrices • B.4 Determinants • B.5 Transpose of Matrix • B.6 Adjoint (or Adjugate) of Matrix • • B.7 Inverse of Matrix • Model Question Paper 1 • Model Question Paper 2 • Model Question Paper 3 • Bibliography • Index

9788126522880 | ₹ 869

Advanced Mobile Wireless Communications: A Holistic Coverage from Basic Concepts to 5G Technologies with IoT | IM | e | k

Rao

About the Author

K. N. Raja Rao has four decades of teaching and research experience. He is former Principal of R.V. College of Engineering, Bengaluru, and former Director, School of Engineering, Avinashilingam Institute of Home Science and Higher Education for Women, Coimbatore.

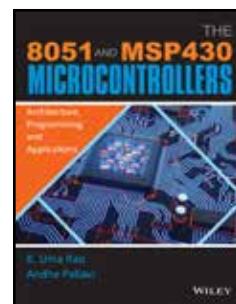

He served as Head of the Department of Electronics and Communication and later as Head of the Department of Telecommunication.

Table of Contents

- Chapter 1 Basics of Cellular Communication • 1.1 Mobile Cellular Communication • 1.2 Technologies Used in Wireless Communication • 1.3 General Architecture of Cellular Communication • 1.4 Cells and Cell Capacity • 1.5 Mobility Management in Cellular Networks • 1.6 Various Handoff Techniques • 1.7 Location Update Procedure • 1.8 Channel Allocation Strategies • 1.9 Power Control Strategies • 1.10 Frequency Planning in Cellular Communication • 1.11 Fading Channels and Models • 1.12 What We Learnt in This Chapter • • Chapter 2 Review of Various Generations of Cellular Communication: 2G to 5G • 2.1 Background • 2.2 2G Technology • 2.3 3G: The Third Generation • 2.4 Spectrum Utilisation in WCDMA and TD CDMA • 2.4.1 3G Architecture • 2.5 Fourth Generation (4G) • 2.6 Fifth Generation (5G) • 2.7 Sixth Generation (6G) and Beyond • 2.8 What We Learnt in This Chapter • • Chapter 3 Long-Term Evolution and 4G • 3.1 Evolution of LTE • 3.2 Building Blocks of LTE • 3.3 Bandwidth Enhancement in LTE • 3.4 MIMO and Beamforming • 3.5 All-IP Core Network – VoLTE • 3.6 LTE-Advanced • 3.7 Looking Forward • 3.8 What We Learnt in This Chapter • • Chapter 4 5G Unfolded • 4.1 3GPP Goals for 5G • 4.2 5G Entities • 4.3 Interaction of UE in 5G • 4.4 Radio Communication Aspects in 5G Network • 4.5 OFDM Numerologies for NR • 4.6 5G Frequency Spectra • 4.7 5G Services • 4.8 5G in Various Applications • 4.9 What We Learnt in This Chapter • • Chapter 5 5G System Architecture and Network Features • 5.1 3GPP Work Group and Release 15 • 5.2 5G Architecture • 5.3 Centralised and Distributed RAN • 5.4 Dual Connectivity in 5G • 5.5 5G Service-Oriented Architecture • 5.6 LTE Functional Split • 5.7 Network Slicing • 5.8 Heterogeneous Network in 5G • 5.9 Artificial Intelligence and Machine Learning in 5G • 5.10 What We Learnt in This Chapter • • Chapter 6 New Technologies in 5G • 6.1 Virtualisation in 5G Network • 6.2 Distributed Mobile Network Architecture • 6.3 Multi-RAT Interworking • 6.4 Multi-Tenancy • 6.5 Mobile Edge Computing • 6.6 Multiple Access through Massive MIMO • 6.7 Device-to-Device (D2D) Communications • 6.8 New Radio Frequencies and Radio Convergence • 6.9 Channel Coding • 6.10 What We Learnt in This Chapter • • Chapter 7 5G Functional Layers in Virtual Environment • 7.1 ETSI-Proposed Architecture • 7.2 Network Data Layer • 7.3 Control Plane • 7.4 User Plane • 7.5 Management and Orchestration Layer • 7.6 Open-Source MANO for 5G • 7.7 SDN and NFV • 7.8 Network Overlay • 7.9 What We Learnt in This Chapter • • Chapter 8 5G Use Cases and IoT Applications • 8.1 5G

as an Enabler for IoT and mIoT • 8.2 5G Applications in Different Verticals • 8.3 Health Care • 8.4 Intelligent Transport Systems • 8.5 Industrial Automation • 8.6 Smart Logistics • 8.7 Positioning • 8.8 Smart City • 8.9 What We Learnt in This Chapter • • Chapter 9 Beyond 5G • 9.1 Challenges in 5G • 9.2 Releases 16 and 17, and Beyond Release 17 • 9.3 New Emerging Standards and 6G • 9.4 What We Learnt in This Chapter • • Exercises • Bibliography • Index

9789357460637 | ₹ 1119

The 8051 and MSP430 Microcontrollers: Architecture, Programming and Applications | IM | e | k

Rao

About the Author

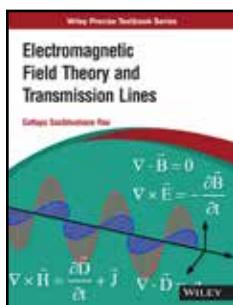

Dr K. Uma Rao is a Professor in the Department of Electrical and Electronics Engineering at Rashtreeya Vidyalaya College of Engineering, Bengaluru. She received her PhD degree from Indian Institute of Science, Bengaluru. She has 32 years of teaching and research experience. She is the author of 11 other books in different areas of Electrical Sciences. Her research areas include Power System Control, Power Quality, Flexible Alternating Current Transmission System (FACTS) and Energy Management.

Table of Contents

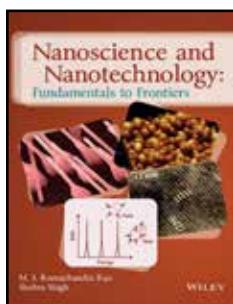
- Preface • Chapter 1 Computers, Microprocessors and Microcontrollers – An Introduction • 1.1 Introduction • 1.2 Common Terminologies Associated with Computing Systems • 1.3 Microprocessors and Microcontrollers • 1.4 CISC and RISC Systems • 1.5 Computing Languages • 1.6 Memory • 1.7 Computer Architecture: Harvard and von Neumann • 1.7.1 von Neumann Architecture: Princeton Architecture • 1.7.2 Harvard Architecture • 1.8 Evolution of Microcontrollers – 4 bit to 32 bit • • Chapter 2 Data Representation • 2.1 Introduction • 2.2 Number System • 2.3 Decimal Representation • 2.4 Complements • 2.5 Fixed-Point Representation • 2.6 Floating-Point Representation • 2.7 Other Binary Codes • • Chapter 3 8051 Architecture • 3.1 Introduction • 3.2 Block Diagram of 8051 • 3.3 Pin Diagram of 8051 • 3.4 Clock and Machine Cycle for 8051 • 3.5 Registers of 8051 • 3.6 The 8051 Internal Memory • 3.7 Stack and Stack Pointer • 3.8 Timers and Counters • 3.9 I/O Ports • 3.10 Serial Input/Output • 3.12 Supply Voltage • 3.13 Status of SFR's on Reset • 3.14 Machine Cycles • 3.15 Detailed Pin Description • • Chapter 4 Assembly Language Programming I: Addressing Modes and Data Transfer • 4.1 Introduction • 4.2 Assembly Language • 4.3 Flow Charts and Algorithm • 4.4 8051 Data Types and Directives • 4.5 Addressing Modes • 4.6 Data Transfer with Stack • 4.7 Data Exchange • 4.8 Complete Set of Data Transfer Instructions • • Chapter 5 Assembly Language Programming II: Arithmetic and Logic Operators • 5.1 Introduction • 5.2 Addition • 5.3 Incrementing and Decrementing • 5.4 Subtraction • 5.5 Multiplication • 5.6 Division • 5.7 Decimal Addition • 5.8 Summary of Arithmetic Operations of 8051 • 5.9 Logical Operations: Byte Level • 5.10 CLEAR and COMPLEMENT Accumulator • 5.11 Bit-Level Logical Operations • 5.13 Swap Operation • 5.14 Summary of Bit-Level Logical Operations • • Chapter 6 Assembly Language III: Jump and Call Instructions • 6.1 Introduction • 6.2 Address Range of Jump and Call Instruction • 6.4 CALL Instruction • • Chapter 7 Programming 8051 with C • 7.1 Introduction • 7.2 Declaring Variables • 7.3 Writing a Simple C Program • 7.4 Delay Generation in C • 7.5 Programming Ports of 8051 with C • 7.6 Operators in 8051 C • 7.7 Serial Port Programming using Shift Operators • 7.8 Code Conversions in C & ALP • 7.9 Code Space • • Chapter 8 Timers / Counters and Serial Port in 8051 • 8.1 Introduction • 8.2 Time Delay Generation Using Timers • 8.3 Application of Timers in Mode 2 • 8.4 Counter Application • 8.5 Serial Data Transfer • 8.6 Second Serial Port in 8051 • • Chapter 9 Interrupts • 9.1 Introduction • 9.2 Review of Interrupts in 8051 • 9.3 External Interrupts • 9.4 Serial Communication Interrupt • 9.5 Priority Implementation for 8051 Interrupts • • Chapter 10 Interfacing the 8051 • 10.1 Introduction • 10.2 Interfacing a LED and a 7-Segment Display to an 8051 • 10.3 Interfacing a Single Key (Push Button) to the 8051 • 10.4 Matrix Keypad or Interfacing Keyboard to the 8051 • 10.5 Stepper Motor Interfacing to 8051 • 10.6 Interfacing a DAC to an 8051 • 10.7 DC Motor Interfacing to 8051 • 10.8 Analog-to-Digital Converters (ADC) • • Chapter 11 Simulation of 8051 Using Keil Software (Lab Manual) • 11.1 Introduction • 11.2 Features of the 8051 Version Used • 11.3 Creating

and Compiling a μ Vision2 Project • 11.4 Programming in ALP • 11.5 Digital-to-Analog Converter (DAC) Interfacing to 8051 • • Chapter 12 MSP Microcontroller: Introduction and Key Features • 12.1 Introduction • 12.3 MSP430 RISC CPU Architecture • 12.4 Details of 16-Bit RISC CPU • 12.5 Clock System • 12.6 Memory Subsystem • 12.7 Key Differentiating Factors between Different Families • 12.8 Digital I/O Ports • 12.9 Muxing Scheme for MSP430 Pins • • Chapter 13 On-Chip Peripherals, Interfacing and Applications of MSP430 • 13.1 Watchdog Timer • 13.3 Comparator_A • 13.4 ADC10 Successive-Approximation ADC • 13.5 The SD16_A Sigma-Delta ADC • 13.6 Operational Amplifiers • 13.7 Timers • 13.8 Real-Time Clock • 13.9 DAC: Digital-to-Analog Conversion • 13.10 Direct Memory Access (DMA) • 13.11 LCD Controller • 13.12 Case Studies of Applications of MSP430 – Data Acquisition System • 13.13 Sensor Networks • • Chapter 14 Programming the MSP430 • 14.1 Addressing Modes • 14.2 Instruction Set of MSP430 • 14.3 Double Operand Core Instructions • 14.4 Single Operand Core Instructions (Format II) • 14.5 Program Flow Control – Jumps: Core Instructions (Format III) • 14.6 Emulated Instructions • 14.7 Movement Instructions • 14.8 Implementation of Decimal Arithmetic • 14.9 Shift and Rotate Instructions • 14.10 Code Composer Essentials • 14.11 Programming in ALP • 14.12 C and Assembly C Projects for MSP430 Microcontrollers • 14.13 Interrupts and Interrupt Programming • 14.14 Low-Power Modes and Low-Power Programming • 14.15 Interfacing LED/LCD/External Memory • • Chapter 15 Application Development Using 8051 • 15.1 Support Structure for 8051-Based Product Development • 15.2 Lab-Based Experiments: Design and Testing • 15.3 Development of Mini Projects Based on 8051 • 15.4 Implementation of Real-World Projects Using Sensors and Actuators • 15.4.1 Automatic Irrigation System • 15.4.5 Wireless Home Security System Using PIR Sensor • 15.5 Trends in Usage of 8051 in 32-bit Applications • • Summary • Questions • Appendix • Index

9788126577545 | ₹ 679

Electromagnetic Field Theory and Transmission Lines | e | k

Rao


About the Author

“Prof. Gottappa Sasibhushana Rao is a Professor & head of the Department of Electronics & Communication Engineering, Andhra University College of Engineering, Visakhapatnam. He has an experience of over 28 years in Research & Development, Industrial and Teaching. He has also published 270+ research papers in various reputed international/national journal/conferences. His current research areas include Cellular & Mobile Communication, GPS and Microwave Engineering. He is also recipient of the Best Researcher Award and Dr. Sarvepalli Radhakrishnan Award for Best Academician.

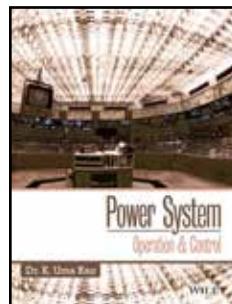
Table of Contents

- Review of Coordinate Systems and Vector Analysis • Electrostatics • Magnetostatics • Maxwell's Equations • Electromagnetic Wave Characteristics I • Electromagnetic Wave Characteristics II • Guided Waves • Transmission Lines I • Transmission Lines II • Waveguides • Glossary • Index

9788126536153 | ₹ 829

Nanoscience and Nanotechnology: Fundamentals to Frontiers | e | k

Rao

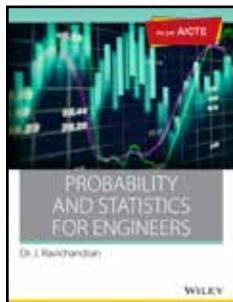

About the Author

Dr. M. S. Ramachandra Rao is a professor in the Department of Physics and head of the “Nanostructured Thin Films and Advanced Materials” group at IIT Madras. His research activities are primarily focused on Physics and applications of nanostructures and nanomaterial.

Table of Contents

- 1. The Science behind Nanotechnology • 1.1 History of Nanoscience • 1.2 Definition of Nanometer, Nanomaterial, and Nanotechnology • 1.3 Classification of Nanomaterial
- 1.4 Nanotechnology from the Perspective of Medieval Period • • 2. Concepts of Solid-State Physics Relevant to Low-Dimensional Systems • 2.1 Introduction • 2.2 Crystal Symmetries, Crystal Directions, and Crystal Planes • 2.3 Band Structure • 2.4 Classification of Solid-State Materials • 2.5 Bulk Properties of Materials • 2.6 Magnetic Materials • 2.7 Effect of Size Reduction on Bulk Properties • 2.8 Optoelectronic Property of Bulk and Nanostructures • 2.9 Electronic Structure of Nanomaterial and the Fermi Surface • 2.10 Luminescence from Nanoparticles • 2.11 Raman Spectroscopy of Nanoparticles • 2.12 Thermodynamics of Nanomaterial: Change in Melting Point • • 3. Quantum Mechanics of Low-Dimensional Systems and Its Application to Nanoscience • 3.1 Introduction • 3.2 Energy Considerations: Bound States and Density of States • 3.3 Quantum Confinement • 3.4 Super lattices • 3.5 Band Offsets • 3.6 Quantum Transport in Nano clusters /Quantum Dots • • 4. Basic Aspects of Synthesis of Nanomaterial and Device Fabrication • 4.1 Introduction • 4.2 Synthesis of Bulk Polycrystalline Samples • 4.3 Growth of Single Crystals • 4.4 Synthesis Techniques for the Preparation of Nanoparticles • 4.5 Requirements for Realizing Semiconductor Nanostructures • 4.6 Some Specialized Growth Techniques for Nanostructures • 4.7 Electrostatic-Induced Growth • 4.8 Thermally Annealed Quantum Wells • 4.9 Semiconductor Nano crystals • • 5. Different Types of Nanostructures • 5.1 Introduction • 5.2 Shapes and Structures of Nanomaterial • 5.3 Quantum Dots • 5.4 Semiconductor Nanoparticles • • 6. Diffusion Kinetics • 6.1 Introduction • 6.2 Thermodynamics of Diffusion • 6.3 Grain Boundary Effect • 6.4 Effect of Defects on Diffusion • • 7. Nanostructured Thin Films and Nano composites • 7.1 Introduction • 7.2 Micro- and Nano scale Thin-Film Fabrication Techniques • 7.3 Optical, Electrical, and Magnetic Properties of Nanostructured • Thin Films • 7.4 Nano composites • 7.5 Physical and Optical Properties • 7.6 Metal/ Dielectric-Organic Nano composites • • 8. Nano scale Characterization Techniques • 8.1 Introduction • 8.2 X-Ray Diffraction and Scherer Method • 8.3 Scanning Electron Microscopy • 8.4 Transmission Electron Microscopy • 8.5 Stoichiometry Study by Energy-Dispersive X-Ray Analysis • 8.6 Scanning Probe Microscopy • 8.7 Atomic Force Microscopy • 8.8 Piezoresponse Microscopy • 8.9 X-Ray Photoelectron Spectroscopy • 8.10 XANES and XAFS • 8.11 Angle-Resolved Photoemission Spectroscopy • 8.12 Diffuse Reflectance Spectra • 8.13 Photoluminescence Spectra • 8.14 Raman Spectroscopy • 8.15 DC Magnetization • 8.16 Electrical Resistivity Measurements • 8.17 Theory of Linear Four-Probe Method • • 9. Recent Advances in Nanotechnology • 9.1 Introduction • 9.2 Designing Molecules for Nano electronics • 9.3 Advances of Nanotechnology in Materials Science • • 10. New Trends in Nanoscience and Applications of Nanotechnology in Various Fields • 10.1 Introduction • 10.2 Applications in Material Science • 10.3 Applications in Biology and Medicine • 10.4 Applications in Surface Science • 10.5 Applications in Energy and Environment • 10.6 Applications of Nanostructured Thin Films • 10.7 Applications of Quantum Dots • 10.8 Carbon Nanotechnology • 10.9 Applications of Magnetic Nanoparticles • • Appendix A - Useful Lab Experiments • Appendix B - Useful Tables • Index

9788126542017 | ₹ 859

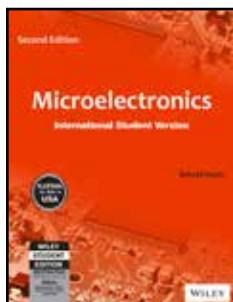

Power System: Operation & Control | e | k

Rao

Table of Contents

- Introduction to Power System Operation and Control
- Modelling of Power System Components • Economic Operation of Power Systems • Unit Commitment • Hydrothermal Scheduling • Automatic Generation Control • AGC in Interconnected Power Systems • Voltage and Reactive Power Control • Power System Reliability and Security • Load Forecasting • Introduction to State Estimation of Power Systems • Supervisory Control and Data Acquisition • Recent Trends in Power System Operation and Control

9788126534418 | ₹ 949


Probability and Statistics for Engineers: As per AICTE | IM | e

Ravichandran

Table of Contents

- 1. Probability Concepts • 1.1 Introduction • 1.2 Important Definitions • 1.3 Approaches of Measuring Probability • 1.4 Bayes' Theorem • 2. Random Variables and Distribution Functions • 2.1 Introduction • 2.2 Random Variable • 2.3 Discrete Random Variable • 2.4 Continuous Random Variable • 2.5 Cumulative Distribution Function • 3. Expectation and Moment-Generating Function • 3.1 Introduction • 3.2 Definition and Properties of Expectation
- 3.3 Moments and Moment-Generating Function • 4. Standard Discrete Distribution Functions • 4.1 Introduction • 4.2 Discrete Distributions • 5. Some Standard Continuous Distribution Functions • 5.1 Introduction • 5.2 Uniform Random Variable and Its Distribution • 5.3 Exponential Random Variable and Its Distribution • 5.4 Gamma Random Variable and Its Distribution • 5.5 Normal Random Variable and Its Distribution • 6. Chebyshev's Inequality and Central Limit Theorem • 6.1 Introduction • 6.2 Chebyshev's Theorem (or Inequality) • 6.3 Asymptotic Properties of Random Sequences • 6.4 Central Limit Theorem • 7. Two-Dimensional Random Variables • 7.1 Introduction • 7.2 Discrete Case: Joint Probability Mass Function • 7.3 Continuous Case: Joint Probability Density Function • 7.4 Stochastic Independence of Random Variables • 7.5 Expectation of Two-Dimensional Random Variables • 7.6 Conditional Mean and Conditional Variance • 8. Transformation of Random Variables • 8.1 Introduction • 8.2 One-Dimensional Random Variable • 8.3 Two-Dimensional Random Variables • 9. Point Estimation and Minimum Risk Estimator • 9.1 Introduction • 9.2 Types of Estimation • 10. Sampling Distributions and Interval Estimation • 10.1 Introduction • 10.2 Sampling Distributions • 10.3 Interval Estimation • 11. Testing of Hypotheses • 11.1 Introduction • 11.2 Testing of Hypothesis • 11.3 Classification of Hypothesis Tests • 11.4 Large Sample Tests • 11.5 Small Sample Tests • 12. Simple Correlation and Regression • 12.1 Introduction to Simple Correlation • 12.2 Properties of Correlation Coefficient • 12.3 Rank Correlation Coefficient • 12.4 Introduction to Simple Regression • 13. Analysis of Variance: One-Way and Two-Way Analyses • 13.1 Introduction • 13.2 Single-Factor (One-Way ANOVA) Experiment and Linear Statistical Model • 13.3 Fixed Effects Model and ANOVA • 13.4 Random Effects Model and ANOVA • 13.5 Computations for Sum of Squares • 13.6 Multiple Comparison Test: Grouping of Means • 13.7 Single-Factor (Two-Way ANOVA) Experiment and Linear Statistical Model (Completely Randomized Block Design) • 13.8 Fixed Effects Model for Two-Way ANOVA • 13.9 Random Effects Model for Two-Way ANOVA • 13.10 Computations for Sum of Squares • 14. Latin Square Design and Two-Factor Factorial Design • 14.1 Introduction • 14.2 Latin Square Design • 14.3 Two-Factor Factorial Experiment • 15. Statistical Quality Control and Six Sigma Metrics • 15.1 Introduction • 15.2 Statistical Quality Control • 15.3 Control Charts for Variables • 15.4 Control Charts for Attributes • 15.5 Out-of-Control Situations in Control Charts and Process Monitoring • 15.6 Process Capability and Process Capability Index • 15.7 Six Sigma • Appendix A Other Standard Distributions • Appendix B Standard Normal Table • Appendix C t-Table • Appendix D Chi-Square Table • Appendix E F-Table • Appendix F Construction of Various Control Charts • Appendix G Least Significant Studentized Ranges • Answers • Index

9788126512348 | ₹ 929

Microelectronics, 2ed, ISV | IM

Razavi

Description

By helping students develop an intuitive understanding of the subject, Microelectronics teaches them to think like engineers. The second edition of Razavi's Microelectronics retains its hallmark emphasis on analysis by inspection and building students' design intuition, and it incorporates a host of new pedagogical features that make it easier to teach and learn from, including: application sidebars, self-check problems with answers, simulation problems with SPICE and MULTISIM, and an expanded problem set that

is organized by degree of difficulty and more clearly associated with specific chapter sections.

9788126571352 | ₹ 1159

Microelectronics, 3ed, An Indian Adaptation | IM | e | k

Razavi

Description

By helping students develop an intuitive understanding of the subject, Microelectronics teaches them to think like engineers. The second edition of Razavi's Microelectronics retains its hallmark emphasis on analysis by inspection and building students' design intuition, and it incorporates a host of new pedagogical features that make it easier to teach and learn from, including: application sidebars, self-check problems with answers, simulation problems with SPICE and MULTISIM, and an expanded problem set that is organized by degree of difficulty and more clearly associated with specific chapter sections.

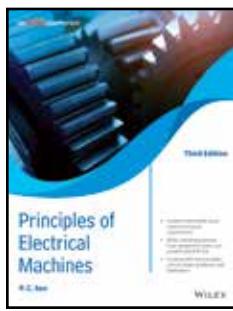
9789388991063 | ₹ 1149

Fuzzy Sets and Fuzzy Logic with Engineering Applications, 4ed, An Indian Adaptation | IM | e | k

Ross

About the Author

Timothy J. Ross is Professor and Regents' Lecturer of Civil Engineering at the University of New Mexico. He received his PhD in Civil Engineering from Stanford University, his MS from Rice University, and his BS from Washington State University. Professor Ross has held previous positions as Senior Research Structural Engineer, Air Force Weapons Laboratory, from 1978 to 1986; and Vulnerability Engineer, Defense Intelligence Agency, from 1973 to 1978. Professor Ross has authored more than 150 publications and has been active in the research and teaching of fuzzy logic since 1983.


Table of Contents

- 1 Introduction • The Case for Imprecision • A Historical Perspective • The Utility of Fuzzy Systems • Limitations of Fuzzy Systems • The Illusion: Ignoring Uncertainty and Accuracy • Uncertainty and Information • Fuzzy Sets and Membership • Chance Versus Fuzziness • Intuition of Uncertainty: Fuzzy Versus Probability • Sets as Points in Hypercubes • Applications of Fuzzy Logic with Examples • Contrast Between Conventional AI/Expert Systems and Fuzzy-Based Systems • 2 Classical Sets and Fuzzy Sets • Classical Sets • Fuzzy Sets • 3 Classical Relations and Fuzzy Relations • Cartesian Product • Crisp Relations • Fuzzy Relations • Tolerance and Equivalence Relations • Fuzzy Tolerance and Equivalence Relations • Value Assignments • Other Forms of the Composition Operation • 4 Properties of Membership Functions, Fuzzification, Membership Value Assignments, and Defuzzification • Features of the Membership Function • Various Forms • Fuzzification • Membership Value Assignments • Intuition • Inference • Rank Ordering • Neural Networks • Genetic Algorithms • Inductive Reasoning • Defuzzification to Crisp sets • ??-Cuts for Fuzzy Relations • Defuzzification to Scalars • 5 Logic and Fuzzy Systems with Rule Inferences • Part I: Logic • Classical Logic • Fuzzy Logic • Part II: Fuzzy Systems • 6 Fuzzy Control Systems • Control System Design Problem • Examples of Fuzzy Control System Design • Fuzzy Engineering Process Control • Fuzzy Statistical Process Control • Industrial Applications • 7 Fuzzy Classification and Pattern Recognition • Fuzzy Classification • Classification by Equivalence Relations • Cluster Analysis • Cluster Validity • c-Means clustering • Hard c-Means (HCM) • Fuzzy c-Means (FCM) • Classification Metric • Hardening the Fuzzy c-Partition • Similarity Relations From Clustering • Fuzzy Pattern Recognition • Single-Sample Identification • Multifeature Pattern Recognition • 8 Automated Methods for Fuzzy Systems • Definitions • Batch Least Squares Algorithm • Recursive Least Squares Algorithm • Gradient Method • Clustering Method • Learning From Examples

- Modified Learning From Examples • 9 Fuzzy Systems Simulation • Fuzzy Relational Equations • Nonlinear Simulation Using Fuzzy Systems • Fuzzy Associative Memories (FAMS) • 10 Decision Making with Fuzzy Information • Fuzzy Synthetic Evaluation • Fuzzy Ordering • Nontransitive Ranking • Preference and Consensus • Multiobjective Decision Making • Fuzzy Bayesian Decision Method • Decision Making Under Fuzzy States and Fuzzy Actions • 11 Applications of Fuzzy Systems Using Miscellaneous Models • Fuzzy Optimization • Fuzzy Cognitive Mapping • Agent-Based Models • Fuzzy Arithmetic and the Extension Principle • Fuzzy Algebra • Data Fusion • 12 Monotone Measures : Belief, Plausibility, Probability, and Possibility • Monotone Measures • Belief and Plausibility • Evidence Theory • Probability Measures • Possibility and Necessity Measures • Possibility Distributions as Fuzzy Sets • Possibility Distributions Derived from Empirical Intervals • 13 Introduction to Type-2 Fuzzy Logic • Difference Between Type-1 and Type-2 Fuzzy Sets • Benefit of Type-2 Fuzzy Sets • Operations and Properties of Type-2 Fuzzy Sets • Properties of Membership Grades in Type-2 Fuzzy Sets • Type-2 Fuzzy Relations – Cartesian Product and Compositions • Type-2 Fuzzy Logic System
- Continuous Type-2 Fuzzy Sets • 14 Applications of Type-2 Fuzzy Systems • Brief Description of Fuzzy Logic System • Applications of Type-2 Fuzzy System in Modeling Smart Systems • Applications of Type-2 Fuzzy System in Pattern Recognition • Problems • References • Index

9788126502608 | ₹ 1139

Principles of Electric Machines, 3ed, An Indian Adaptation | IM | e | k

Sen

About the Author

Dr. P. C. Sen is Emeritus Professor of Electrical and Computer Engineering at Queen's University, Canada. He has worked for industries in India and Canada and was a consultant to electrical industries in Canada. He has authored over 215 technical papers in the general area of electric motor drives and power electronics. He is the author of two internationally acclaimed textbooks:

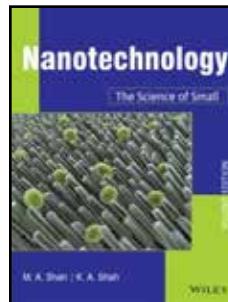

Principles of Electric Machines and Power Electronics and Thyristor DC Drives (Wiley, 1981). He has taught electric machines, power electronics, and electric drive systems for over 45 years.

Table of Contents

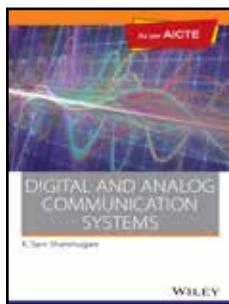
- CHAPTER 1: MAGNETIC CIRCUITS • 1.1 MAGNETIC CIRCUITS • 1.2 HYSTERESIS • 1.3 RELATIONSHIP BETWEEN FLUX, EMF, AND FORCE • 1.4 SINUSOIDAL EXCITATION • 1.5 PERMANENT MAGNET • • CHAPTER 2: TRANSFORMERS • 2.1 IDEAL TRANSFORMER • 2.2 PRACTICAL TRANSFORMER • 2.3 VOLTAGE REGULATION • 2.4 EFFICIENCY • 2.5 TESTS ON TRANSFORMERS • 2.6 AUTOTRANSFORMER • 2.7 THREE-PHASE TRANSFORMERS • 2.8 HARMONICS IN THREE-PHASE TRANSFORMER BANKS • 2.9 THREE-WINDING TRANSFORMERS • 2.10 PARALLEL OPERATION OF SINGLE-PHASE AND THREE-PHASE TRANSFORMERS • 2.11 TAP CHANGING OF TRANSFORMERS • 2.12 PER-UNIT (PU) SYSTEM • 2.13 HEATING AND COOLING OF TRANSFORMERS • 2.14 APPLICATIONS OF TRANSFORMERS • • CHAPTER 3: ELECTROMECHANICAL ENERGY CONVERSION • 3.1 ENERGY CONVERSION PROCESS • 3.2 FIELD ENERGY • 3.3 MECHANICAL FORCE IN THE ELECTROMAGNETIC • • CHAPTER 4: MACHINE WINDINGS, MMF DISTRIBUTION, AND MAGNETIC FIELDS • 4.1 WINDING ARRANGEMENT • 4.2 PULSATING AND ROTATING MAGNETIC FIELD • 4.3 SPACE HARMONICS • 4.4 TIME HARMONICS • • CHAPTER 5: DC MACHINES • 5.1 ELECTROMAGNETIC CONVERSION • 5.2 DC MACHINES • 5.3 DC GENERATORS • 5.4 DC MOTORS • 5.5 SPEED CONTROL • 5.6 PERMANENT MAGNET DC (PMDC) MOTORS • 5.7 BRAKING OF DC MOTORS • 5.8 PRINTED CIRCUIT BOARD (PCB) • • CHAPTER 6: INDUCTION (ASYNCHRONOUS) MACHINES • 6.1 CONSTRUCTIONAL FEATURES • 6.2 INDUCED VOLTAGES • 6.3 POLYPHASE INDUCTION MACHINE • 6.4 THREE MODES OF OPERATION • 6.5 INVERTED INDUCTION MACHINE • 6.6 EQUIVALENT CIRCUIT MODEL • 6.7 NO-LOAD TEST, BLOCKED-ROTOR TEST, AND EQUIVALENT CIRCUIT PARAMETERS • 6.8 PERFORMANCE CHARACTERISTICS • 6.9 POWER FLOW IN THREE MODES OF OPERATION • 6.10 CIRCLE DIAGRAM FOR THE INDUCTION MACHINE • 6.11 EFFECTS OF ROTOR RESISTANCE • 6.12 CLASSES OF SQUIRREL-CAGE MOTORS • 6.13 SPEED CONTROL • 6.14 STARTING OF INDUCTION MOTORS • 6.15 TIME AND SPACE HARMONICS • 6.16 LINEAR INDUCTION MOTOR (LIM) • • CHAPTER 7: SYNCHRONOUS MACHINES • 7.1 CONSTRUCTION OF THREE-PHASE SYNCHRONOUS

- MACHINES • 7.2 SYNCHRONOUS GENERATORS • 7.3 SYNCHRONOUS MOTORS • 7.4 EQUIVALENT CIRCUIT MODEL • 7.5 POWER AND TORQUE CHARACTERISTICS • 7.6 CAPABILITY CURVES • 7.7 POWER FACTOR CONTROL • 7.8 INDEPENDENT GENERATORS • 7.9 PARALLEL OPERATION AND LOAD SHARING OF SYNCHRONOUS GENERATORS • 7.10 SALIENT POLE SYNCHRONOUS MACHINES • 7.11 SPEED CONTROL OF SYNCHRONOUS MOTORS • 7.12 APPLICATIONS • • CHAPTER 8: SINGLE-PHASE MOTORS • 8.1 SINGLE-PHASE INDUCTION MOTORS • 8.2 STARTING WINDING DESIGN • 8.3 EQUIVALENT CIRCUIT OF A CAPACITOR-RUN MOTOR • 8.4 SINGLE-PHASE SERIES (UNIVERSAL) MOTORS • 8.5 SINGLE-PHASE SYNCHRONOUS MOTORS • 8.6 SPEED CONTROL • • CHAPTER 9: SPECIAL MACHINES • 9.1 SERVOMOTORS • 9.2 LINEAR SYNCHRONOUS MOTORS (LSM) • 9.3 BRUSHLESS DC (BLDC) MOTORS • 9.4 SWITCHED RELUCTANCE MOTORS (SRM) • 9.5 SYNCHROS • 9.6 STEPPER MOTORS • • APPENDIX A: BALANCED THREE-PHASE CIRCUITS • APPENDIX B: UNITS AND CONSTANTS • APPENDIX C: LAPLACE TRANSFORMS • APPENDIX D: ANSWERS TO SELECTED • PROBLEMS • INDEX

9789390395057 | ₹ 949

Nanotechnology: The Science of Small, 2ed | e | k

Shah


About the Author

Dr. M. A. Shah embarked upon new research programmes, pioneered the synthesis of broad range of nanomaterials, established the World Bank Funded Research Centre (Special Centre for Nanosciences) and laid the foundation to learn the new science – nanotechnology – in the early 2000s. In 2009, Dr. Shah moved to the Middle East on deputation for a short period of two years and published the book Principles of Nanoscience & Nanotechnology with Dr. T. Ahmad, an eminent Chemist.

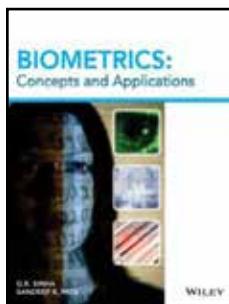
Table of Contents

- Preface • About the Authors • Chapter 1 Overview of Carbon Materials • 1.1 Introduction • 1.2 Carbon – The Versatile Element in the Nanoworld • 1.3 Diamond • 1.4 Graphite • 1.5 Fullerenes • 1.6 Nanometer: How Big or Small • 1.7 Carbon Nanotubes • 1.8 Properties of Carbon Nanotubes • 1.9 Growth of Carbon Nanotubes • 1.10 Graphene • • Chapter 2 Fundamentals of Nanoscience • 2.1 Introduction • 2.2 Scientific Revolutions • 2.3 Basic Science behind Nanotechnology • 2.4 Properties at Nanoscale • 2.5 Quantum Confinement in Nanomaterials • 2.6 Rationale behind Downsizing of Materials • 2.7 Significance of Size and Shape • 2.8 Solved Examples • Chapter 3 Techniques for Synthesis of Nanomaterials • 3.1 Introduction • 3.2 Methods for Synthesis of Nanomaterials • 3.3 Top-Down Fabrication Methods • 3.4 Bottom-up Fabrication Methods • Chapter 4 Nanomaterials Characterization Techniques • 4.1 Introduction • 4.2 Scanning Electron Microscope (SEM) • 4.3 Transmission Electron Microscope (TEM) • 4.4 Scanning Tunneling Microscope (STM) • 4.5 Atomic Force Microscope (AFM) • 4.6 X-Ray Diffraction (XRD) • 4.7 Raman Spectroscopy • Chapter 5 Prime Materials in Nanotechnology • 5.1 Introduction • 5.2 Nanomaterials: Natural and Man-made • 5.3 Semiconductor Nanomaterials • 5.4 Ceramic Nanomaterials • 5.5 Polymers • 5.6 Composites • 5.7 Metal Nanoparticles • 5.8 Biomaterials • Chapter 6 Nanotechnology Applications and Recent Breakthroughs • • 6.1 Introduction • 6.2 Significant Impact of Nanotechnology and Nanomaterials • 6.3 Medicine and Healthcare Applications • 6.4 Biological and Biochemical Applications (Nanobiotechnology) • 6.5 Energy Applications • 6.6 Electronic Applications (Nanoelectronics) • 6.7 Computing Applications (Nanocomputers) • 6.8 Chemical Applications (Nanochemistry) • 6.9 Optical Applications (Nanophotonics) • 6.10 Agriculture and Food Applications • 6.11 Recent Major Breakthroughs in Nanotechnology • Chapter 7 Nanotechnology Initiatives and Future Prospectives • 7.1 Introduction • 7.2 Nanotechnology and the World's Attention • 7.3 India's Nanotechnology Initiatives • 7.4 Nanotechnology Solutions for Various Problems • 7.5 Future Prospective in Nanotechnology • 7.6 Nanotechnology and Speculations • • • Summary • Keywords • Review Questions • Further Readings • Useful Experiments • • • Useful Experiments • Appendix • Index

9788126579976 | ₹ 709

Digital and Analog Communication Systems Books: As per AICTE

Shanmugam


About the Author

Dr K. Sam Shanmugam is the AT&T Distinguished Professor of Electrical Engineering and Computer Science at University of Kansas. He did his ME from IISc, Bangalore and Ph.D. from Oklahoma State University, 1970

Table of Contents

- 1Introduction • 1.1 Model of a Communication System • 1.2 Elements of a Digital Communication System • 1.3 Analysis and Design of Communication Systems • 1.4 Organization of the Book • • 2Systems And Signal Analysis • 2.1 Systems and Signals • 2.2 Signal Representation Using Fourier Series • 2.3 Signal Representation Using Fourier Transforms • 2.4 power Spectral Density • 2.5 System Response and Filters • 2.6 Spectral Analysis of Modulation and Demodulation Operations • 2.7 Spectral Measurements and Computations • 2.8 Summary • • 3Random Signal Theory • 3.1Introduction • 3.2Introduction to Probabilities • 3.3Discrete Random Variables • 3.4Continuous Random Variables • 3.5Random Processes • 3.6Systems and Random Signals • 3.7Noise in Communication Systems • 3.8Summary • • 4Information And Channel Capacity • 4.1Introduction • 4.2Measure of Information • 4.3Encoding of the Source Output • 4.4Communication Channels • 4.5Discrete Communication Channels • 4.6Continuous Channels • 4.7Summary • • 5Baseband Data Transmission • 5.1Introduction • 5.2Baseband Pulse Shaping • 5.3Duobinary Baseband PAM System • 5.4M-ary Signaling Schemes • 5.5Shaping of the Transmitted Signal Spectrum • 5.6Equalization • 5.7Miscellaneous Topics • 5.8Summary • • 6Analog Signal Transmission • 6.1Introduction • 6.2Analog Baseband Signal Transmission • 6.3Linear CW Modulation Schemes • 6.4Angle Modulation • 6.5Frequency Division Multiplexing • 6.6Commercial Broadcasting • 6.7Summary • • 7Noise In Analog Communication Systems • 7.1Introduction • 7.2Noise in Baseband Systems • 7.3Noise in Linear CW Modulation Systems • 7.4Noise in Angle Modulation Systems • 7.5Preemphasis/Deemphasis Filtering in CW Modulation Systems • 7.6Interference in CW Modulation • 7.7Comparison of CW Modulation Schemes • 7.8Summary • • 8Digital Carrier Modulation Schemes • 8.1Introduction • 8.2Optimum Receiver for Binary Digital Modulation Schemes • 8.3Binary ASK Signaling Schemes • 8.4Binary PSK Signaling Schemes • 8.5Binary FSK Signaling Schemes • 8.6Comparison of Digital Modulation Schemes • 8.7M-ary Signaling Schemes • 8.8Synchronization Methods • 8.9Summary • • 9Error Control Coding • 9.1Introduction • 9.2Linear Block Codes • 9.3Binary Cyclic Codes • 9.4Burst-Error-Correcting modes • 9.5Burst- and Random-Error-Correcting Codes • 9.6Convolutional Codes • 9.7Performance of Block Codes?Error Correction • 9.8Performance of Block Codes?Error Detection • 9.9Summary • • 10Digital Transmission Of Analog Signals • 10.1Introduction • 10.2Sampling Theory and Practice • 10.3Quantizing of Analog Signals • 10.4Coded Transmission of Analog Signals • 10.5Time-Division Multiplexing • 10.6Comparison of Methods for Analog Signal Transmission • 10.7Summary • • 11References • 12Problems • • Appendix A: History of Electrical Communication • Appendix B: Broadcast Frequency Bands • Appendix C: Trigonometric Identities and Fourier Transforms • Appendix D: Gaussian Probabilities • Appendix E: Glossary of Symbols, Notations, and Abbreviations • Index

9788126512331 | ₹ 939

Biometrics: Concepts and Applications, w/cd | e | k

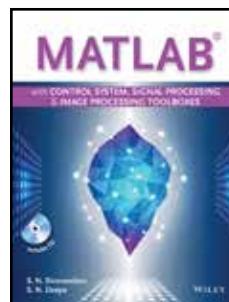

Sinha

Table of Contents

- Chapter 1 Introduction • Chapter 2 Handwritten Character Recognition • Chapter 3 Face Biometrics • Chapter 4 Retina and Iris Biometrics • Chapter 5 Vein and Fingerprint Biometrics • Chapter 6 Biometric Hand Gesture Recognition for Indian Sign Language • Chapter 7 Privacy Enhancement Using Biometrics • Chapter 8 Biometric Cryptography and Multimodal Biometrics •

Chapter 10 Biometrics: Scope and Future • Chapter 11 Image Enhancement Techniques • Chapter 12 Biometric Standards • Summary • Review Questions • Further Reading • Index

9788126538652 | ₹ 789

MATLAB with Control System, Signal Processing and Image Processing Toolboxes, w/cd | e | k

Sivanandam

About the Author

Dr. S. N. Sivanandam has a total teaching experience (UG and PG) of 47 years. He has guided a number of undergraduate and postgraduate projects for both Computer Science and Engineering and Electrical and Electronics Engineering. He has been identified as an outstanding person in the field of Computer Science and Engineering in MARQUIS "Who's Who", October 2003 issue, New providence, New Jersey, USA. He has also been identified as an outstanding person in the field of Computational Science and Engineering in "Who's Who", December 2005 issue, Saxe-Coburg Publications, United Kingdom.

Table of Contents

- 1 MATLAB: An Introduction • 1.1 Introduction • 1.2 History of MATLAB • 1.3 Need of MATLAB for Problem Solving • 1.4 Running MATLAB on Computers • 1.5 Features of MATLAB • 1.6 MATLAB Basics • 1.7 Toolboxes - An Introduction • 1.8 Basic Simulink • 1.9 Graphical User Interface Feature of MATLAB • 1.10 Few MATLAB Product Lists • • 2 Getting Started to MATLAB • 2.1 Introduction • 2.2 Data Types • 2.3 Variable Definition • 2.4 Arrays • 2.5 Matrices • 2.6 Strings • 2.7 User-Defined Functions • 2.8 Input and Output Statements • 2.9 File Input and Output Statements • 2.10 Operators and Their Operations • 2.11 Keywords • 2.12 Dynamic Arrays • 2.13 Exchanging Data with Other Programs • 2.14 Recursive Functions • 2.15 Miscellaneous MATLAB Functions • • 3 Programming in MATLAB • 3.1 Introduction • 3.2 Script M-File • 3.3 Flow Control Statements in MATLAB • 3.4 Efficient Programming in MATLAB • 3.5 MATLAB Classes and Objects • 3.6 Debugging in MATLAB • • 4 Mathematics in MATLAB: Working with Differential Equations and Polynomials • 4.1 Introduction • 4.2 Elementary Mathematic Operations • 4.3 MATLAB Polynomial and Interpolation Operations • 4.4 Statistics and Analysis of Data • 4.5 MATLAB Functions for Ordinary Differential Equations • 4.6 MATLAB Functions for Optimization • 4.7 Specialized MATLAB Math Functions • 4.8 Special Functions with the Command mfun • 4.9 Sparse Matrices • 4.10 Linear Algebra Approaches in MATLAB • 4.11 Mathematical Constant Representation in MATLAB • • 5 MATLAB Graphical Environment • 5.1 Introduction • 5.2 Building Two-Dimensional Plots • 5.3 Building Three-Dimensional Plots • 5.4 Additional Specialized Plots • 5.5 Printing and Exporting MATLAB Graphics • 5.6 Handle Graphics Objects • 5.7 Three-Dimensional Modeling and Visualization • • 6 MATLAB Control Systems Toolbox • 6.1 Introduction • 6.2 Basic Control System Concepts • 6.3 MATLAB Commands for Creation of Linear Models and Computing Data • 6.4 Time Domain and Frequency Response Analysis Commands • 6.5 Commands for Conversion of Domains in Control Systems • 6.6 System Dynamic Operational Commands • 6.7 MATLAB Commands for Control System Design and Model Reduction • 6.8 MATLAB Commands for State-Space Modeling, Frequency Response Models and Time Delay Approaches • 6.9 Graphical User Interface and Other General Commands in Control System Toolbox • • 7 Signal Processing Toolbox in MATLAB • 7.1 Introduction • 7.2 Fundamentals of Signal Processing • 7.3 Basic Signal Processing Functions in MATLAB • 7.4 Transforms in MATLAB • 7.5 Waveform Generation • 7.6 Linear System Transformation • 7.7 Digital Filtering Commands in MATLAB • 7.8 Analog Filter Design Commands in MATLAB • 7.9 MATLAB Commands for Windows in Filtering • 7.10 Cepstrum Analysis in MATLAB • 7.11 MATLAB Commands for Statistical Signal Processing • 7.12 Parametric Modeling in MATLAB • 7.13 Linear Prediction • 7.14 Multirate Signal Processing in MATLAB • 7.15 Special Signal Processing Operations • 7.16 GUI MATLAB Commands for Signal Processing • • 8 Image Processing Toolbox in MATLAB • 8.1 Introduction • 8.2 Fundamentals of Image Processing • 8.3 Image Types and Image Conversions in MATLAB Environment • 8.4 MATLAB Image Arithmetic and Array Operations • 8.5 Transformation of Images in MATLAB • 8.6 Display of Images in MATLAB Environment • 8.7 MATLAB File I/O Operations of Images • 8.8 Image Registration in MATLAB • 8.9 Analysis of Images in MATLAB • 8.10 Image Enhancement

in MATLAB Environment • 8.11 MATLAB Image Filtering Process • 8.12 Image Deblurring in MATLAB • 8.13 MATLAB Image Neighborhood Operations and Region-Based Processing • 8.14 MATLAB Image Morphological Operations • 8.15 MATLAB Texture Analysis Functions • 8.16 MATLAB Color map Operations • 8.17 Various Image Samples Considered for Problem Solving • • 9 Simulink Environments in MATLAB: An Introduction • 9.1 Introduction • 9.2 Features and Need of Simulink Environment • 9.3 Products of Simulink in MATLAB Environment • 9.4 A Fundamental Simulink Model • 9.5 Starting Simulink and Simulink Library Browser • 9.6 Constructing a Simulink Block Diagram Model • • Review Questions • Exercises • Bibliography • Index

9788126554751 | ₹ 879

Semiconductor Materials, Devices and Fabrication: As per AICTE, w/cd

Swaminathan

About the Author

Parasuraman Swaminathan is an Assistant Professor in the Department of Metallurgical and Materials Engineering at the Indian Institute of Technology, Madras (IITM). He has been a faculty at the institute since July 2013. worked, as a Process and Yield Engineer, in Portland Technology Development division of Intel Corp. USA, where he worked on silicon oxidation. Dr.

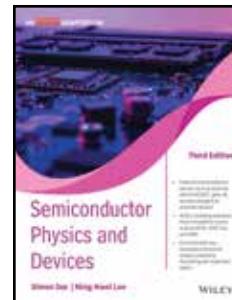

Parasuraman's research group in IITM works on printed electronics and physical vapor deposition of thin films and nanoparticles. They are developing low-cost electronic devices by adapting conventional printing techniques to metals and semiconductors.

Table of Contents

- Preface • About the Author • • Part I – Semiconductor Materials • Chapter 1 Electronic Materials • 1.1 Introduction • 1.2 Molecular Orbital Formation • 1.3 Molecular Orbitals in Extended Systems • 1.4 Energy Bands in Metals • • Chapter 2 Semiconductors: Introduction • 2.1 Introduction • 2.2 Band Formation in Semiconductors • 2.3 Classification of Semiconductors • 2.4 Electron Effective Mass • • Chapter 3 Electron Statistics in a Solid • Learning Objectives • 3.1 Density of States • 3.2 Electron Occupation Probability • 3.3 Density of States in Silver • 3.4 Fermi Function versus Boltzmann Function • • Chapter 4 Intrinsic Semiconductors • 4.1 Introduction • 4.2 Intrinsic Silicon • 4.3 Conductivity Equation • 4.4 Carrier Concentration in Semiconductors • 4.5 Fermi Level Position in Intrinsic Semiconductors • 4.6 Temperature Effect on n_i • • Chapter 5 Extrinsic Semiconductors • 5.1 Introduction • 5.2 Doping Types • 5.3 Compensation Doping • 5.4 Dopant Materials • 5.5 Fermi Level in Extrinsic Semiconductors • 5.6 Temperature Dependence of Carrier Concentration • 5.7 Carrier Mobility • 5.8 Degenerate Semiconductors • 5.9 Amorphous Semiconductors • • Part II – Devices • Chapter 6 Metal–Semiconductor Junctions • Learning Objectives • 6.1 Metal–Metal Junctions • 6.2 Schottky Junctions • 6.3 Ohmic Junctions • • Chapter 7 pn Junctions • Learning Objectives • 7.1 Introduction • 7.2 pn Junction • 7.3 Calculation of Junction Parameters • 7.4 Junction Potential versus Fermi Level Position • 7.5 pn Junction Under Bias • 7.6 Reverse Bias • 7.7 Junction Breakdown • 7.8 Heterojunctions • • Chapter 8 Transistors • 8.1 Introduction • 8.2 Bipolar Junction Transistor • 8.3 Junction Field-effect Transistor • 8.4 Metal Oxide Semiconductor FET • 8.5 MOS Band Structure • 8.6 Role of Oxide Layer • • Chapter 9 Light Semiconductor Interaction • 9.1 Optical Absorption • 9.2 Recombination and Carrier Lifetime • 9.3 Continuity Equation • • Chapter 10 LEDs and LASERS • 10.1 Optical Emission • 10.2 pn Junction-based LEDs • 10.3 LED Materials • 10.4 Solid-state LASERS • 10.5 Device Structure • 10.6 Specialty Lasers • • Chapter 11 Photodetectors and Solar Cells • 11.1 Photodetectors Working Principle • 11.2 Types of Photodetectors • 11.3 Solar Cell Basics • 11.4 pn Junction Solar Cell • 11.5 Solar Cell Materials and Efficiency • • Part III – Fabrication • Chapter 12 Development of ICs • 12.1 Introduction • 12.2 Integrated Circuits • 12.3 Device Miniaturization • 12.4 Challenges in IC Manufacturing • 12.5 IC Manufacturing Stages • • Chapter 13 Silicon Wafer Manufacturing • 13.1 Wafer Specification • 13.2 Polysilicon Manufacture • 13.3 Single Crystal Si Manufacture • 13.4 Wafer Manufacturing • • Chapter 14 Integrated Circuit Fabrication • 14.1 Fabrication Overview • 14.2 Layering • 14.3 Patterning • 14.4 Doping • 14.5 Heat Treatment • 14.6 MOSFET Fabrication • • Chapter 15 Oxidation and Doping • 15.1 Oxidation • 15.2 Types of Oxidation Processes • 15.2.1 Oxide Growth Model and Parameters • 15.3 Oxide Furnaces • 15.4 Doping Techniques • 15.5 Thermal Diffusion • 15.6 Ion Implantation • • Chapter 16 Lithography

- 16.1 Introduction • 16.2 Process Overview • 16.3 Photoresists • 16.4 Mask Making • 16.5 Photoresist Application • 16.6 Alignment and Exposure • 16.7 Developing • 16.8 Lithography Advances • • Chapter 17 Etching and Deposition • 17.1 Etching Basics • 17.2 Wet Etching • 17.3 Dry Etching • 17.4 Deposition • • Chapter 18 Metallization and Polishing • 18.1 Metallization Basics • 18.2 Metallization Materials • 18.3 Metallization Techniques • 18.4 Planarization • 18.5 Copper Dual-Damascene Process • • Chapter 19 IC Process Control • 19.1 Process Evaluation • 19.2 Electrical Measurements • 19.3 Thickness Measurement • 19.4 Defect Detection • 19.5 Process Evaluation • 19.6 Yield Models and Fabrication Costs • 19.7 Clean Room Contamination • 19.8 Clean Room Design and Materials • • Chapter 20 IC Architecture and Packaging • 20.1 Integrated Circuit Components • 20.2 MEMS Systems • 20.3 Silicon Micro-architecture • 20.4 Packaging • • Summary • Practice Questions • Answers • • Bibliography • Index

9788126508624 | ₹ 659

Semiconductor Physics and Devices, 3ed, An Indian Adaptation | IM | BS | e | k

Sze

About the Author

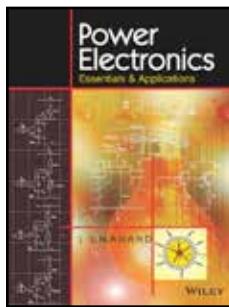

Simon Sze is EtronTech Distinguished Chair Professor, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan

Table of Contents

- Chapter 0 Introduction • 0.1 Semiconductor Devices • 0.2 Semiconductor Technology • 0.3 Summary • Chapter 1 Basic Physics of Semiconductors • 1.1 Semiconductor Materials • 1.2 Basic Crystal Structures • 1.3 Valence Bonds • 1.4 Quantum Physics of Semiconductors • 1.5 Band Structure Calculations • 1.6 Bandgaps in Semiconductors • 1.7 Intrinsic Carrier Concentration • 1.8 Donors and Acceptors • 1.9 Density of States • 1.10 Summary • • Chapter 2 Carrier Transport Phenomena • 2.1 Carrier Drift • 2.2 Carrier Diffusion • 2.3 Generation and Recombination Processes • 2.4 Continuity Equation • 2.5 Thermionic Emission Process • 2.6 Tunneling Process • 2.7 Space-Charge Effect • 2.8 High-Field Effects • 2.9 Summary • • Chapter 3 p-n Junction • 3.1 Thermal Equilibrium Condition • 3.2 Depletion Region • 3.3 Depletion Capacitance • 3.4 Current-Voltage Characteristics • 3.5 Charge Storage and Transient Behavior • 3.6 Junction Breakdown • 3.7 Heterojunction • 3.8 Summary • • Chapter 4 Bipolar Transistors • 4.1 Transistor Action • 4.2 Static Characteristics of Bipolar Transistors • 4.3 Frequency Response and Switching of Bipolar Transistors • 4.4 Nonideal Effects • 4.5 AC Equivalent Circuits • 4.6 Heterojunction Bipolar Transistors • 4.7 Summary • • Chapter 5 Field Effect Transistors • 5.1 Ideal MOS Capacitor • 5.2 SiO₂-Si MOS Capacitor • 5.3 Carrier Transport in MOS Capacitors • 5.4 Charge-Coupled Devices (CCD) • 5.5 JFET Fundamentals • 5.6 JFET Device Characteristics • 5.7 MOSFET Fundamentals • 5.8 Summary • • Chapter 6 Advanced MOSFET Devices • 6.1 MOSFET Scaling • 6.2 CMOS and BiCMOS • 6.3 MOSFET on Insulator • 6.4 Gate-All-Around (GAA) Device • 6.5 MOS Memory Structures • 6.6 Summary • • Chapter 7 MESFET and Related Devices • 7.1 Metal-Semiconductor Contacts • 7.2 MESFET • 7.3 MODFET • 7.4 Summary • • Chapter 8 Microwave Diodes; Power, Quantum-Effect, and Hot-Electron Devices • 8.1 Microwave Frequency Bands • 8.2 Tunnel Diode • 8.3 Gunn Diode • 8.4 IMPATT Diode • 8.5 Zener Diode • 8.6 Varactor Diode • 8.7 Gallium Arsenide Devices • 8.8 Thyristors and Related Power Devices • 8.9 Power MOSFET • 8.10 Power BJT • 8.11 Transferred-Electron Devices • 8.12 Quantum-Effect Devices • 8.13 Hot-Electron Devices • 8.14 Summary • • Chapter 9 Optical Devices: Light-Emitting Diodes and Lasers • 9.1 Radiative Transitions and Optical Absorption • 9.2 Light-Emitting Diodes • 9.3 Various Light-Emitting Diodes • 9.4 Semiconductor Lasers • 9.5 Summary • • Chapter 10 Optical Devices: Photodetectors and Solar Cells • 10.1 Photodetectors • 10.2 Solar Cells • 10.3 Silicon and Compound-Semiconductor Solar Cells • 10.4 Third-Generation Solar Cells • 10.5 Optical Concentration • 10.6 Summary • • Chapter 11 Semiconductor Process Technology • 11.1 Oxidation • 11.2 Diffusion • 11.3 Ion Implantation • 11.4 Silicon Crystal Growth from the Melt • 11.5 GaAs Crystal-Growth Techniques • 11.6 Molecular Beam Epitaxy Techniques • 11.7 Chemical Vapor Deposition of Dielectrics • 11.8 Sputtering • 11.9 Lithography and Etching • 11.10 Next-Generation Lithographic Methods • 11.11 Wet Chemical Etching • 11.12 Dry Etching • 11.13 Twin-Tub CMOS Process • 11.14 Summary • • Chapter 12 Integrated Devices • 12.1 Passive

Components • 12.2 Bipolar Technology • 12.3 MOSFET Technology • 12.4 MESFET Technology • 12.5 Challenges for Nanoelectronics • 12.6 Summary • Appendix A Glossary • Appendix B List of Symbols • Appendix C International System of Units (SI Units) • Appendix D Unit Prefixes* • Appendix E Greek Alphabet • Appendix F Physical Constants • Appendix G Properties of Important Element and Binary Compound Semiconductors at 300 K • Appendix H Properties of Si and GaAs at 300 K • Appendix I Derivation of the Density of States in a Semiconductor • Appendix J Derivation of Recombination Rate for Indirect Recombination • Appendix K Calculation of the Transmission Coefficient for a Symmetric Resonant-Tunneling Diode • Appendix L Basic Kinetic Theory of Gases • Supplements

9789354243226 | ₹ 969

Power Electronics: Essentials & Applications, w/CD | IM | e | k

Umanand

About the Author

Loganathan Umanand is a Principal Research Scientist at the Centre for Electronics Design and Technology (CEDT), Indian Institute of Science (IISc), Bangalore. His primary area of interest is renewable energy systems which involve research in wide-ranging disciplines like reliability, motor drives, controls, inverters, switched-mode converters, battery chargers. Some of the application areas where research work is being carried out are hybrid generation systems, multi-grid energy ports, hybrid electric vehicles, desalination of sea water, solar cooking and bond graph modeling of physical systems.

Table of Contents

- Power Semiconductor Switches • Drive Circuits • Rectifiers • DC-DC Linear Regulators
- DC-DC Switched-Mode Converters • DC-AC Switched-Mode Converters • Design of Magnetics • Modeling of Systems • Control System Essentials • Optimal and Robust Controller Design • Discrete Computation Essentials • Thermal Aspects • Reliability Modeling • Reliability Prediction

9788126519453 | ₹ 1059

Medical Instrumentation 5ed: Application and Design, An Indian Adaptation | IM | e | k

Webster

About the Author

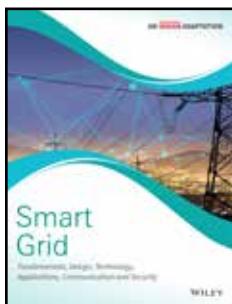

John G. Webster Biomedical Engineering, University of Wisconsin-Madison

Table of Contents

- 1 Basic Concepts of Medical Instrumentation • 1.1 Terminology of Medicine and Medical Devices • 1.2 Generalized Medical Instrumentation System • 1.3 Alternative Operational Modes • 1.4 Medical Measurement Constraints • 1.5 Classifications of Biomedical Instruments • 1.6 Interfering and Modifying Inputs • 1.7 Compensation Techniques • 1.8 Basic Concepts of Biostatistics • 1.9 Receiver Operating Characteristics (ROC) • 1.10 Generalized Static Characteristics • 1.11 Generalized Dynamic Characteristics • 1.12 Design Criteria • 1.13 Commercial Medical Instrumentation Development Process • 1.14 Quality Assurance and Quality Improvement • 1.15 Regulation of Medical Devices • 2 Amplifiers and Signal Processing • 2.1 Ideal Op-Amps • 2.2 Inverting Amplifiers • 2.3 Noninverting Amplifiers • 2.4 Differential Amplifiers • 2.5 Instrumentation Amplifier • 2.6 Comparators • 2.7 Rectifiers • 2.8 Logarithmic Amplifiers • 2.9 Integrators • 2.10 Differentiators • 2.11 Electronic Opto-Isolator • 2.12 Active Filters • 2.13 Frequency Response • 2.14 Offset Voltage • 2.15 Bias Current • 2.16 Input and Output Resistance • 2.17 Phase-Sensitive Demodulators • 2.18 Timers • 3 Basic Sensors and Principles • 3.1 Displacement Measurements • 3.2 Resistive Sensors • 3.3 Bridge Circuits • 3.4 Impedance Bridge Circuits • 3.5 Inductive Sensors • 3.6 Capacitive Sensors • 3.7 Piezoelectric Sensors •

- 3.8 Accelerometer • 3.9 Temperature Measurements • 3.10 Thermocouples • 3.11 Thermistors • 3.12 Radiation Thermometry • 3.13 Fiber-Optic Temperature Sensors • 3.14 Optical Measurements • 3.15 Radiation Sources • 3.16 Introduction to Biosensors • 3.17 Geometrical and Fiber Optics • 3.18 Optical Filters • 3.19 Radiation Sensors • 3.20 Optical Combinations • 4 Microcontrollers In Medical Instrumentation • 4.1 Introduction to Microcontrollers • 4.2 Basics of Embedded Medical System • 4.3 Microcontroller Based ECG System-an Example of Embedded Medical System • 4.4 Development of Embedded Medical System • 4.5 IoT-Based Medical Devices • 5 The Origin Of Biopotentials • 5.1 Electrical Activity of Excitable Cells • 5.2 Volume Conductor Fields • 5.3 Functional Organization of the Peripheral Nervous System • 5.4 The Electroneurogram • 5.5 The Electromyogram • 5.6 The Electrocardiogram • 5.7 The Electroretinogram • 5.8 The Electroencephalogram • 5.9 The Magnetoencephalogram • 6 Biopotential Electrodes • 6.1 The Electrode-Electrolyte Interface • 6.2 Polarization • 6.3 Polarizable and Nonpolarizable Electrodes • 6.4 Electrode Behavior and Circuit Models • 6.5 The Electrode-Skin Interface and Motion Artifact • 6.6 Body-Surface Recording Electrodes • 6.7 Internal Electrodes • 6.8 Electrode Arrays • 6.9 Microelectrodes • 6.10 Electrodes for Electric Stimulation of Tissue • 6.11 Practical Hints in Using Electrodes • 7 Biopotential Amplifiers • 7.1 Basic Requirements • 7.2 The Electrocardiograph • 7.3 Problems Frequently Encountered • 7.4 Transient Protection • 7.5 Common-Mode and other Interference-Reduction Circuits • 7.6 Amplifiers for other Biopotential Signals • 7.7 Example of a Biopotential Preamplifier • 7.8 Other Biopotential Signal Processors • 7.9 Cardiac Monitors • 7.10 Biotelemetry • 7.11 Applications of Biotelemetry • 8 Chemical Biosensors • 8.1 Blood-Gas and Acid-Base Physiology • 8.2 Electrochemical Sensors • 8.3 Chemical Fibrosensors • 8.4 Ion-Sensitive Field-Effect Transistor (ISFET) • 8.5 Immunologically Sensitive Field-Effect Transistor (IMFET) • 8.6 Noninvasive Blood-Gas Monitoring • 8.7 Blood-Glucose Sensors • 8.8 Electronic Noses • 8.9 Lab-On-a-Chip • 8.10 Summary • 9 Blood Pressure and Sound • 9.1 Direct Measurements • 9.2 Harmonic Analysis of Blood Pressure Waveforms • 9.3 Dynamic Properties of Pressure-Measurement Systems • 9.4 Measurement of System Response • 9.5 Effects of System Parameters on Response • 9.6 Bandwidth Requirements for Measuring Blood Pressure • 9.7 Typical Pressure-Waveform Distortion • 9.8 Systems for Measuring Venous Pressure • 9.9 Heart Sounds • 9.10 Phonocardiography • 9.11 Cardiac Catheterization • 9.12 Effects of Potential and Kinetic Energy on Pressure Measurements • 9.13 Indirect Measurements of Blood Pressure • 9.14 Tonometry • 10 Measurement of Flow and Volume Of Blood • 10.1 Indicator-Dilution Method That Uses Continuous Infusion • 10.2 Indicator-Dilution Method That Uses Rapid Injection • 10.3 Electromagnetic Flowmeters • 10.4 Ultrasonic Flowmeters • 10.5 Thermal-Convection Velocity Sensors • 10.6 Chamber Plethysmography • 10.7 Electrical-Impedance Plethysmography • 10.8 Photoplethysmography • 11 Measurements Of The Respiratory System • 11.1 Modeling the Respiratory System • 11.2 Measurement of Pressure • 11.3 Measurement of Gas Flow • 11.4 Lung Volume • 11.5 Respiratory Plethysmography • 11.6 Some Tests of Respiratory Mechanics • 11.7 Measurement of Gas Concentration • 11.8 Some Tests of Gas Transport • 12 Clinical Laboratory Instrumentation • 12.1 Spectrophotometry • 12.2 Automated Chemical Analyzers • 12.3 Chromatology • 12.4 Electrophoresis • 12.5 Hematology • 13 Medical Imaging Systems • 13.1 Information Content of an Image • 13.2 Modulation Transfer Function • 13.3 Noise-Equivalent Bandwidth • 13.4 Medical Imaging System • 13.5 Enhancement of Medical Images • 13.6 Medical Image Denoising • 13.7 Radiography • 13.8 Computed Radiography • 13.9 Computed Tomography • 13.10 MRI Reconstruction Techniques • 13.11 Magnetic Resonance Imaging • 13.12 Nuclear Medicine • 13.13 Gamma Camera • 13.14 Single-Photon Emission Computed Tomography • 13.15 Positron Emission Tomography • 13.16 Ultrasonography • 13.17 Contrast Agents • 14 Therapeutic And Prosthetic Devices • 14.1 Cardiac Pacemakers and Other Electric Stimulators • 14.2 Defibrillators and Cardioverters • 14.3 Mechanical Cardiovascular Orthotic and Prosthetic Devices • 14.4 Hemodialysis • 14.5 Lithotripsy • 14.6 Ventilators • 14.7 Infant Incubators • 14.8 Drug Delivery Devices • 14.9 Surgical Instruments • 14.10 Therapeutic Applications of the Laser • 15 Electrical Safety • 15.1 Physiological Effects of Electricity • 15.2 Important Susceptibility Parameters • 15.3 Distribution of Electric Power • 15.4 Macroshock Hazards • 15.5 Microshock Hazards • 15.6 Electrical-Safety Codes and Standards • 15.7 Basic Approaches to Protection Against Shock • 15.9 Protection: Equipment Design • 15.10 Electrical-Safety Analyzers • 15.11 Testing the Electric System • 15.12 Tests of Electric Appliances • 15.13 Testing of Electromagnetic Interference (EMI) • 15.13 Conclusion • Appendix • A.1 Physical Constants • A.2 International System of Units (SI) Prefixes • A.3 International System of Units • A.4 Abbreviations • A.5 Chemical Elements • Index

9789354249150 | ₹ 1039

Smart Grid: Fundamentals, Design, Technology, Applications, Communication and Security, An Indian Adaptation | e | k

Wiley Editorial

About the Author

Akihiko Yokoyama has been a Visiting Scholar at the University of Texas at Arlington and the University of California at Berkeley. His main research interests include power system analysis and control and Smart Grids. He is a Senior Member of the Institute of Electrical Engineers of Japan (IEEJ), the Japan Society for Industrial and Applied Mathematics (JSIAM), the IEEE and a member of CIGRE.

Table of Contents

- Preface to the Adapted Edition • About the Authors • Smart Grid: Applications, Communications and Security • Contributors • • Chapter 1 Introduction to Smart Grid and Architectural Designs • 1.1 Introduction • 1.2 Why Implement the Smart Grid Now? • 1.3 Conventional Grid versus the Smart Grid • 1.4 What is the Smart Grid? • 1.5 Smart Grid Domains • 1.6 Early Smart Grid Initiatives • 1.7 Overview of the Technologies Required for the Smart Grid • 1.8 Energy Independence and Security Act of 2007: Rationale for the Smart Grid • 1.9 Stakeholder Roles and Functions • 1.10 Core Applications for Smart Grid • 1.11 Voltage and VAR Control • 1.12 Fault Detection, Isolation, and Restoration • 1.13 Demand Response • 1.14 Distributed Energy Resources
- 1.15 Wide-Area Monitoring, Protection, and Control • 1.16 Representative Architectures for Smart Grid • 1.17 Functions of Smart Grid Components • • Chapter 2 Measurement and Monitoring in Smart Grid • 2.1 Introduction • 2.2 Intelligent Electronic Devices
- 2.3 Remote Terminal Units • 2.4 Evolution of Smart Metering • 2.5 Smart Meters • 2.6 Communication Infrastructure for Smart Metering • 2.7 Wide Area Monitoring, Protection, and Control (WAMPAC) • 2.8 Multiagent Systems Technology • • Chapter 3 Communication Technologies for Smart Grid • 3.1 Introduction • 3.2 Communication Technologies • 3.3 Smart Grid Network Architecture • 3.4 Network Layer Aspects of Smart Grid Communication • • Chapter 4 Renewable Energy Sources and Storage in Smart Grid • 4.1 Introduction • 4.2 Sustainable Energy Options for Smart Grid • 4.3

Penetration and Variability Issues Associated with Sustainable Energy Technology • 4.4 Demand Response Issues • 4.5 Energy Storage Technologies • 4.6 Case Study: Energy Storage for Wind Power • 4.7 Selection of Storage Technology • • Chapter 5 Transmission and Distribution for Smart Grid • 5.1 Introduction • 5.2 Smart Transmission • 5.3 Energy Management Systems • 5.4 Wide-Area Applications • 5.5 Visualisation Techniques • 5.6 Substation Automation • 5.7 Distribution Management Systems • 5.8 Modelling and Analysis Tools • 5.9 Applications for Distribution Network Automation • • Chapter 6 Analysis Tools for Smart Grid • 6.1 Introduction • 6.2 Challenges to Load Flow in Smart Grids • 6.3 Classical Load Flow Formulations • 6.4 Congestion Management • 6.5 Load Flow for Smart Grid Design • 6.6 Contingencies and Their Classification • 6.7 Stability Analysis • 6.8 Existing Voltage Stability Techniques • 6.9 Voltage Stability Assessment • 6.10 Voltage Stability Techniques • 6.11 Voltage Stability Indexing • 6.12 Preventive Control for Voltage Stability • 6.13 Angle Stability Assessment • 6.14 State Estimation for Smart Grid • • Chapter 7 Interoperability, Cyber Security, and Standards • 7.1 Introduction • 7.2 Interoperability • 7.3 Information Security for Smart Grid • 7.4 Encryption and Decryption for Security • 7.5 Authentication • 7.6 Digital Signatures • 7.7 Cyber Security Standards • 7.8 Cyber Security Risks • • Chapter 8 Role of Electric Vehicles in Smart Grid • 8.1 Introduction • 8.2 Electric Vehicles and Hybrids • 8.3 PHEV Technology • 8.4 Storage Technologies for Electric Vehicles • 8.5 Vehicle Architecture, Key Components, Controls, and Cost • 8.6 Grid to Vehicle (G2V) Charging: Levels 1 to 3 • 8.7 Vehicle-to-Grid (V2G) Power • 8.8 Environmental Implications • 8.9 Case Study: Agent-Based Control of Electrical Vehicle Battery Charging • • Chapter 9 Case Studies and Testbeds for Smart Grid • 9.1 Introduction • 9.2 Demonstration Projects • 9.3 Microgrid with Renewable Energy • 9.4 Case Study of Renewable Energy Resource (RER) Integration • 9.5 Hybrid Smart Grid in Rural Greece • 9.6 Network Design and Implementation in Larissa • 9.7 Smart Grid Applications Offered in Larissa • 9.8 Issues Related to Smart Grid Experience in Larissa • 9.9 Remote Access to Home Appliances • 9.10 Access Control and Authorisation for Remote Access to Home Energy Appliances • • Chapter 10 Indian Smart Grid Scenario • 10.1 Introduction • 10.2 Indian Power Sector • 10.3 Renewable Energy Development in India • 10.4 Smart Grid Drivers for India • 10.5 Smart Grid Initiatives in India • 10.6 Roadmap • 10.7 Smart Grid Pilot Projects • 10.8 Case Studies • • Summary • Review Questions • References • Index

9789354243219 | ₹ 749

ISBN	Author	Title	Price (₹)	Qty
ELECTRICAL, ELECTRONICS & INSTRUMENTATION ENGINEERING				
9789357461245	Agrawal	Fiber-Optic Communication Systems, 5ed, An Indian Adaptation e k	1019	
9788126520701	Ananthasuresh	Micro and Smart Systems: As per AICTE	1009	
9788126508839	Apte	Advanced Digital Signal Processing: As per AICTE, w/cd e	879	
9788126510733	Apte	Digital Signal Processing, 2ed: As per AICTE , w/cd e	919	
9788126540389	Apte	Speech and Audio Processing: As per AICTE e	929	
9788126579747	Arora	Fundamentals of High-Voltage Engineering IM e k	669	
9789354248474	Balanis	Antenna Theory and Applications, 4ed, An Indian Adaptation IM e k	1069	
9788126541980	Barua	Analog Signal Processing: Analysis and Synthesis, w/cd e k	869	
9788126528820	Barua	Fundamentals of Industrial Instrumentation e k	889	
9788126556366	Bormane	Television Engineering: Audio and Video Systems e k	659	
9789357466356	Brinkmann, Bhamoriya	Introduction to Sustainability, 2ed, An Indian Adaptation e k	1059	
9788126543939	Carusone	Analog Integrated Circuit Design, 2ed, ISV IM e	1049	
9789354249273	Chatterjee	Wiley Acing the GATE: Electrical Engineering, 2ed, 2022	1069	
9788126571857	Chatterjee	Wiley's GATE Electrical Engineering Chapter-Wise Solved Papers (2000-2020) e k	599	
9788126573493	Dorf	Dorf's Introduction to Electric Circuits, Wiley India Edition e	1079	
9789354244391	Duda	Pattern Recognition, 2ed, An Indian Adaptation IM e k	799	
9788126566549	Dwivedi	Fundamentals of Systems Engineering e k	559	
9788126542710	Dwivedi	Fundamentals of Electrical Engineering, 2ed e k	779	
9789357462174	Gilat	MATLAB: An Introduction with Applications, 6ed, An Indian Adaptation IM	899	
9788126521487	Gray	Analysis and Design of Analog Integrated Circuits, 5ed, ISV IM	1139	
9788126558698	Gupta	Wiley's GATE Instrumentation Engineering Chapter-wise Solved Papers (2000-2020) k	499	
9789354640896	Haykin	Communication Systems, 5ed, ISV, An Indian Adaptation IM BS e k	999	
9789354242465	Haykin	Digital Communication Systems, An Indian Adaptation IM e k	979	
9789354644337	Haykin	Introduction to Analog and Digital Communications, 2ed, An Indian Adaptation IM BS e k	1049	
9789354243158	Haykin	Signals and Systems, 2ed, An Indian Adaptation IM e k	1049	
9788126576258	Irwin	Engineering Circuit Analysis, 11ed, ISV IM e	1159	
9788126551972	Jain	Modeling and Simulation using MATLAB - Simulink, 2ed, w/cd e k	949	
9788126529513	Jegathesan	Basic Electrical and Electronics Engineering BS e	799	
9788126536139	Jena	Basic Electrical Engineering e k	829	
9788126509829	Krishnaveni	Signals and Systems: As per AICTE e	939	
9788126519071	Kulkarni	Quality Control e k	859	
9789354643194	Kumar	Basic Electrical and Electronics Engineering, 2ed e k	839	
9788126579921	Kumar	Engineering Economy and Management e k	859	
9789354642104	Lillesand	Remote Sensing and Image Interpretation, 7ed, An Indian Adaptation IM e k	1189	
9788126508631	Maini	Digital Electronics: Principles and Integrated Circuits: As per AICTE e	859	
9788126578085	Maini	Electronic Devices and Circuits, 2ed IM e k	1039	
9788126520732	Maini	Satellite Communications: As per AICTE e	949	
9788126571956	Maini	Wiley's GATE Electronics and Communication Engineering Chapter-wise Solved Papers (2000-2020) e k	599	
9789354644900	Maini	Wiley Acing the GATE: Electronics and Communication Engineering, 2ed, 2023	1069	
9788126579754	Mandal	Power Plant Engineering: Theory and Practice e k	859	
9788126558551	Manvi	Wireless and Mobile Networks, Concepts and Protocols, 2ed IM e k	929	
9788126510740	Mishra	Fiber Optic Communication: Systems and Components: As per AICTE e	829	

ISBN	Author	Title	Price (₹)	Qty
9789354640278	Mohan	Power Electronics: Converters, Applications and Design, 3ed, An Indian Adaptation IM e k	1139	
9789357461306	Niku	Introduction to Robotics: Analysis, Control, Applications , 3ed , An Indian Adaptation e k	1059	
9789357463980	Nise	Control Systems Engineering, 8ed, An Indian Adaptation New IM k	1399	
9789354248795	Molisch	Wireless Communications, 2ed, An Indian Adaptation IM e k	1029	
9788126562947	Montgomery	Applied Statistics and Probability for Engineers, 6ed, ISV IM e	1069	
9788126522064	Moudgalya	Digital Control, w/cd	1139	
9789357460354	Mueller	MATLAB for Dummies, 2ed	959	
9788126571833	Nise	Nise's Control Systems Engineering, Wiley India Ed IM e	1199	
9789357463966	Peckol	Embedded Systems : A Contemporary Design Tool, 2ed, An Indian Adaptation New IM e	1089	
9789354240201	Poole	Introduction to Nanoscience and Nanotechnology, An Indian Adaptation e k	1009	
9788177224610	Prasad	Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, New ed	749	
9788177227444	Prasad	VLSI Design Black Book e	699	
9789354243035	Pratt	Satellite Communications, 3ed, An Indian Adaptation IM e k	999	
9789388991087	Pozar	Microwave Engineering: Theory and Techniques, 4ed, An Indian Adaptation IM e k	1039	
9788126522880	Ramachandran	Control Engineering e k	869	
9789357460637	Rao	Advanced Mobile Wireless Communications: A Holistic Coverage from Basic Concepts to 5G Technologies with IoT IM e k	1119	
9788126577545	Rao	The 8051 and MSP430 Microcontrollers: Architecture, Programming and Applications IM e k	679	
9788126536153	Rao	Electromagnetic Field Theory and Transmission Lines e k	829	
9788126542017	Rao	Nanoscience and Nanotechnology: Fundamentals of Frontiers e k	859	
9788126534418	Rao	Power System: Operation & Control e k	949	
9788126512348	Ravichandran	Probability and Statistics for Engineers: As per AICTE IM e	929	
9788126571352	Razavi	Microelectronics, 2ed, ISV IM	1159	
9789388991063	Razavi	Microelectronics, 3ed, An Indian Adaptation IM e k	1149	
9788126502608	Ross	Fuzzy Sets and Fuzzy Logic with Engineering Applications, 4ed, An Indian Adaptation IM e k	1139	
9789390395057	Sen	Principles of Electric Machines, 3ed, An Indian Adaptation IM e k	949	
9788126579976	Shah	Nanotechnology: The Science of Small , 2ed e k	709	
9788126512331	Shanmugam	Digital and Analog Communication Systems Books: As per AICTE	939	
9788126538652	Sinha	Biometrics: Concepts and Applications, w/cd e k	789	
9788126554751	Sivanandam	MATLAB with Control System, Signal Processing and Image Processing Toolboxes, w/cd e k	879	
9788126508624	Swaminathan	Semiconductor Materials, Devices and Fabrication: As per AICTE, w/cd	659	
9789354243226	Sze	Semiconductor Physics and Devices, 3ed, An Indian Adaptation IM BS e k	969	
9788126519453	Umanand	Power Electronics: Essentials & Applications, w/cd IM e k	1059	
9789354249150	Webster	Medical Instrumentation 5ed: Application and Design, An Indian Adaptation IM e k	1039	
9789354243219	Wiley Editorial	Smart Grid: Fundamentals, Design, Technology, Applications, Communication and Security, An Indian Adaptation e k	749	

Wiley India Pvt. Ltd.

HEAD OFFICE: 1402, 14th Floor World Trade Tower, Plot No. C-1, Sector-16, Noida 201301 INDIA
Tel: 0120-6291100 Email: csupport@wiley.com

wileyindia.com

Books are available at

amazon.in

amazonkindle

Flipkart

Exclusive Wiley Brand Store @ www.amazon.in/wiley