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Introduction to Optimization

1.1 INTRODUCTION

Optimization is the act of obtaining the best result under given circumstances. In design,
construction, and maintenance of any engineering system, engineers have to take many
technological and managerial decisions at several stages. The ultimate goal of all such
decisions is either to minimize the effort required or to maximize the desired benefit.
Since the effort required or the benefit desired in any practical situation can be expressed
as a function of certain decision variables, optimization can be defined as the process
of finding the conditions that give the maximum or minimum value of a function. It can
be seen from Fig. 1.1 that if a point x∗ corresponds to the minimum value of function
f (x), the same point also corresponds to the maximum value of the negative of the
function, −f (x). Thus without loss of generality, optimization can be taken to mean
minimization since the maximum of a function can be found by seeking the minimum
of the negative of the same function.

In addition, the following operations on the objective function will not change the
optimum solution x∗ (see Fig. 1.2):

1. Multiplication (or division) of f (x) by a positive constant c.
2. Addition (or subtraction) of a positive constant c to (or from) f (x).

There is no single method available for solving all optimization problems effi-
ciently. Hence a number of optimization methods have been developed for solving
different types of optimization problems. The optimum seeking methods are also known
as mathematical programming techniques and are generally studied as a part of oper-
ations research. Operations research is a branch of mathematics concerned with the
application of scientific methods and techniques to decision making problems and with
establishing the best or optimal solutions. The beginnings of the subject of operations
research can be traced to the early period of World War II. During the war, the British
military faced the problem of allocating very scarce and limited resources (such as
fighter airplanes, radars, and submarines) to several activities (deployment to numer-
ous targets and destinations). Because there were no systematic methods available to
solve resource allocation problems, the military called upon a team of mathematicians
to develop methods for solving the problem in a scientific manner. The methods devel-
oped by the team were instrumental in the winning of the Air Battle by Britain. These
methods, such as linear programming, which were developed as a result of research
on (military) operations, subsequently became known as the methods of operations
research.
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2 Introduction to Optimization

Figure 1.1 Minimum of f (x) is same as maximum of −f (x).
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Figure 1.2 Optimum solution of cf (x) or c + f (x) same as that of f (x).

Table 1.1 lists various mathematical programming techniques together with other
well-defined areas of operations research. The classification given in Table 1.1 is not
unique; it is given mainly for convenience.

Mathematical programming techniques are useful in finding the minimum of a
function of several variables under a prescribed set of constraints. Stochastic process
techniques can be used to analyze problems described by a set of random variables
having known probability distributions. Statistical methods enable one to analyze the
experimental data and build empirical models to obtain the most accurate represen-
tation of the physical situation. This book deals with the theory and application of
mathematical programming techniques suitable for the solution of engineering design
problems.
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Table 1.1 Methods of Operations Research

Mathematical programming or Stochastic process
optimization techniques techniques Statistical methods

Calculus methods Statistical decision theory Regression analysis
Calculus of variations Markov processes Cluster analysis, pattern

recognitionNonlinear programming Queueing theory
Geometric programming Renewal theory Design of experiments
Quadratic programming Simulation methods Discriminate analysis

(factor analysis)Linear programming Reliability theory
Dynamic programming
Integer programming
Stochastic programming
Separable programming
Multiobjective programming
Network methods: CPM and PERT
Game theory

Modern or nontraditional optimization techniques

Genetic algorithms
Simulated annealing
Ant colony optimization
Particle swarm optimization
Neural networks
Fuzzy optimization

1.2 HISTORICAL DEVELOPMENT

The existence of optimization methods can be traced to the days of Newton, Lagrange,
and Cauchy. The development of differential calculus methods of optimization was
possible because of the contributions of Newton and Leibnitz to calculus. The founda-
tions of calculus of variations, which deals with the minimization of functionals, were
laid by Bernoulli, Euler, Lagrange, and Weirstrass. The method of optimization for con-
strained problems, which involves the addition of unknown multipliers, became known
by the name of its inventor, Lagrange. Cauchy made the first application of the steep-
est descent method to solve unconstrained minimization problems. Despite these early
contributions, very little progress was made until the middle of the twentieth century,
when high-speed digital computers made implementation of the optimization proce-
dures possible and stimulated further research on new methods. Spectacular advances
followed, producing a massive literature on optimization techniques. This advance-
ment also resulted in the emergence of several well-defined new areas in optimization
theory.

It is interesting to note that the major developments in the area of numerical meth-
ods of unconstrained optimization have been made in the United Kingdom only in the
1960s. The development of the simplex method by Dantzig in 1947 for linear program-
ming problems and the annunciation of the principle of optimality in 1957 by Bellman
for dynamic programming problems paved the way for development of the methods
of constrained optimization. Work by Kuhn and Tucker in 1951 on the necessary and
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sufficiency conditions for the optimal solution of programming problems laid the foun-
dations for a great deal of later research in nonlinear programming. The contributions
of Zoutendijk and Rosen to nonlinear programming during the early 1960s have been
significant. Although no single technique has been found to be universally applica-
ble for nonlinear programming problems, work of Carroll and Fiacco and McCormick
allowed many difficult problems to be solved by using the well-known techniques of
unconstrained optimization. Geometric programming was developed in the 1960s by
Duffin, Zener, and Peterson. Gomory did pioneering work in integer programming,
one of the most exciting and rapidly developing areas of optimization. The reason for
this is that most real-world applications fall under this category of problems. Dantzig
and Charnes and Cooper developed stochastic programming techniques and solved
problems by assuming design parameters to be independent and normally distributed.

The desire to optimize more than one objective or goal while satisfying the phys-
ical limitations led to the development of multiobjective programming methods. Goal
programming is a well-known technique for solving specific types of multiobjective
optimization problems. The goal programming was originally proposed for linear prob-
lems by Charnes and Cooper in 1961. The foundations of game theory were laid by
von Neumann in 1928 and since then the technique has been applied to solve several
mathematical economics and military problems. Only during the last few years has
game theory been applied to solve engineering design problems.

Modern Methods of Optimization. The modern optimization methods, also some-
times called nontraditional optimization methods, have emerged as powerful and pop-
ular methods for solving complex engineering optimization problems in recent years.
These methods include genetic algorithms, simulated annealing, particle swarm opti-
mization, ant colony optimization, neural network-based optimization, and fuzzy opti-
mization. The genetic algorithms are computerized search and optimization algorithms
based on the mechanics of natural genetics and natural selection. The genetic algorithms
were originally proposed by John Holland in 1975. The simulated annealing method
is based on the mechanics of the cooling process of molten metals through annealing.
The method was originally developed by Kirkpatrick, Gelatt, and Vecchi.

The particle swarm optimization algorithm mimics the behavior of social organisms
such as a colony or swarm of insects (for example, ants, termites, bees, and wasps), a
flock of birds, and a school of fish. The algorithm was originally proposed by Kennedy
and Eberhart in 1995. The ant colony optimization is based on the cooperative behavior
of ant colonies, which are able to find the shortest path from their nest to a food
source. The method was first developed by Marco Dorigo in 1992. The neural network
methods are based on the immense computational power of the nervous system to solve
perceptional problems in the presence of massive amount of sensory data through its
parallel processing capability. The method was originally used for optimization by
Hopfield and Tank in 1985. The fuzzy optimization methods were developed to solve
optimization problems involving design data, objective function, and constraints stated
in imprecise form involving vague and linguistic descriptions. The fuzzy approaches
for single and multiobjective optimization in engineering design were first presented
by Rao in 1986.
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1.3 ENGINEERING APPLICATIONS OF OPTIMIZATION

Optimization, in its broadest sense, can be applied to solve any engineering problem.
Some typical applications from different engineering disciplines indicate the wide scope
of the subject:

1. Design of aircraft and aerospace structures for minimum weight
2. Finding the optimal trajectories of space vehicles
3. Design of civil engineering structures such as frames, foundations, bridges,

towers, chimneys, and dams for minimum cost
4. Minimum-weight design of structures for earthquake, wind, and other types of

random loading
5. Design of water resources systems for maximum benefit
6. Optimal plastic design of structures
7. Optimum design of linkages, cams, gears, machine tools, and other mechanical

components
8. Selection of machining conditions in metal-cutting processes for minimum pro-

duction cost
9. Design of material handling equipment, such as conveyors, trucks, and cranes,

for minimum cost
10. Design of pumps, turbines, and heat transfer equipment for maximum efficiency
11. Optimum design of electrical machinery such as motors, generators, and trans-

formers
12. Optimum design of electrical networks
13. Shortest route taken by a salesperson visiting various cities during one tour
14. Optimal production planning, controlling, and scheduling
15. Analysis of statistical data and building empirical models from experimental

results to obtain the most accurate representation of the physical phenomenon
16. Optimum design of chemical processing equipment and plants
17. Design of optimum pipeline networks for process industries
18. Selection of a site for an industry
19. Planning of maintenance and replacement of equipment to reduce operating

costs
20. Inventory control
21. Allocation of resources or services among several activities to maximize the

benefit
22. Controlling the waiting and idle times and queueing in production lines to reduce

the costs
23. Planning the best strategy to obtain maximum profit in the presence of a com-

petitor
24. Optimum design of control systems
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1.4 STATEMENT OF AN OPTIMIZATION PROBLEM

An optimization or a mathematical programming problem can be stated as follows.

Find X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1

x2
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

which minimizes f (X)

subject to the constraints

gj (X) ≤ 0, j = 1, 2, . . . , m

lj (X) = 0, j = 1, 2, . . . , p
(1.1)

where X is an n-dimensional vector called the design vector , f (X) is termed the objec-
tive function , and gj (X) and lj (X) are known as inequality and equality constraints,
respectively. The number of variables n and the number of constraints m and/or p

need not be related in any way. The problem stated in Eq. (1.1) is called a constrained
optimization problem.† Some optimization problems do not involve any constraints and
can be stated as

Find X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1

x2
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

which minimizes f (X) (1.2)

Such problems are called unconstrained optimization problems .

1.4.1 Design Vector

Any engineering system or component is defined by a set of quantities some of which
are viewed as variables during the design process. In general, certain quantities are
usually fixed at the outset and these are called preassigned parameters . All the other
quantities are treated as variables in the design process and are called design or decision
variables xi, i = 1, 2, . . . , n. The design variables are collectively represented as a
design vector X = {x1, x2, . . . , xn}T. As an example, consider the design of the gear
pair shown in Fig. 1.3, characterized by its face width b, number of teeth T1 and
T2, center distance d , pressure angle ψ , tooth profile, and material. If center distance
d , pressure angle ψ , tooth profile, and material of the gears are fixed in advance,
these quantities can be called preassigned parameters . The remaining quantities can be
collectively represented by a design vector X = {x1, x2, x3}T = {b, T1, T2}T. If there are
no restrictions on the choice of b, T1, and T2, any set of three numbers will constitute a
design for the gear pair. If an n-dimensional Cartesian space with each coordinate axis
representing a design variable xi (i = 1, 2, . . . , n) is considered, the space is called

†In the mathematical programming literature, the equality constraints lj (X) = 0, j = 1, 2, . . . , p are often
neglected, for simplicity, in the statement of a constrained optimization problem, although several methods
are available for handling problems with equality constraints.
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Figure 1.3 Gear pair in mesh.

the design variable space or simply design space. Each point in the n-dimensional
design space is called a design point and represents either a possible or an impossible
solution to the design problem. In the case of the design of a gear pair, the design
point {1.0, 20, 40}T, for example, represents a possible solution, whereas the design
point {1.0, −20, 40.5}T represents an impossible solution since it is not possible to
have either a negative value or a fractional value for the number of teeth.

1.4.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily; rather,
they have to satisfy certain specified functional and other requirements. The restrictions
that must be satisfied to produce an acceptable design are collectively called design
constraints . Constraints that represent limitations on the behavior or performance of
the system are termed behavior or functional constraints . Constraints that represent
physical limitations on design variables, such as availability, fabricability, and trans-
portability, are known as geometric or side constraints . For example, for the gear pair
shown in Fig. 1.3, the face width b cannot be taken smaller than a certain value, due
to strength requirements. Similarly, the ratio of the numbers of teeth, T1/T2, is dictated
by the speeds of the input and output shafts, N1 and N2. Since these constraints depend
on the performance of the gear pair, they are called behavior constraints. The values
of T1 and T2 cannot be any real numbers but can only be integers. Further, there can
be upper and lower bounds on T1 and T2 due to manufacturing limitations. Since these
constraints depend on the physical limitations, they are called side constraints .
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1.4.3 Constraint Surface

For illustration, consider an optimization problem with only inequality constraints
gj (X) ≤ 0. The set of values of X that satisfy the equation gj (X) = 0 forms a hyper-
surface in the design space and is called a constraint surface. Note that this is an
(n − 1)-dimensional subspace, where n is the number of design variables. The constraint
surface divides the design space into two regions: one in which gj (X) < 0 and the other
in which gj (X) > 0. Thus the points lying on the hypersurface will satisfy the constraint
gj (X) critically, whereas the points lying in the region where gj (X) > 0 are infeasible
or unacceptable, and the points lying in the region where gj (X) < 0 are feasible or
acceptable. The collection of all the constraint surfaces gj (X) = 0, j = 1, 2, . . . ,m,
which separates the acceptable region is called the composite constraint surface.

Figure 1.4 shows a hypothetical two-dimensional design space where the infeasible
region is indicated by hatched lines. A design point that lies on one or more than one
constraint surface is called a bound point , and the associated constraint is called an
active constraint . Design points that do not lie on any constraint surface are known as
free points . Depending on whether a particular design point belongs to the acceptable
or unacceptable region, it can be identified as one of the following four types:

1. Free and acceptable point
2. Free and unacceptable point
3. Bound and acceptable point
4. Bound and unacceptable point

All four types of points are shown in Fig. 1.4.

Figure 1.4 Constraint surfaces in a hypothetical two-dimensional design space.
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1.4.4 Objective Function

The conventional design procedures aim at finding an acceptable or adequate design
that merely satisfies the functional and other requirements of the problem. In general,
there will be more than one acceptable design, and the purpose of optimization is
to choose the best one of the many acceptable designs available. Thus a criterion
has to be chosen for comparing the different alternative acceptable designs and for
selecting the best one. The criterion with respect to which the design is optimized,
when expressed as a function of the design variables, is known as the criterion or merit
or objective function . The choice of objective function is governed by the nature of
problem. The objective function for minimization is generally taken as weight in aircraft
and aerospace structural design problems. In civil engineering structural designs, the
objective is usually taken as the minimization of cost. The maximization of mechanical
efficiency is the obvious choice of an objective in mechanical engineering systems
design. Thus the choice of the objective function appears to be straightforward in most
design problems. However, there may be cases where the optimization with respect
to a particular criterion may lead to results that may not be satisfactory with respect
to another criterion. For example, in mechanical design, a gearbox transmitting the
maximum power may not have the minimum weight. Similarly, in structural design,
the minimum weight design may not correspond to minimum stress design, and the
minimum stress design, again, may not correspond to maximum frequency design. Thus
the selection of the objective function can be one of the most important decisions in
the whole optimum design process.

In some situations, there may be more than one criterion to be satisfied simul-
taneously. For example, a gear pair may have to be designed for minimum weight
and maximum efficiency while transmitting a specified horsepower. An optimization
problem involving multiple objective functions is known as a multiobjective program-
ming problem . With multiple objectives there arises a possibility of conflict, and one
simple way to handle the problem is to construct an overall objective function as a
linear combination of the conflicting multiple objective functions. Thus if f1(X) and
f2(X) denote two objective functions, construct a new (overall) objective function for
optimization as

f (X) = α1f1(X) + α2f2(X) (1.3)

where α1 and α2 are constants whose values indicate the relative importance of one
objective function relative to the other.

1.4.5 Objective Function Surfaces

The locus of all points satisfying f (X) = C = constant forms a hypersurface in the
design space, and each value of C corresponds to a different member of a family of
surfaces. These surfaces, called objective function surfaces , are shown in a hypothetical
two-dimensional design space in Fig. 1.5.

Once the objective function surfaces are drawn along with the constraint surfaces,
the optimum point can be determined without much difficulty. But the main problem
is that as the number of design variables exceeds two or three, the constraint and
objective function surfaces become complex even for visualization and the problem
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Figure 1.5 Contours of the objective function.

has to be solved purely as a mathematical problem. The following example illustrates
the graphical optimization procedure.

Example 1.1 Design a uniform column of tubular section, with hinge joints at both
ends, (Fig. 1.6) to carry a compressive load P = 2500 kgf for minimum cost. The
column is made up of a material that has a yield stress (σy) of 500 kgf/cm2, modulus
of elasticity (E) of 0.85 × 106 kgf/cm2, and weight density (ρ) of 0.0025 kgf/cm3.
The length of the column is 250 cm. The stress induced in the column should be less
than the buckling stress as well as the yield stress. The mean diameter of the column
is restricted to lie between 2 and 14 cm, and columns with thicknesses outside the
range 0.2 to 0.8 cm are not available in the market. The cost of the column includes
material and construction costs and can be taken as 5W + 2d , where W is the weight
in kilograms force and d is the mean diameter of the column in centimeters.

SOLUTION The design variables are the mean diameter (d) and tube thickness (t):

X =
{
x1

x2

}

=
{
d

t

}

(E1)

The objective function to be minimized is given by

f (X) = 5W + 2d = 5ρlπ dt + 2d = 9.82x1x2 + 2x1 (E2)
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i

Figure 1.6 Tubular column under compression.

The behavior constraints can be expressed as

stress induced ≤ yield stress

stress induced ≤ buckling stress

The induced stress is given by

induced stress = σi = P

π dt
= 2500

πx1x2
(E3)

The buckling stress for a pin-connected column is given by

buckling stress = σb = Euler buckling load

cross-sectional area
= π2EI

l2

1

π dt
(E4)

where

I = second moment of area of the cross section of the column

= π

64
(d4

o − d4
i )

= π

64
(d2

o + d2
i )(do + di)(do − di) = π

64
[(d + t)2 + (d − t)2]

× [(d + t) + (d − t)][(d + t) − (d − t)]

= π

8
dt (d2 + t2) = π

8
x1x2(x

2
1 + x2

2 ) (E5)
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Thus the behavior constraints can be restated as

g1(X) = 2500

πx1x2
− 500 ≤ 0 (E6)

g2(X) = 2500

πx1x2
− π2(0.85 × 106)(x2

1 + x2
2 )

8(250)2
≤ 0 (E7)

The side constraints are given by

2 ≤ d ≤ 14

0.2 ≤ t ≤ 0.8

which can be expressed in standard form as

g3(X) = −x1 + 2.0 ≤ 0 (E8)

g4(X) = x1 − 14.0 ≤ 0 (E9)

g5(X) = −x2 + 0.2 ≤ 0 (E10)

g6(X) = x2 − 0.8 ≤ 0 (E11)

Since there are only two design variables, the problem can be solved graphically as
shown below.

First, the constraint surfaces are to be plotted in a two-dimensional design space
where the two axes represent the two design variables x1 and x2. To plot the first
constraint surface, we have

g1(X) = 2500

πx1x2
− 500 ≤ 0

that is,
x1x2 ≥ 1.593

Thus the curve x1x2 = 1.593 represents the constraint surface g1(X) = 0. This curve
can be plotted by finding several points on the curve. The points on the curve can be
found by giving a series of values to x1 and finding the corresponding values of x2

that satisfy the relation x1x2 = 1.593:

x1 2.0 4.0 6.0 8.0 10.0 12.0 14.0

x2 0.7965 0.3983 0.2655 0.1990 0.1593 0.1328 0.1140

These points are plotted and a curve P1Q1 passing through all these points is drawn as
shown in Fig. 1.7, and the infeasible region, represented by g1(X) > 0 or x1x2 < 1.593,
is shown by hatched lines.† Similarly, the second constraint g2(X) ≤ 0 can be expressed
as x1x2(x

2
1 + x2

2) ≥ 47.3 and the points lying on the constraint surface g2(X) = 0 can
be obtained as follows for x1x2(x

2
1 + x2

2) = 47.3:

†The infeasible region can be identified by testing whether the origin lies in the feasible or infeasible
region.
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Figure 1.7 Graphical optimization of Example 1.1.

x1 2 4 6 8 10 12 14

x2 2.41 0.716 0.219 0.0926 0.0473 0.0274 0.0172

These points are plotted as curve P2Q2, the feasible region is identified, and the infea-
sible region is shown by hatched lines as in Fig. 1.7. The plotting of side constraints
is very simple since they represent straight lines. After plotting all the six constraints,
the feasible region can be seen to be given by the bounded area ABCDEA.
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Next, the contours of the objective function are to be plotted before finding the
optimum point. For this, we plot the curves given by

f (X) = 9.82x1x2 + 2x1 = c = constant

for a series of values of c. By giving different values to c, the contours of f can be
plotted with the help of the following points.

For 9.82x1x2 + 2x1 = 50.0:

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 16.77 12.62 10.10 8.44 7.24 6.33 5.64 5.07

For 9.82x1x2 + 2x1 = 40.0:

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 13.40 10.10 8.08 6.75 5.79 5.06 4.51 4.05

For 9.82x1x2 + 2x1 = 31.58 (passing through the corner point C):

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 10.57 7.96 6.38 5.33 4.57 4.00 3.56 3.20

For 9.82x1x2 + 2x1 = 26.53 (passing through the corner point B):

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 8.88 6.69 5.36 4.48 3.84 3.36 2.99 2.69

For 9.82x1x2 + 2x1 = 20.0:

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 6.70 5.05 4.04 3.38 2.90 2.53 2.26 2.02

These contours are shown in Fig. 1.7 and it can be seen that the objective function
cannot be reduced below a value of 26.53 (corresponding to point B) without violating
some of the constraints. Thus the optimum solution is given by point B with d∗ =
x∗

1 = 5.44 cm and t∗ = x∗
2 = 0.293 cm with fmin = 26.53.

1.5 CLASSIFICATION OF OPTIMIZATION PROBLEMS

Optimization problems can be classified in several ways, as described below.

1.5.1 Classification Based on the Existence of Constraints

As indicated earlier, any optimization problem can be classified as constrained or uncon-
strained, depending on whether constraints exist in the problem.
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1.5.2 Classification Based on the Nature of the Design Variables

Based on the nature of design variables encountered, optimization problems can be
classified into two broad categories. In the first category, the problem is to find values
to a set of design parameters that make some prescribed function of these parameters
minimum subject to certain constraints. For example, the problem of minimum-weight
design of a prismatic beam shown in Fig. 1.8a subject to a limitation on the maximum
deflection can be stated as follows:

Find X =
{
b

d

}

which minimizes

f (X) = ρlbd

(1.4)

subject to the constraints

δtip(X) ≤ δmax

b ≥ 0

d ≥ 0

where ρ is the density and δtip is the tip deflection of the beam. Such problems are
called parameter or static optimization problems . In the second category of problems,
the objective is to find a set of design parameters, which are all continuous functions
of some other parameter, that minimizes an objective function subject to a set of
constraints. If the cross-sectional dimensions of the rectangular beam are allowed to
vary along its length as shown in Fig. 1.8b, the optimization problem can be stated as

Find X(t) =
{
b(t)

d(t)

}

which minimizes

f [X(t)] = ρ

∫ l

0
b(t) d(t) dt (1.5)

subject to the constraints

δtip[X(t)] ≤ δmax, 0 ≤ t ≤ l

b(t) ≥ 0, 0 ≤ t ≤ l

d(t) ≥ 0, 0 ≤ t ≤ l

Figure 1.8 Cantilever beam under concentrated load.
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Here the design variables are functions of the length parameter t . This type of problem,
where each design variable is a function of one or more parameters, is known as a
trajectory or dynamic optimization problem [1.55].

1.5.3 Classification Based on the Physical Structure of the Problem

Depending on the physical structure of the problem, optimization problems can be
classified as optimal control and nonoptimal control problems.

Optimal Control Problem. An optimal control (OC) problem is a mathematical pro-
gramming problem involving a number of stages, where each stage evolves from the
preceding stage in a prescribed manner. It is usually described by two types of vari-
ables: the control (design) and the state variables. The control variables define the
system and govern the evolution of the system from one stage to the next, and the state
variables describe the behavior or status of the system in any stage. The problem is
to find a set of control or design variables such that the total objective function (also
known as the performance index , PI) over all the stages is minimized subject to a
set of constraints on the control and state variables. An OC problem can be stated as
follows [1.55]:

Find X which minimizes f (X) =
l∑

i=1

fi(xi , yi) (1.6)

subject to the constraints

qi(xi , yi) + yi = yi+1, i = 1, 2, . . . , l

gj (xj ) ≤ 0, j = 1, 2, . . . , l

hk(yk) ≤ 0, k = 1, 2, . . . , l

where xi is the ith control variable, yi the ith state variable, and fi the contribution
of the ith stage to the total objective function; gj , hk, and qi are functions of xj , yk,
and xi and yi , respectively, and l is the total number of stages. The control and state
variables xi and yi can be vectors in some cases. The following example serves to
illustrate the nature of an optimal control problem.

Example 1.2 A rocket is designed to travel a distance of 12s in a vertically upward
direction [1.39]. The thrust of the rocket can be changed only at the discrete points
located at distances of 0, s, 2s, 3s, . . . , 12s. If the maximum thrust that can be devel-
oped at point i either in the positive or negative direction is restricted to a value of
Fi , formulate the problem of minimizing the total time of travel under the following
assumptions:

1. The rocket travels against the gravitational force.
2. The mass of the rocket reduces in proportion to the distance traveled.
3. The air resistance is proportional to the velocity of the rocket.
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Figure 1.9 Control points in the path of the rocket.

SOLUTION Let points (or control points) on the path at which the thrusts of the
rocket are changed be numbered as 1, 2, 3, . . . , 13 (Fig. 1.9). Denoting xi as the thrust,
vi the velocity, ai the acceleration, and mi the mass of the rocket at point i, Newton’s
second law of motion can be applied as

net force on the rocket = mass × acceleration

This can be written as

thrust − gravitational force − air resistance = mass × acceleration
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or

xi − mig − k1vi = miai (E1)

where the mass mi can be expressed as

mi = mi−1 − k2s (E2)

and k1 and k2 are constants. Equation (E1) can be used to express the acceleration, ai ,
as

ai = xi

mi

− g − k1vi

mi

(E3)

If ti denotes the time taken by the rocket to travel from point i to point i + 1, the
distance traveled between the points i and i + 1 can be expressed as

s = viti + 1
2ait

2
i

or

1

2
t2
i

(
xi

mi

− g − k1vi

mi

)

+ tivi − s = 0 (E4)

from which ti can be determined as

ti =
−vi ±

√

v2
i + 2s

(
xi

mi

− g − k1vi

mi

)

xi

mi

− g − k1vi

mi

(E5)

Of the two values given by Eq. (E5), the positive value has to be chosen for ti . The
velocity of the rocket at point i + 1, vi+1, can be expressed in terms of vi as (by
assuming the acceleration between points i and i + 1 to be constant for simplicity)

vi+1 = vi + aiti (E6)

The substitution of Eqs. (E3) and (E5) into Eq. (E6) leads to

vi+1 =
√

v2
i + 2s

(
xi

mi

− g − k1vi

mi

)

(E7)

From an analysis of the problem, the control variables can be identified as the thrusts,
xi , and the state variables as the velocities, vi . Since the rocket starts at point 1 and
stops at point 13,

v1 = v13 = 0 (E8)
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Thus the problem can be stated as an OC problem as

Find X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1

x2
...

x12

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

which minimizes

f (X) =
12∑

i=1

ti =
12∑

i=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−vi +
√

v2
i + 2s

(
xi

mi

− g − k1vi

mi

)

xi

mi

− g − k1vi

mi

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

subject to

mi+1 = mi − k2s, i = 1, 2, . . . , 12

vi+1 =
√

v2
i + 2s

(
xi

mi

− g − k1vi

mi

)

, i = 1, 2, . . . , 12

|xi | ≤ Fi, i = 1, 2, . . . , 12

v1 = v13 = 0

1.5.4 Classification Based on the Nature of the Equations Involved

Another important classification of optimization problems is based on the nature of
expressions for the objective function and the constraints. According to this classi-
fication, optimization problems can be classified as linear, nonlinear, geometric, and
quadratic programming problems. This classification is extremely useful from the com-
putational point of view since there are many special methods available for the efficient
solution of a particular class of problems. Thus the first task of a designer would be
to investigate the class of problem encountered. This will, in many cases, dictate the
types of solution procedures to be adopted in solving the problem.

Nonlinear Programming Problem. If any of the functions among the objective and
constraint functions in Eq. (1.1) is nonlinear, the problem is called a nonlinear pro-
gramming (NLP) problem . This is the most general programming problem and all other
problems can be considered as special cases of the NLP problem.

Example 1.3 The step-cone pulley shown in Fig. 1.10 is to be designed for trans-
mitting a power of at least 0.75 hp. The speed of the input shaft is 350 rpm and the
output speed requirements are 750, 450, 250, and 150 rpm for a fixed center distance
of a between the input and output shafts. The tension on the tight side of the belt is to
be kept more than twice that on the slack side. The thickness of the belt is t and the
coefficient of friction between the belt and the pulleys is μ. The stress induced in the
belt due to tension on the tight side is s. Formulate the problem of finding the width
and diameters of the steps for minimum weight.
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Figure 1.10 Step-cone pulley.

SOLUTION The design vector can be taken as

X =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1

d2

d3

d4

w

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

where di is the diameter of the ith step on the output pulley and w is the width of the
belt and the steps. The objective function is the weight of the step-cone pulley system:

f (X) = ρw
π

4
(d2

1 + d2
2 + d2

3 + d2
4 + d ′ 2

1 + d ′ 2
2 + d ′ 2

3 + d ′ 2
4 )

= ρw
π

4

{

d2
1

[

1 +
(

750

350

)2
]

+ d2
2

[

1 +
(

450

350

)2
]

+ d2
3

[

1 +
(

250

350

)2
]

+ d2
4

[

1 +
(

150

350

)2
]}

(E1)

where ρ is the density of the pulleys and d ′
i is the diameter of the ith step on the input

pulley.
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To have the belt equally tight on each pair of opposite steps, the total length of the
belt must be kept constant for all the output speeds. This can be ensured by satisfying
the following equality constraints:

C1 − C2 = 0 (E2)

C1 − C3 = 0 (E3)

C1 − C4 = 0 (E4)

where Ci denotes length of the belt needed to obtain output speed Ni (i = 1, 2, 3, 4)
and is given by [1.116, 1.117]:

Ci � πdi

2

(

1 + Ni

N

)

+

(
Ni

N
− 1

)2

d2
i

4a
+ 2a

where N is the speed of the input shaft and a is the center distance between the shafts.
The ratio of tensions in the belt can be expressed as [1.116, 1.117]

T i
1

T i
2

= eμθi

where T i
1 and T i

2 are the tensions on the tight and slack sides of the ith step, μ the
coefficient of friction, and θi the angle of lap of the belt over the ith pulley step. The
angle of lap is given by

θi = π − 2 sin−1
[

(
Ni

N
− 1

)

di

2a

]

and hence the constraint on the ratio of tensions becomes

exp

{

μ

[

π − 2 sin−1
{(

Ni

N
− 1

)
di

2a

}]}

≥ 2, i = 1, 2, 3, 4 (E5)

The limitation on the maximum tension can be expressed as

T i
1 = stw, i = 1, 2, 3, 4 (E6)

where s is the maximum allowable stress in the belt and t is the thickness of the belt.
The constraint on the power transmitted can be stated as (using lbf for force and ft for
linear dimensions)

(T i
1 − T i

2 )πd ′
i (350)

33,000
≥ 0.75

which can be rewritten, using T i
1 = stw from Eq. (E6), as

stw

(

1 − exp

[

−μ

(

π − 2 sin−1
{(

Ni

N
− 1

)
di

2a

})])

πd ′
i

×
(

350

33,000

)

≥ 0.75, i = 1, 2, 3, 4 (E7)
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Finally, the lower bounds on the design variables can be taken as

w ≥ 0 (E8)

di ≥ 0, i = 1, 2, 3, 4 (E9)

As the objective function, (E1), and most of the constraints, (E2) to (E9), are nonlinear
functions of the design variables d1, d2, d3, d4, and w, this problem is a nonlinear
programming problem.

Geometric Programming Problem.

Definition A function h(X) is called a posynomial if h can be expressed as the sum
of power terms each of the form

cix
ai1
1 xai2

2 · · · xain
n

where ci and aij are constants with ci > 0 and xj > 0. Thus a posynomial with N terms
can be expressed as

h(X) = c1x
a11
1 xa12

2 · · · xa1n
n + · · · + cNxaN1

1 xaN2
2 · · · xaNn

n (1.7)

A geometric programming (GMP) problem is one in which the objective function
and constraints are expressed as posynomials in X. Thus GMP problem can be posed
as follows [1.59]:

Find X which minimizes

f (X) =
N0∑

i=1

ci

⎛

⎝
n∏

j=1

x
pij

j

⎞

⎠ , ci > 0, xj > 0 (1.8)

subject to

gk(X) =
Nk∑

i=1

aik

⎛

⎝
n∏

j=1

x
qijk

j

⎞

⎠ > 0, aik > 0, xj > 0, k = 1, 2, . . . , m

where N0 and Nk denote the number of posynomial terms in the objective and kth
constraint function, respectively.

Example 1.4 Four identical helical springs are used to support a milling machine
weighing 5000 lb. Formulate the problem of finding the wire diameter (d), coil diameter
(D), and the number of turns (N ) of each spring (Fig. 1.11) for minimum weight by
limiting the deflection to 0.1 in. and the shear stress to 10,000 psi in the spring. In
addition, the natural frequency of vibration of the spring is to be greater than 100 Hz.
The stiffness of the spring (k), the shear stress in the spring (τ ), and the natural
frequency of vibration of the spring (fn) are given by

k = d4G

8D3N

τ = Ks

8FD

πd3

fn = 1

2

√
kg

w
= 1

2

√
d4G

8D3N

g

ρ(πd2/4)πDN
=

√
Gg d

2
√

2ρπD2N
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Figure 1.11 Helical spring.

where G is the shear modulus, F the compressive load on the spring, w the weight of
the spring, ρ the weight density of the spring, and Ks the shear stress correction factor.
Assume that the material is spring steel with G = 12 × 106 psi and ρ = 0.3 lb/in3, and
the shear stress correction factor is Ks ≈ 1.05.

SOLUTION The design vector is given by

X =
⎧
⎨

⎩

x1

x2

x3

⎫
⎬

⎭
=

⎧
⎨

⎩

d

D

N

⎫
⎬

⎭

and the objective function by

f (X) = weight = πd2

4
πDNρ (E1)

The constraints can be expressed as

deflection = F

k
= 8FD3N

d4G
≤ 0.1

that is,

g1(X) = d4G

80FD3N
> 1 (E2)

shear stress = Ks

8FD

πd3
≤ 10,000
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that is,

g2(X) = 1250πd3

KsFD
> 1 (E3)

natural frequency =
√

Gg

2
√

2ρπ

d

D2N
≥ 100

that is,

g3(X) =
√

Gg d

200
√

2ρπD2N
> 1 (E4)

Since the equality sign is not included (along with the inequality symbol, >) in the
constraints of Eqs. (E2) to (E4), the design variables are to be restricted to positive
values as

d > 0, D > 0, N > 0 (E5)

By substituting the known data, F = weight of the milling machine/4 = 1250 lb, ρ =
0.3 lb/in3, G = 12 × 106 psi, and Ks = 1.05, Eqs. (E1) to (E4) become

f (X) = 1
4π2(0.3)d2DN = 0.7402x2

1x2x3 (E6)

g1(X) = d4(12 × 106)

80(1250)D3N
= 120x4

1x−3
2 x−1

3 > 1 (E7)

g2(X) = 1250πd3

1.05(1250)D
= 2.992x3

1x−1
2 > 1 (E8)

g3(X) =
√

Gg d

200
√

2ρπD2N
= 139.8388x1x

−2
2 x−1

3 > 1 (E9)

It can be seen that the objective function, f (X), and the constraint functions, g1(X) to
g3(X), are posynomials and hence the problem is a GMP problem.

Quadratic Programming Problem. A quadratic programming problem is a nonlinear
programming problem with a quadratic objective function and linear constraints. It is
usually formulated as follows:

F(X) = c +
n∑

i=1

qixi +
n∑

i=1

n∑

j=1

Qijxixj (1.9)

subject to
n∑

i=1

aij xi = bj , j = 1, 2, . . . , m

xi ≥ 0, i = 1, 2, . . . , n

where c, qi, Qij , aij , and bj are constants.
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Example 1.5 A manufacturing firm produces two products, A and B, using two limited
resources. The maximum amounts of resources 1 and 2 available per day are 1000 and
250 units, respectively. The production of 1 unit of product A requires 1 unit of resource
1 and 0.2 unit of resource 2, and the production of 1 unit of product B requires 0.5
unit of resource 1 and 0.5 unit of resource 2. The unit costs of resources 1 and 2 are
given by the relations (0.375 − 0.00005u1) and (0.75 − 0.0001u2), respectively, where
ui denotes the number of units of resource i used (i = 1, 2). The selling prices per unit
of products A and B,pA and pB , are given by

pA = 2.00 − 0.0005xA − 0.00015xB

pB = 3.50 − 0.0002xA − 0.0015xB

where xA and xB indicate, respectively, the number of units of products A and B sold.
Formulate the problem of maximizing the profit assuming that the firm can sell all the
units it manufactures.

SOLUTION Let the design variables be the number of units of products A and B

manufactured per day:

X =
{
xA

xB

}

The requirement of resource 1 per day is (xA + 0.5xB) and that of resource 2 is
(0.2xA + 0.5xB) and the constraints on the resources are

xA + 0.5xB ≤ 1000 (E1)

0.2xA + 0.5xB ≤ 250 (E2)

The lower bounds on the design variables can be taken as

xA ≥ 0 (E3)

xB ≥ 0 (E4)

The total cost of resources 1 and 2 per day is

(xA + 0.5xB)[0.375 − 0.00005(xA + 0.5xB)]

+ (0.2xA + 0.5xB)[0.750 − 0.0001(0.2xA + 0.5xB)]

and the return per day from the sale of products A and B is

xA(2.00 − 0.0005xA − 0.00015xB) + xB(3.50 − 0.0002xA − 0.0015xB)

The total profit is given by the total return minus the total cost. Since the objective
function to be minimized is the negative of the profit per day, f (X) is given by

f (X) = (xA + 0.5xB)[0.375 − 0.00005(xA + 0.5xB)]

+ (0.2xA + 0.5xB)[0.750 − 0.0001(0.2xA + 0.5xB)]

− xA(2.00 − 0.0005xA − 0.00015xB)

− xB(3.50 − 0.0002xA − 0.0015xB) (E5)
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As the objective function [Eq. (E5)] is a quadratic and the constraints [Eqs. (E1) to
(E4)] are linear, the problem is a quadratic programming problem.

Linear Programming Problem. If the objective function and all the constraints in
Eq. (1.1) are linear functions of the design variables, the mathematical programming
problem is called a linear programming (LP) problem . A linear programming problem
is often stated in the following standard form:

Find X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1

x2
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

which minimizes f (X) =
n∑

i=1

cixi

subject to the constraints (1.10)

n∑

i=1

aij xi = bj , j = 1, 2, . . . , m

xi ≥ 0, i = 1, 2, . . . , n

where ci, aij , and bj are constants.

Example 1.6 A scaffolding system consists of three beams and six ropes as shown
in Fig. 1.12. Each of the top ropes A and B can carry a load of W1, each of the
middle ropes C and D can carry a load of W2, and each of the bottom ropes E and
F can carry a load of W3. If the loads acting on beams 1, 2, and 3 are x1, x2, and x3,
respectively, as shown in Fig. 1.12, formulate the problem of finding the maximum

Figure 1.12 Scaffolding system with three beams.
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load (x1 + x2 + x3) that can be supported by the system. Assume that the weights of
the beams 1, 2, and 3 are w1, w2, and w3, respectively, and the weights of the ropes
are negligible.

SOLUTION Assuming that the weights of the beams act through their respective
middle points, the equations of equilibrium for vertical forces and moments for each
of the three beams can be written as

For beam 3:

TE + TF = x3 + w3

x3(3l) + w3(2l) − TF (4l) = 0

For beam 2:

TC + TD − TE = x2 + w2

x2(l) + w2(l) + TE(l) − TD(2l) = 0

For beam 1:

TA + TB − TC − TD − TF = x1 + w1

x1(3l) + w1(
9
2 l) − TB(9l) + TC(2l) + TD(4l) + TF (7l) = 0

where Ti denotes the tension in rope i. The solution of these equations gives

TF = 3
4x3 + 1

2w3

TE = 1
4x3 + 1

2w3

TD = 1
2x2 + 1

8x3 + 1
2w2 + 1

4w3

TC = 1
2x2 + 1

8x3 + 1
2w2 + 1

4w3

TB = 1
3x1 + 1

3x2 + 2
3x3 + 1

2w1 + 1
3w2 + 5

9w3

TA = 2
3x1 + 2

3x2 + 1
3x3 + 1

2w1 + 2
3w2 + 4

9w3

The optimization problem can be formulated by choosing the design vector as

X =
⎧
⎨

⎩

x1

x2

x3

⎫
⎬

⎭

Since the objective is to maximize the total load

f (X) = −(x1 + x2 + x3) (E1)

The constraints on the forces in the ropes can be stated as

TA ≤ W1 (E2)

TB ≤ W1 (E3)

TC ≤ W2 (E4)
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TD ≤ W2 (E5)

TE ≤ W3 (E6)

TF ≤ W3 (E7)

Finally, the nonnegativity requirement of the design variables can be expressed as

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0 (E8)

Since all the equations of the problem (E1) to (E8), are linear functions of x1, x2, and
x3, the problem is a linear programming problem.

1.5.5 Classification Based on the Permissible Values of the Design Variables

Depending on the values permitted for the design variables, optimization problems can
be classified as integer and real-valued programming problems.

Integer Programming Problem. If some or all of the design variables x1, x2, . . . , xn

of an optimization problem are restricted to take on only integer (or discrete) values,
the problem is called an integer programming problem . On the other hand, if all the
design variables are permitted to take any real value, the optimization problem is
called a real-valued programming problem . According to this definition, the problems
considered in Examples 1.1 to 1.6 are real-valued programming problems.

Example 1.7 A cargo load is to be prepared from five types of articles. The weight
wi , volume vi , and monetary value ci of different articles are given below.

Article type wi vi ci

1 4 9 5
2 8 7 6
3 2 4 3
4 5 3 2
5 3 8 8

Find the number of articles xi selected from the ith type (i = 1, 2, 3, 4, 5), so that the
total monetary value of the cargo load is a maximum. The total weight and volume of
the cargo cannot exceed the limits of 2000 and 2500 units, respectively.

SOLUTION Let xi be the number of articles of type i (i = 1 to 5) selected. Since
it is not possible to load a fraction of an article, the variables xi can take only integer
values.

The objective function to be maximized is given by

f (X) = 5x1 + 6x2 + 3x3 + 2x4 + 8x5 (E1)
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and the constraints by

4x1 + 8x2 + 2x3 + 5x4 + 3x5 ≤ 2000 (E2)

9x1 + 7x2 + 4x3 + 3x4 + 8x5 ≤ 2500 (E3)

xi ≥ 0 and integral, i = 1, 2, . . . , 5 (E4)

Since xi are constrained to be integers, the problem is an integer programming
problem.

1.5.6 Classification Based on the Deterministic Nature of the Variables

Based on the deterministic nature of the variables involved, optimization problems can
be classified as deterministic and stochastic programming problems.

Stochastic Programming Problem. A stochastic programming problem is an opti-
mization problem in which some or all of the parameters (design variables and/or
preassigned parameters) are probabilistic (nondeterministic or stochastic). According
to this definition, the problems considered in Examples 1.1 to 1.7 are deterministic
programming problems.

Example 1.8 Formulate the problem of designing a minimum-cost rectangular under-
reinforced concrete beam that can carry a bending moment M with a probability of at
least 0.95. The costs of concrete, steel, and formwork are given by Cc = $200/m3, Cs =
$5000/m3, and Cf = $40/m2 of surface area. The bending moment M is a probabilistic
quantity and varies between 1 × 105 and 2 × 105 N-m with a uniform probability. The
strengths of concrete and steel are also uniformly distributed probabilistic quantities
whose lower and upper limits are given by

fc = 25 and 35 MPa

fs = 500 and 550 MPa

Assume that the area of the reinforcing steel and the cross-sectional dimensions of the
beam are deterministic quantities.

SOLUTION The breadth b in meters, the depth d in meters, and the area of reinforcing
steel As in square meters are taken as the design variables x1, x2, and x3, respectively
(Fig. 1.13). The cost of the beam per meter length is given by

f (X) = cost of steet + cost of concrete + cost of formwork

= AsCs + (bd − As)Cc + 2(b + d)Cf (E1)

The resisting moment of the beam section is given by [1.119]

MR = Asfs

(

d − 0.59
Asfs

fcb

)
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Figure 1.13 Cross section of a reinforced concrete beam.

and the constraint on the bending moment can be expressed as [1.120]

P [MR − M ≥ 0] = P

[

Asfs

(

d − 0.59
Asfs

fcb

)

− M ≥ 0

]

≥ 0.95 (E2)

where P [· · ·] indicates the probability of occurrence of the event [· · ·].
To ensure that the beam remains underreinforced,† the area of steel is bounded by

the balanced steel area A
(b)
s as

As ≤ A(b)
s (E3)

where

A(b)
s = (0.542)

fc

fs

bd
600

600 + fs

Since the design variables cannot be negative, we have

d ≥ 0

b ≥ 0

As ≥ 0 (E4)

Since the quantities M, fc, and fs are nondeterministic, the problem is a stochastic
programming problem.

1.5.7 Classification Based on the Separability of the Functions

Optimization problems can be classified as separable and nonseparable programming
problems based on the separability of the objective and constraint functions.

†If steel area is larger than A
(b)
s , the beam becomes overreinforced and failure occurs all of a sudden due

to lack of concrete strength. If the beam is underreinforced, failure occurs due to lack of steel strength and
hence it will be gradual.
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Separable Programming Problem.

Definition A function f (X) is said to be separable if it can be expressed as the sum
of n single-variable functions, f1(x1), f2(x2), . . . , fn(xn), that is,

f (X) =
n∑

i=1

fi(xi) (1.11)

A separable programming problem is one in which the objective function and the
constraints are separable and can be expressed in standard form as

Find X which minimizes f (X) =
n∑

i=1

fi(xi) (1.12)

subject to

gj (X) =
n∑

i=1

gij (xi) ≤ bj , j = 1, 2, . . . , m

where bj is a constant.

Example 1.9 A retail store stocks and sells three different models of TV sets. The
store cannot afford to have an inventory worth more than $45,000 at any time. The
TV sets are ordered in lots. It costs $aj for the store whenever a lot of TV model j

is ordered. The cost of one TV set of model j is cj . The demand rate of TV model
j is dj units per year. The rate at which the inventory costs accumulate is known to
be proportional to the investment in inventory at any time, with qj = 0.5, denoting
the constant of proportionality for TV model j . Each TV set occupies an area of
sj = 0.40 m2 and the maximum storage space available is 90 m2. The data known from
the past experience are given below.

TV model j

1 2 3

Ordering cost, aj ($) 50 80 100
Unit cost, cj ($) 40 120 80
Demand rate, dj 800 400 1200

Formulate the problem of minimizing the average annual cost of ordering and storing
the TV sets.

SOLUTION Let xj denote the number of TV sets of model j ordered in each lot
(j = 1, 2, 3). Since the demand rate per year of model j is dj , the number of times
the TV model j needs to be ordered is dj/xj . The cost of ordering TV model j per
year is thus ajdj /xj , j = 1, 2, 3. The cost of storing TV sets of model j per year is
qj cjxj /2 since the average level of inventory at any time during the year is equal to
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cjxj /2. Thus the objective function (cost of ordering plus storing) can be expressed
as

f (X) =
(

a1d1

x1
+ q1c1x1

2

)

+
(

a2d2

x2
+ q2c2x2

2

)

+
(

a3d3

x3
+ q3c3x3

2

)

(E1)

where the design vector X is given by

X =

⎧
⎪⎨

⎪⎩

x1

x2

x3

⎫
⎪⎬

⎪⎭
(E2)

The constraint on the worth of inventory can be stated as

c1x1 + c2x2 + c3x3 ≤ 45,000 (E3)

The limitation on the storage area is given by

s1x1 + s2x2 + s3x3 ≤ 90 (E4)

Since the design variables cannot be negative, we have

xj ≥ 0, j = 1, 2, 3 (E5)

By substituting the known data, the optimization problem can be stated as follows:

Find X which minimizes

f (X) =
(

40,000

x1
+ 10x1

)

+
(

32,000

x2
+ 30x2

)

+
(

120,000

x3
+ 20x3

)

(E6)

subject to

g1(X) = 40x1 + 120x2 + 80x3 ≤ 45,000 (E7)

g2(X) = 0.40(x1 + x2 + x3) ≤ 90 (E8)

g3(X) = −x1 ≤ 0 (E9)

g4(X) = −x2 ≤ 0 (E10)

g5(X) = −x3 ≤ 0 (E11)

It can be observed that the optimization problem stated in Eqs. (E6) to (E11) is a
separable programming problem.

1.5.8 Classification Based on the Number of Objective Functions

Depending on the number of objective functions to be minimized, optimization prob-
lems can be classified as single- and multiobjective programming problems. According
to this classification, the problems considered in Examples 1.1 to 1.9 are single objective
programming problems.
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Multiobjective Programming Problem. A multiobjective programming problem can
be stated as follows:

Find X which minimizes f1(X), f2(X), . . . , fk(X)

subject to

gj (X) ≤ 0, j = 1, 2, . . . , m

(1.13)

where f1, f2, . . . , fk denote the objective functions to be minimized simultaneously.

Example 1.10 A uniform column of rectangular cross section is to be constructed
for supporting a water tank of mass M (Fig. 1.14). It is required (1) to minimize the
mass of the column for economy, and (2) to maximize the natural frequency of trans-
verse vibration of the system for avoiding possible resonance due to wind. Formulate
the problem of designing the column to avoid failure due to direct compression and
buckling. Assume the permissible compressive stress to be σmax.

SOLUTION Let x1 = b and x2 = d denote the cross-sectional dimensions of the
column. The mass of the column (m) is given by

m = ρbdl = ρlx1x2 (E1)

where ρ is the density and l is the height of the column. The natural frequency of
transverse vibration of the water tank (ω), by treating it as a cantilever beam with a
tip mass M , can be obtained as [1.118]

ω =
[

3EI

(M + 33
140m)l3

]1/2

(E2)

Figure 1.14 Water tank on a column.
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where E is the Young’s modulus and I is the area moment of inertia of the column
given by

I = 1
12bd3 (E3)

The natural frequency of the water tank can be maximized by minimizing −ω. With
the help of Eqs. (E1) and (E3), Eq. (E2) can be rewritten as

ω =
[

Ex1x
3
2

4l3(M + 33
140ρlx1x2)

]1/2

(E4)

The direct compressive stress (σc) in the column due to the weight of the water tank
is given by

σc = Mg

bd
= Mg

x1x2
(E5)

and the buckling stress for a fixed-free column (σb) is given by [1.121]

σb =
(

π2EI

4l2

)
1

bd
= π2Ex2

2

48l2
(E6)

To avoid failure of the column, the direct stress has to be restricted to be less than σmax

and the buckling stress has to be constrained to be greater than the direct compressive
stress induced.

Finally, the design variables have to be constrained to be positive. Thus the
multiobjective optimization problem can be stated as follows:

Find X =
{
x1

x2

}

which minimizes

f1(X) = ρlx1x2 (E7)

f2(X) = −
[

Ex1x
3
2

4l2(M + 33
140ρlx1x2)

]1/2

(E8)

subject to

g1(X) = Mg

x1x2
− σmax ≤ 0 (E9)

g2(X) = Mg

x1x2
− π2Ex2

2

48l2
≤ 0 (E10)

g3(X) = −x1 ≤ 0 (E11)

g4(X) = −x2 ≤ 0 (E12)
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1.6 OPTIMIZATION TECHNIQUES

The various techniques available for the solution of different types of optimization
problems are given under the heading of mathematical programming techniques in
Table 1.1. The classical methods of differential calculus can be used to find the uncon-
strained maxima and minima of a function of several variables. These methods assume
that the function is differentiable twice with respect to the design variables and the
derivatives are continuous. For problems with equality constraints, the Lagrange multi-
plier method can be used. If the problem has inequality constraints, the Kuhn–Tucker
conditions can be used to identify the optimum point. But these methods lead to a set of
nonlinear simultaneous equations that may be difficult to solve. The classical methods
of optimization are discussed in Chapter 2.

The techniques of nonlinear, linear, geometric, quadratic, or integer programming
can be used for the solution of the particular class of problems indicated by the name
of the technique. Most of these methods are numerical techniques wherein an approx-
imate solution is sought by proceeding in an iterative manner by starting from an
initial solution. Linear programming techniques are described in Chapters 3 and 4. The
quadratic programming technique, as an extension of the linear programming approach,
is discussed in Chapter 4. Since nonlinear programming is the most general method
of optimization that can be used to solve any optimization problem, it is dealt with in
detail in Chapters 5–7. The geometric and integer programming methods are discussed
in Chapters 8 and 10, respectively. The dynamic programming technique, presented in
Chapter 9, is also a numerical procedure that is useful primarily for the solution of
optimal control problems. Stochastic programming deals with the solution of optimiza-
tion problems in which some of the variables are described by probability distributions.
This topic is discussed in Chapter 11.

In Chapter 12 we discuss calculus of variations, optimal control theory, and opti-
mality criteria methods. The modern methods of optimization, including genetic algo-
rithms, simulated annealing, particle swarm optimization, ant colony optimization,
neural network-based optimization, and fuzzy optimization, are presented in Chapter
13. Several practical aspects of optimization are outlined in Chapter 14. The reduction
of size of optimization problems, fast reanalysis techniques, the efficient computation
of the derivatives of static displacements and stresses, eigenvalues and eigenvectors,
and transient response are outlined. The aspects of sensitivity of optimum solution to
problem parameters, multilevel optimization, parallel processing, and multiobjective
optimization are also presented in this chapter.

1.7 ENGINEERING OPTIMIZATION LITERATURE

The literature on engineering optimization is large and diverse. Several text-books
are available and dozens of technical periodicals regularly publish papers related to
engineering optimization. This is primarily because optimization is applicable to all
areas of engineering. Researchers in many fields must be attentive to the developments
in the theory and applications of optimization.
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The most widely circulated journals that publish papers related to engineering opti-
mization are Engineering Optimization, ASME Journal of Mechanical Design, AIAA
Journal, ASCE Journal of Structural Engineering, Computers and Structures, Interna-
tional Journal for Numerical Methods in Engineering, Structural Optimization, Journal
of Optimization Theory and Applications, Computers and Operations Research, Oper-
ations Research, Management Science, Evolutionary Computation, IEEE Transactions
on Evolutionary Computation, European Journal of Operations Research, IEEE Trans-
actions on Systems, Man and Cybernetics , and Journal of Heuristics . Many of these
journals are cited in the chapter references.

1.8 SOLUTION OF OPTIMIZATION PROBLEMS USING MATLAB

The solution of most practical optimization problems requires the use of computers.
Several commercial software systems are available to solve optimization problems that
arise in different engineering areas. MATLAB is a popular software that is used for
the solution of a variety of scientific and engineering problems.† MATLAB has several
toolboxes each developed for the solution of problems from a specific scientific area.
The specific toolbox of interest for solving optimization and related problems is called
the optimization toolbox . It contains a library of programs or m-files, which can be
used for the solution of minimization, equations, least squares curve fitting, and related
problems. The basic information necessary for using the various programs can be found
in the user’s guide for the optimization toolbox [1.124]. The programs or m-files, also
called functions, available in the minimization section of the optimization toolbox are
given in Table 1.2. The use of the programs listed in Table 1.2 is demonstrated at the end
of different chapters of the book. Basically, the solution procedure involves three steps
after formulating the optimization problem in the format required by the MATLAB
program (or function) to be used. In most cases, this involves stating the objective
function for minimization and the constraints in “≤” form with zero or constant value
on the righthand side of the inequalities. After this, step 1 involves writing an m-file
for the objective function. Step 2 involves writing an m-file for the constraints. Step 3
involves setting the various parameters at proper values depending on the characteristics
of the problem and the desired output and creating an appropriate file to invoke the
desired MATLAB program (and coupling the m-files created to define the objective and
constraints functions of the problem). As an example, the use of the program, fmincon,
for the solution of a constrained nonlinear programming problem is demonstrated in
Example 1.11.

Example 1.11 Find the solution of the following nonlinear optimization problem
(same as the problem in Example 1.1) using the MATLAB function fmincon:

Minimize f (x1, x2) = 9.82x1x2 + 2x1

subject to

g1(x1, x2) = 2500

πx1x2
− 500 ≤ 0

†The basic concepts and procedures of MATLAB are summarized in Appendix C.
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Table 1.2 MATLAB Programs or Functions for Solving Optimization Problems

Name of MATLAB program
Type of optimization Standard form for solution or function to solve
problem by MATLAB the problem

Function of one variable or
scalar minimization

Find x to minimize f (x)

with x1 < x < x2

fminbnd

Unconstrained minimization
of function of several
variables

Find x to minimize f (x) fminunc or fminsearch

Linear programming
problem

Find x to minimize fT x
subject to
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

linprog

Quadratic programming
problem

Find x to minimize
1
2 xT [H ]x + fT x subject to
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

quadprog

Minimization of function of
several variables subject
to constraints

Find x to minimize f (x)

subject to
c(x) ≤ 0, ceq = 0
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

fmincon

Goal attainment problem Find x and γ to minimize γ

such that
F(x) − wγ ≤ goal,
c(x) ≤ 0, ceq = 0
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

fgoalattain

Minimax problem Minimize Max
x [Fi}

[Fi(x)}
such that

c(x) ≤ 0, ceq = 0
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

fminimax

Binary integer programming
problem

Find x to minimize fT x
subject to
[A]x ≤ b, [Aeq]x = beq,
each component of x is
binary

bintprog

g2(x1, x2) = 2500

πx1x2
− π2(x2

1 + x2
2)

0.5882
≤ 0

g3(x1, x2) = −x1 + 2 ≤ 0

g4(x1, x2) = x1 − 14 ≤ 0

g5(x1, x2) = −x2 + 0.2 ≤ 0

g6(x1, x2) = x2 − 0.8 ≤ 0
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SOLUTION

Step 1 : Write an M-file probofminobj.m for the objective function.

function f= probofminobj (x)
f= 9.82*x(1)*x(2)+2*x(1);

Step 2 : Write an M-file conprobformin.m for the constraints.

function [c, ceq] = conprobformin(x)
% Nonlinear inequality constraints
c = [2500/(pi*x(1)*x(2))-500;2500/(pi*x(1)*x(2))-
(pi^2*(x(1)^2+x(2)^2))/0.5882;-x(1)+2;x(1)-14;-x(2)+0.2;
x(2)-0.8];
% Nonlinear equality constraints
ceq = [];

Step 3 : Invoke constrained optimization program (write this in new matlab file).

clc
clear all
warning off
x0 = [7 0.4]; % Starting guess\
fprintf ('The values of function value and constraints
at starting point\n');
f=probofminobj (x0)
[c, ceq] = conprobformin (x0)
options = optimset ('LargeScale', 'off');
[x, fval]=fmincon (@probofminobj, x0, [], [], [], [], [],
[], @conprobformin, options)
fprintf('The values of constraints at optimum solution\n');
[c, ceq] = conprobformin(x) % Check the constraint values at x

This produces the solution or output as follows:

The values of function value and constraints at starting point
f=
41.4960
c =
-215.7947
-540.6668
-5.0000
-7.0000
-0.2000
-0.4000
ceq =
[]

Optimization terminated: first-order optimality
measure less
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than options. TolFun and maximum constraint violation
is less
than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin

1
2

x=
5.4510 0.2920
fval =
26.5310
The values of constraints at optimum solution
c=
-0.0000
-0.0000
-3.4510
-8.5490
-0.0920
-0.5080
ceq =
[]
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REVIEW QUESTIONS
1.1 Match the following terms and descriptions:

(a) Free feasible point gj (X) = 0
(b) Free infeasible point Some gj (X) = 0 and other gj (X) < 0
(c) Bound feasible point Some gj (X) = 0 and other gj (X) ≥ 0
(d) Bound infeasible point Some gj (X) > 0 and other gj (X) < 0
(e) Active constraints All gj (X) < 0

1.2 Answer true or false:

(a) Optimization problems are also known as mathematical programming problems.

(b) The number of equality constraints can be larger than the number of design variables.

(c) Preassigned parameters are part of design data in a design optimization problem.

(d) Side constraints are not related to the functionality of the system.

(e) A bound design point can be infeasible.

(f) It is necessary that some gj (X) = 0 at the optimum point.

(g) An optimal control problem can be solved using dynamic programming techniques.

(h) An integer programming problem is same as a discrete programming problem.

1.3 Define the following terms:

(a) Mathematical programming problem

(b) Trajectory optimization problem

(c) Behavior constraint

(d) Quadratic programming problem

(e) Posynomial

(f) Geometric programming problem

1.4 Match the following types of problems with their descriptions.

(a) Geometric programming problem Classical optimization problem
(b) Quadratic programming problem Objective and constraints are quadratic
(c) Dynamic programming problem Objective is quadratic and constraints are linear
(d) Nonlinear programming problem Objective and constraints arise from a serial

system
(e) Calculus of variations problem Objective and constraints are polynomials with

positive coefficients

1.5 How do you solve a maximization problem as a minimization problem?
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1.6 State the linear programming problem in standard form.

1.7 Define an OC problem and give an engineering example.

1.8 What is the difference between linear and nonlinear programming problems?

1.9 What is the difference between design variables and preassigned parameters?

1.10 What is a design space?

1.11 What is the difference between a constraint surface and a composite constraint surface?

1.12 What is the difference between a bound point and a free point in the design space?

1.13 What is a merit function?

1.14 Suggest a simple method of handling multiple objectives in an optimization problem.

1.15 What are objective function contours?

1.16 What is operations research?

1.17 State five engineering applications of optimization.

1.18 What is an integer programming problem?

1.19 What is graphical optimization, and what are its limitations?

1.20 Under what conditions can a polynomial in n variables be called a posynomial?

1.21 Define a stochastic programming problem and give two practical examples.

1.22 What is a separable programming problem?

PROBLEMS

1.1 A fertilizer company purchases nitrates, phosphates, potash, and an inert chalk base at a
cost of $1500, $500, $1000, and $100 per ton, respectively, and produces four fertilizers
A, B,C, and D. The production cost, selling price, and composition of the four fertilizers
are given below.

Percentage composition by weightProduction Selling
cost price Inert

Fertilizer ($/ton) ($/ton) Nitrates Phosphates Potash chalk base

A 100 350 5 10 5 80
B 150 550 5 15 10 70
C 200 450 10 20 10 60
D 250 700 15 5 15 65

During any week, no more than 1000 tons of nitrate, 2000 tons of phosphates, and
1500 tons of potash will be available. The company is required to supply a minimum
of 5000 tons of fertilizer A and 4000 tons of fertilizer D per week to its customers;
but it is otherwise free to produce the fertilizers in any quantities it pleases. Formulate
the problem of finding the quantity of each fertilizer to be produced by the company to
maximize its profit.
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Figure 1.15 Two-bar truss.

1.2 The two-bar truss shown in Fig. 1.15 is symmetric about the y axis. The nondimensional
area of cross section of the members A/Aref, and the nondimensional position of joints
1 and 2, x/h, are treated as the design variables x1 and x2, respectively, where Aref

is the reference value of the area (A) and h is the height of the truss. The coordinates
of joint 3 are held constant. The weight of the truss (f1) and the total displacement of
joint 3 under the given load (f2) are to be minimized without exceeding the permissible
stress, σ0. The weight of the truss and the displacement of joint 3 can be expressed as

f1(X) = 2ρhx2

√

1 + x2
1Aref

f2(X) =
Ph(1 + x2

1 )1.5
√

1 + x4
1

2
√

2Ex2
1x2Aref

where ρ is the weight density, P the applied load, and E the Young’s modulus. The
stresses induced in members 1 and 2 (σ1 and σ2) are given by

σ1(X) =
P(1 + x1)

√

(1 + x2
1 )

2
√

2x1x2Aref

σ2(X) =
P(x1 − 1)

√

(1 + x2
1 )

2
√

2x1x2Aref

In addition, upper and lower bounds are placed on design variables x1 and x2 as

xmin
i ≤ xi ≤ xmax

i ; i = 1, 2

Find the solution of the problem using a graphical method with (a) f1 as the objective, (b) f2

as the objective, and (c) (f1 + f2) as the objective for the following data: E = 30 × 106 psi,
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ρ = 0.283 lb/in3, P = 10,000 lb, σ0 = 20,000 psi, h = 100 in., Aref = 1 in2, xmin
1 = 0.1, xmin

2 =
0.1, xmax

1 = 2.0, and xmax
2 = 2.5.

1.3 Ten jobs are to be performed in an automobile assembly line as noted in the following
table:

Time required to Jobs that must be
Job complete the completed before

Number job (min) starting this job

1 4 None
2 8 None
3 7 None
4 6 None
5 3 1, 3
6 5 2, 3, 4
7 1 5, 6
8 9 6
9 2 7, 8

10 8 9

It is required to set up a suitable number of workstations, with one worker assigned
to each workstation, to perform certain jobs. Formulate the problem of determining the
number of workstations and the particular jobs to be assigned to each workstation to
minimize the idle time of the workers as an integer programming problem. Hint: Define
variables xij such that xij = 1 if job i is assigned to station j , and xij = 0 otherwise.

1.4 A railroad track of length L is to be constructed over an uneven terrain by adding or
removing dirt (Fig. 1.16). The absolute value of the slope of the track is to be restricted
to a value of r1 to avoid steep slopes. The absolute value of the rate of change of the
slope is to be limited to a value r2 to avoid rapid accelerations and decelerations. The
absolute value of the second derivative of the slope is to be limited to a value of r3

Figure 1.16 Railroad track on an uneven terrain.
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to avoid severe jerks. Formulate the problem of finding the elevation of the track to
minimize the construction costs as an OC problem. Assume the construction costs to be
proportional to the amount of dirt added or removed. The elevation of the track is equal
to a and b at x = 0 and x = L, respectively.

1.5 A manufacturer of a particular product produces x1 units in the first week and x2 units
in the second week. The number of units produced in the first and second weeks must
be at least 200 and 400, respectively, to be able to supply the regular customers. The
initial inventory is zero and the manufacturer ceases to produce the product at the end
of the second week. The production cost of a unit, in dollars, is given by 4x2

i , where xi

is the number of units produced in week i(i = 1, 2). In addition to the production cost,
there is an inventory cost of $10 per unit for each unit produced in the first week that
is not sold by the end of the first week. Formulate the problem of minimizing the total
cost and find its solution using a graphical optimization method.

1.6 Consider the slider-crank mechanism shown in Fig. 1.17 with the crank rotating at
a constant angular velocity ω. Use a graphical procedure to find the lengths of the
crank and the connecting rod to maximize the velocity of the slider at a crank angle of
θ = 30◦ for ω = 100 rad/s. The mechanism has to satisfy Groshof’s criterion l ≥ 2.5r

to ensure 360◦ rotation of the crank. Additional constraints on the mechanism are given
by 0.5 ≤ r ≤ 10, 2.5 ≤ l ≤ 25, and 10 ≤ x ≤ 20.

1.7 Solve Problem 1.6 to maximize the acceleration (instead of the velocity) of the slider at
θ = 30◦ for ω = 100 rad/s.

1.8 It is required to stamp four circular disks of radii R1, R2, R3, and R4 from a rectan-
gular plate in a fabrication shop (Fig. 1.18). Formulate the problem as an optimization
problem to minimize the scrap. Identify the design variables, objective function, and the
constraints.

1.9 The torque transmitted (T ) by a cone clutch, shown in Fig. 1.19, under uniform pressure
condition is given by

T = 2πfp

3 sin α
(R3

1 − R3
2)

where p is the pressure between the cone and the cup, f the coefficient of friction, α

the cone angle, R1 the outer radius, and R2 the inner radius.

(a) Find R1 and R2 that minimize the volume of the cone clutch with α = 30◦
,

F = 30 lb, and f = 0.5 under the constraints T ≥ 100 lb-in., R1 ≥ 2R2,
0 ≤ R1 ≤ 15 in., and 0 ≤ R2 ≤ 10 in.

Figure 1.17 Slider-crank mechanism.



50 Introduction to Optimization

Figure 1.18 Locations of circular disks in a rectangular plate.

Figure 1.19 Cone clutch.

(b) What is the solution if the constraint R1 ≥ 2R2 is changed to R1 ≤ 2R2?

(c) Find the solution of the problem stated in part (a) by assuming a uniform wear
condition between the cup and the cone. The torque transmitted (T ) under uniform
wear condition is given by

T = πfpR2

sin α
(R2

1 − R2
2)

Note: Use graphical optimization for the solutions.
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1.10 A hollow circular shaft is to be designed for minimum weight to achieve a minimum
reliability of 0.99 when subjected to a random torque of (T , σT ) = (106, 104) lb-in.,
where T is the mean torque and σT is the standard deviation of the torque, T . The
permissible shear stress, τ0, of the material is given by (τ 0, στ0) = (50,000, 5000) psi,
where τ 0 is the mean value and στ0 is the standard deviation of τ0. The maximum
induced stress (τ ) in the shaft is given by

τ = T ro

J

where ro is the outer radius and J is the polar moment of inertia of the cross section
of the shaft. The manufacturing tolerances on the inner and outer radii of the shaft are
specified as ±0.06 in. The length of the shaft is given by 50 ± 1 in. and the specific
weight of the material by 0.3 ± 0.03 lb/in3. Formulate the optimization problem and
solve it using a graphical procedure. Assume normal distribution for all the random
variables and 3σ values for the specified tolerances. Hints: (1) The minimum reliability
requirement of 0.99 can be expressed, equivalently, as [1.120]

z1 = 2.326 ≤ τ − τ 0
√

σ 2
τ + σ 2

τ0

(2) If f (x1, x2, . . . , xn) is a function of the random variables x1, x2, . . . , xn, the mean
value of f (f ) and the standard deviation of f (σf ) are given by

f = f (x1, x2, . . . , xn)

σf =
⎡

⎣
n∑

i=1

(
∂f

∂xi

∣
∣
∣
∣
x1,x2,...,xn

)2

σ 2
xi

⎤

⎦

1/2

where xi is the mean value of xi , and σxi is the standard deviation of xi .

1.11 Certain nonseparable optimization problems can be reduced to a separable form by
using suitable transformation of variables. For example, the product term f = x1x2 can
be reduced to the separable form f = y2

1 − y2
2 by introducing the transformations

y1 = 1
2 (x1 + x2), y2 = 1

2 (x1 − x2)

Suggest suitable transformations to reduce the following terms to separable form:

(a) f = x2
1x3

2 , x1 > 0, x2 > 0

(b) f = xx2
1 , x1 > 0

1.12 In the design of a shell-and-tube heat exchanger (Fig. 1.20), it is decided to have the total
length of tubes equal to at least α1 [1.10]. The cost of the tube is α2 per unit length and
the cost of the shell is given by α3D

2.5L, where D is the diameter and L is the length of
the heat exchanger shell. The floor space occupied by the heat exchanger costs α4 per unit
area and the cost of pumping cold fluid is α5L/d5N2 per day, where d is the diameter
of the tube and N is the number of tubes. The maintenance cost is given by α6NdL.
The thermal energy transferred to the cold fluid is given by α7/N

1.2dL1.4 + α8/d
0.2L.

Formulate the mathematical programming problem of minimizing the overall cost of the
heat exchanger with the constraint that the thermal energy transferred be greater than
a specified amount α9. The expected life of the heat exchanger is α10 years. Assume
that αi, i = 1, 2, . . . , 10, are known constants, and each tube occupies a cross-sectional
square of width and depth equal to d .
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Figure 1.20 Shell-and-tube heat exchanger.

Figure 1.21 Electrical bridge network.

1.13 The bridge network shown in Fig. 1.21 consists of five resistors Ri(i = 1, 2, . . . , 5).
If Ii is the current flowing through the resistance Ri , the problem is to find the resistances
R1, R2, . . . , R5 so that the total power dissipated by the network is a minimum. The
current Ii can vary between the lower and upper limits Ii,min and Ii,max, and the voltage
drop, Vi = RiIi , must be equal to a constant ci for 1 ≤ i ≤ 5. Formulate the problem as
a mathematical programming problem.

1.14 A traveling saleswoman has to cover n towns. She plans to start from a particular town
numbered 1, visit each of the other n − 1 towns, and return to the town 1. The distance
between towns i and j is given by dij . Formulate the problem of selecting the sequence
in which the towns are to be visited to minimize the total distance traveled.

1.15 A farmer has a choice of planting barley, oats, rice, or wheat on his 200-acre farm. The
labor, water, and fertilizer requirements, yields per acre, and selling prices are given in
the following table:

Labor Water Fertilizer Selling
Type of cost required required Yield price
crop ($) (m3) (lb) (lb) ($/lb)

Barley 300 10,000 100 1,500 0.5
Oats 200 7,000 120 3,000 0.2
Rice 250 6,000 160 2,500 0.3
Wheat 360 8,000 200 2,000 0.4

The farmer can also give part or all of the land for lease, in which case he gets $200 per
acre. The cost of water is $0.02/m3 and the cost of the fertilizer is $2/lb. Assume that
the farmer has no money to start with and can get a maximum loan of $50,000 from the
land mortgage bank at an interest of 8 %. He can repay the loan after six months. The
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irrigation canal cannot supply more than 4 × 105 m3 of water. Formulate the problem of
finding the planting schedule for maximizing the expected returns of the farmer.

1.16 There are two different sites, each with four possible targets (or depths) to drill an oil
well. The preparation cost for each site and the cost of drilling at site i to target j are
given below:

Drilling cost to target j

Site i 1 2 3 4 Preparation cost

1 4 1 9 7 11
2 7 9 5 2 13

Formulate the problem of determining the best site for each target so that the total cost
is minimized.

1.17 A four-pole dc motor, whose cross section is shown in Fig. 1.22, is to be designed with
the length of the stator and rotor x1, the overall diameter of the motor x2, the unnotched
radius x3, the depth of the notches x4, and the ampere turns x5 as design variables.

Figure 1.22 Cross section of an idealized motor.
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The air gap is to be less than k1
√

x2 + 7.5 where k1 is a constant. The temperature of
the external surface of the motor cannot exceed T above the ambient temperature.
Assuming that the heat can be dissipated only by radiation, formulate the problem for
maximizing the power of the motor [1.59]. Hints:

1. The heat generated due to current flow is given by k2x1x
−1
2 x−1

4 x2
5 , where k2 is a

constant. The heat radiated from the external surface for a temperature difference of
T is given by k3x1x2T , where k3 is a constant.

2. The expression for power is given by k4NBx1x3x5, where k4 is a constant, N is the
rotational speed of the rotor, and B is the average flux density in the air gap.

3. The units of the various quantities are as follows. Lengths: centimeter, heat generated,
heat dissipated; power: watt; temperature: ◦C; rotational speed: rpm; flux density:
gauss.

1.18 A gas pipeline is to be laid between two cities A and E, making it pass through one
of the four locations in each of the intermediate towns B,C, and D (Fig. 1.23). The
associated costs are indicated in the following tables.

Costs for A to B and D to E

Station i

1 2 3 4

From A to point i of B 30 35 25 40
From point i of D to E 50 40 35 25

Costs for B to C and C to D

To:

From: 1 2 3 4

1 22 18 24 18
2 35 25 15 21
3 24 20 26 20
4 22 21 23 22

Figure 1.23 Possible paths of the pipeline between A and E.
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Figure 1.24 Beam-column.

Formulate the problem of minimizing the cost of the pipeline.

1.19 A beam-column of rectangular cross section is required to carry an axial load of 25 lb
and a transverse load of 10 lb, as shown in Fig. 1.24. It is to be designed to avoid the
possibility of yielding and buckling and for minimum weight. Formulate the optimization
problem by assuming that the beam-column can bend only in the vertical (xy) plane.
Assume the material to be steel with a specific weight of 0.3 lb/in3, Young’s modulus of
30 × 106 psi, and a yield stress of 30,000 psi. The width of the beam is required to be at
least 0.5 in. and not greater than twice the depth. Also, find the solution of the problem
graphically. Hint: The compressive stress in the beam-column due to Py is Py/bd and
that due to Px is

Pxld

2Izz

= 6Pxl

bd2

The axial buckling load is given by

(Py)cri = π2EIzz

4l2
= π2Ebd3

48l2

1.20 A two-bar truss is to be designed to carry a load of 2W as shown in Fig. 1.25. Both
bars have a tubular section with mean diameter d and wall thickness t . The material
of the bars has Young’s modulus E and yield stress σy . The design problem involves
the determination of the values of d and t so that the weight of the truss is a minimum
and neither yielding nor buckling occurs in any of the bars. Formulate the problem as a
nonlinear programming problem.

Figure 1.25 Two-bar truss.
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Figure 1.26 Processing plant layout (coordinates in ft).

1.21 Consider the problem of determining the economic lot sizes for four different items.
Assume that the demand occurs at a constant rate over time. The stock for the
ith item is replenished instantaneously upon request in lots of sizes Qi . The total
storage space available is A, whereas each unit of item i occupies an area di . The
objective is to find the values of Qi that optimize the per unit cost of holding the
inventory and of ordering subject to the storage area constraint. The cost function is
given by

C =
4∑

i=1

(
ai

Qi

+ biQi

)

, Qi > 0

where ai and bi are fixed constants. Formulate the problem as a dynamic programming
(optimal control) model. Assume that Qi is discrete.

1.22 The layout of a processing plant, consisting of a pump (P ), a water tank (T ), a com-
pressor (C), and a fan (F ), is shown in Fig. 1.26. The locations of the various units, in
terms of their (x, y) coordinates, are also indicated in this figure. It is decided to add a
new unit, a heat exchanger (H), to the plant. To avoid congestion, it is decided to locate
H within a rectangular area defined by {−15 ≤ x ≤ 15,−10 ≤ y ≤ 10}. Formulate the
problem of finding the location of H to minimize the sum of its x and y distances from
the existing units, P, T ,C, and F .

1.23 Two copper-based alloys (brasses), A and B, are mixed to produce a new alloy, C.
The composition of alloys A and B and the requirements of alloy C are given in the
following table:
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Composition by weight

Alloy Copper Zinc Lead Tin

A 80 10 6 4
B 60 20 18 2
C ≥ 75 ≥ 15 ≥ 16 ≥ 3

If alloy B costs twice as much as alloy A, formulate the problem of determining the
amounts of A and B to be mixed to produce alloy C at a minimum cost.

1.24 An oil refinery produces four grades of motor oil in three process plants. The refinery
incurs a penalty for not meeting the demand of any particular grade of motor oil. The
capacities of the plants, the production costs, the demands of the various grades of motor
oil, and the penalties are given in the following table:

Production cost ($/day) to
manufacture motor oil of grade:Process Capacity of the plant

plant (kgal/day) 1 2 3 4

1 100 750 900 1000 1200
2 150 800 950 1100 1400
3 200 900 1000 1200 1600

Demand (kgal/day) 50 150 100 75
Penalty (per each kilogallon shortage) $10 $12 $16 $20

Formulate the problem of minimizing the overall cost as an LP problem.

1.25 A part-time graduate student in engineering is enrolled in a four-unit mathematics course
and a three-unit design course. Since the student has to work for 20 hours a week at a
local software company, he can spend a maximum of 40 hours a week to study outside
the class. It is known from students who took the courses previously that the numerical
grade (g) in each course is related to the study time spent outside the class as gm = tm/6
and gd = td/5, where g indicates the numerical grade (g = 4 for A, 3 for B, 2 for C, 1 for
D, and 0 for F), t represents the time spent in hours per week to study outside the class,
and the subscripts m and d denote the courses, mathematics and design, respectively.
The student enjoys design more than mathematics and hence would like to spend at least
75 minutes to study for design for every 60 minutes he spends to study mathematics.
Also, as far as possible, the student does not want to spend more time on any course
beyond the time required to earn a grade of A. The student wishes to maximize his grade
point P , given by P = 4gm + 3gd , by suitably distributing his study time. Formulate
the problem as an LP problem.

1.26 The scaffolding system, shown in Fig. 1.27, is used to carry a load of 10,000 lb. Assuming
that the weights of the beams and the ropes are negligible, formulate the problem of
determining the values of x1, x2, x3, and x4 to minimize the tension in ropes A and B

while maintaining positive tensions in ropes C, D,E, and F .

1.27 Formulate the problem of minimum weight design of a power screw subjected to an
axial load, F , as shown in Fig. 1.28 using the pitch (p), major diameter (d), nut height
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Figure 1.27 Scaffolding system.

Figure 1.28 Power screw.

(h), and screw length (s) as design variables. Consider the following constraints in the
formulation:

1. The screw should be self-locking [1.117].

2. The shear stress in the screw should not exceed the yield strength of the material in
shear. Assume the shear strength in shear (according to distortion energy theory), to
be 0.577σy , where σy is the yield strength of the material.

3. The bearing stress in the threads should not exceed the yield strength of the material,
σy .

4. The critical buckling load of the screw should be less than the applied load, F .

1.28 (a) A simply supported beam of hollow rectangular section is to be designed for mini-
mum weight to carry a vertical load Fy and an axial load P as shown in Fig. 1.29.
The deflection of the beam in the y direction under the self-weight and Fy should
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Figure 1.29 Simply supported beam under loads.

not exceed 0.5 in. The beam should not buckle either in the yz or the xz plane under
the axial load. Assuming the ends of the beam to be pin ended, formulate the opti-
mization problem using xi, i = 1, 2, 3, 4 as design variables for the following data:
Fy = 300 lb, P = 40,000 lb, l = 120 in., E = 30 × 106 psi, ρ = 0.284 lb/in3, lower
bound on x1 and x2 = 0.125 in, upper bound on x1, and x2 = 4 in.

(b) Formulate the problem stated in part (a) using x1 and x2 as design variables, assuming
the beam to have a solid rectangular cross section. Also find the solution of the
problem using a graphical technique.

1.29 A cylindrical pressure vessel with hemispherical ends (Fig. 1.30) is required to hold
at least 20,000 gallons of a fluid under a pressure of 2500 psia. The thicknesses of
the cylindrical and hemispherical parts of the shell should be equal to at least those
recommended by section VIII of the ASME pressure vessel code, which are given by

tc = pR

Se + 0.4p

th = pR

Se + 0.8p

Figure 1.30 Pressure vessel.
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Figure 1.31 Crane hook carrying a load.

where S is the yield strength, e the joint efficiency, p the pressure, and R the radius.
Formulate the design problem for minimum structural volume using xi, i = 1, 2, 3, 4, as
design variables. Assume the following data: S = 30,000 psi and e = 1.0.

1.30 A crane hook is to be designed to carry a load F as shown in Fig. 1.31. The hook can
be modeled as a three-quarter circular ring with a rectangular cross section. The stresses
induced at the inner and outer fibers at section AB should not exceed the yield strength
of the material. Formulate the problem of minimum volume design of the hook using
ro, ri , b, and h as design variables. Note: The stresses induced at points A and B are
given by [1.117]

σA = Mco

Aero

σB = Mci

Aeri

where M is the bending moment due to the load (= FR), R the radius of the centroid,
ro the radius of the outer fiber, ri the radius of the inner fiber, co the distance of the
outer fiber from the neutral axis = Ro − rn, ci the distance of inner fiber from neutral
axis = rn − ri , rn the radius of neutral axis, given by

rn = h

In(ro/ri)

A the cross-sectional area of the hook = bh, and e the distance between the centroidal
and neutral axes = R − rn.

1.31 Consider the four-bar truss shown in Fig. 1.32, in which members 1, 2, and 3 have
the same cross-sectional area x1 and the same length l, while member 4 has an area of
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Figure 1.32 Four-bar truss.

cross section x2 and length
√

3 l. The truss is made of a lightweight material for which
Young’s modulus and the weight density are given by 30 × 106 psi and 0.03333 lb/in3,
respectively. The truss is subject to the loads P1 = 10,000 lb and P2 = 20,000 lb. The
weight of the truss per unit value of l can be expressed as

f = 3x1(1)(0.03333) + x2

√
3(0.03333) = 0.1x1 + 0.05773x2

The vertical deflection of joint A can be expressed as

δA = 0.6

x1
+ 0.3464

x2

and the stresses in members 1 and 4 can be written as

σ1 = 5(10,000)

x1
= 50,000

x1
, σ4 = −2

√
3(10,000)

x2
= −34,640

x2

The weight of the truss is to be minimized with constraints on the vertical deflection of
the joint A and the stresses in members 1 and 4. The maximum permissible deflection
of joint A is 0.1 in. and the permissible stresses in members are σmax = 8333.3333 psi
(tension) and σmin = −4948.5714 psi (compression). The optimization problem can be
stated as a separable programming problem as follows:

Minimize f (x1, x2) = 0.1x1 + 0.05773x2

subject to
0.6

x1
+ 0.3464

x2
− 0.1 ≤ 0, 6 − x1 ≤ 0, 7 − x2 ≤ 0

Determine the solution of the problem using a graphical procedure.

1.32 A simply supported beam, with a uniform rectangular cross section, is subjected to both
distributed and concentrated loads as shown in Fig. 1.33. It is desired to find the cross
section of the beam to minimize the weight of the beam while ensuring that the maximum
stress induced in the beam does not exceed the permissible stress (σ0) of the material
and the maximum deflection of the beam does not exceed a specified limit (δ0).
The data of the problem are P = 105 N, p0 = 106 N/m, L = 1 m, E = 207 GPa, weight
density (ρw) = 76.5 kN/m3, σ0 = 220 MPa, and δ0 = 0.02 m.



62 Introduction to Optimization
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Figure 1.33 A simply supported beam subjected to concentrated and distributed loads.

(a) Formulate the problem as a mathematical programming problem assuming that
the cross-sectional dimensions of the beam are restricted as x1 ≤ x2, 0.04m ≤ x1

≤ 0.12m, and 0.06m ≤ x2 ≤ 0.20 m.

(b) Find the solution of the problem formulated in part (a) using MATLAB.

(c) Find the solution of the problem formulated in part (a) graphically.

1.33 Solve Problem 1.32, parts (a), (b), and (c), assuming the cross section of the beam to
be hollow circular with inner diameter x1 and outer diameter x2. Assume the data and
bounds on the design variables to be as given in Problem 1.32.

1.34 Find the solution of Problem 1.31 using MATLAB.

1.35 Find the solution of Problem 1.2(a) using MATLAB.

1.36 Find the solution of Problem 1.2(b) using MATLAB.


