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The Mathematics of Choice

It seems that mathematical ideas are arranged somehow in strata, the ideas in each

stratum being linked by a complex of relations both among themselves and with those

above and below. The lower the stratum, the deeper (and in general the more difficult)

the idea. Thus, the idea of an irrational is deeper than the idea of an integer.

— G. H. Hardy (A Mathematician’s Apology)

Roughly speaking, the first chapter of this book is the top stratum, the surface layer

of combinatorics. Even so, it is far from superficial. While the first main result, the

so-called fundamental counting principle, is nearly self-evident, it has enormous

implications throughout combinatorial enumeration. In the version presented here,

one is faced with a sequence of decisions, each of which involves some number of

choices. It is from situations like this that the chapter derives its name.

To the uninitiated, mathematics may appear to be ‘‘just so many numbers and

formulas.’’ In fact, the numbers and formulas should be regarded as shorthand

notes, summarizing ideas. Some ideas from the first section are summarized by

an algebraic formula for multinomial coefficients. Special cases of these numbers

are addressed from a combinatorial perspective in Section 1.2.

Section 1.3 is an optional discussion of probability theory which can be omitted

if probabilistic exercises in subsequent sections are approached with caution.

Section 1.4 is an optional excursion into the theory of binary codes which can be

omitted by those not planning to visit Chapter 6. Sections 1.3 and 1.4 are partly

motivational, illustrating that even the most basic combinatorial ideas have real-

life applications.

In Section 1.5, ideas behind the formulas for sums of powers of positive integers

motivate the study of relations among binomial coefficients. Choice is again the

topic in Section 1.6, this time with or without replacement, where order does or

doesn’t matter.

To better organize and understand the multinomial theorem from Section 1.7,

one is led to symmetric polynomials and, in Section 1.8, to partitions of n.

Elementary symmetric functions and their association with power sums lie at the
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heart of Section 1.9. The final section of the chapter is an optional introduction to

algorithms, the flavor of which can be sampled by venturing only as far as

Algorithm 1.10.3. Those desiring not less but more attention to algorithms can

find it in Appendix A2.

1.1. THE FUNDAMENTAL COUNTING PRINCIPLE

How many different four-letter words, including nonsense words, can be produced

by rearranging the letters in LUCK? In the absence of a more inspired approach,

there is always the brute-force strategy: Make a systematic list.

Once we become convinced that Fig. 1.1.1 accounts for every possible rearran-

gement and that no ‘‘word’’ is listed twice, the solution is obtained by counting the

24 words on the list.

While finding the brute-force strategy was effortless, implementing it required

some work. Such an approach may be fine for an isolated problem, the like of which

one does not expect to see again. But, just for the sake of argument, imagine your-

self in the situation of having to solve a great many thinly disguised variations of

this same problem. In that case, it would make sense to invest some effort in finding

a strategy that requires less work to implement. Among the most powerful tools in

this regard is the following commonsense principle.

1.1.1 Fundamental Counting Principle. Consider a (finite) sequence of deci-

sions. Suppose the number of choices for each individual decision is independent

of decisions made previously in the sequence. Then the number of ways to make the

whole sequence of decisions is the product of these numbers of choices.

To state the principle symbolically, suppose ci is the number of choices for deci-

sion i. If, for 1 � i < n, ciþ1 does not depend on which choices are made in

LUCK LUKC LCUK LCKU LKUC LKCU

ULCK ULKC UCLK UCKL UKLC UKCL

CLUK CLKU CULK CUKL CKLU CKUL

KLUC KLCU KULC KUCL KCLU KCUL

Figure 1.1.1. The rearrangements of LUCK.
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decisions 1; . . . ; i, then the number of different ways to make the sequence of

decisions is c1 � c2 � � � � � cn.

Let’s apply this principle to the word problem we just solved. Imagine yourself

in the midst of making the brute-force list. Writing down one of the words involves

a sequence of four decisions. Decision 1 is which of the four letters to write first, so

c1 ¼ 4. (It is no accident that Fig. 1.1.1 consists of four rows!) For each way of

making decision 1, there are c2 ¼ 3 choices for decision 2, namely which letter

to write second. Notice that the specific letters comprising these three choices

depend on how decision 1 was made, but their number does not. That is what is

meant by the number of choices for decision 2 being independent of how the pre-

vious decision is made. Of course, c3 ¼ 2, but what about c4? Facing no alternative,

is it correct to say there is ‘‘no choice’’ for the last decision? If that were literally

true, then c4 would be zero. In fact, c4 ¼ 1. So, by the fundamental counting

principle, the number of ways to make the sequence of decisions, i.e., the number

of words on the final list, is

c1 � c2 � c3 � c4 ¼ 4� 3� 2� 1:

The product n� ðn� 1Þ � ðn� 2Þ � � � � � 2� 1 is commonly written n! and

read n-factorial:	 The number of four-letter words that can be made up by rearrang-

ing the letters in the word LUCK is 4! ¼ 24.

What if the word had been LUCKY? The number of five-letter words that can be

produced by rearranging the letters of the word LUCKY is 5! ¼ 120. A systematic

list might consist of five rows each containing 4! ¼ 24 words.

Suppose the word had been LOOT? How many four-letter words, including non-

sense words, can be constructed by rearranging the letters in LOOT? Why not apply

the fundamental counting principle? Once again, imagine yourself in the midst of

making a brute-force list. Writing down one of the words involves a sequence of

four decisions. Decision 1 is which of the three letters L, O, or T to write first.

This time, c1 ¼ 3. But, what about c2? In this case, the number of choices for deci-

sion 2 depends on how decision 1 was made! If, e.g., L were chosen to be the first

letter, then there would be two choices for the second letter, namely O or T. If, how-

ever, O were chosen first, then there would be three choices for the second decision,

L, (the second) O, or T. Do we take c2 ¼ 2 or c2 ¼ 3? The answer is that the funda-

mental counting principle does not apply to this problem (at least not directly).

The fundamental counting principle applies only when the number of choices for

decision iþ 1 is independent of how the previous i decisions are made.

To enumerate all possible rearrangements of the letters in LOOT, begin by dis-

tinguishing the two O’s. maybe write the word as LOoT. Applying the fundamental

counting principle, we find that there are 4! ¼ 24 different-looking four-letter words

that can be made up from L, O, o, and T.

*The exclamation mark is used, not for emphasis, but because it is a convenient symbol common to most

keyboards.
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Among the words in Fig. 1.1.2 are pairs like OLoT and oLOT, which look dif-

ferent only because the two O’s have been distinguished. In fact, every word in the

list occurs twice, once with ‘‘big O’’ coming before ‘‘little o’’, and once the other

way around. Evidently, the number of different words (with indistinguishable O’s)

that can be produced from the letters in LOOT is not 4! but 4!=2 ¼ 12.

What about TOOT? First write it as TOot. Deduce that in any list of all possible

rearrangements of the letters T, O, o, and t, there would be 4! ¼ 24 different-look-

ing words. Dividing by 2 makes up for the fact that two of the letters are O’s. Divid-

ing by 2 again makes up for the two T’s. The result, 24=ð2� 2Þ ¼ 6, is the number

of different words that can be made up by rearranging the letters in TOOT. Here

they are

TTOO TOTO TOOT OTTO OTOT OOTT

All right, what if the word had been LULL? How many words can be produced

by rearranging the letters in LULL? Is it too early to guess a pattern? Could the

number we’re looking for be 4!=3 ¼ 8? No. It is easy to see that the correct answer

must be 4. Once the position of the letter U is known, the word is completely deter-

mined. Every other position is filled with an L. A complete list is ULLL, LULL,

LLUL, LLLU.

To find out why 4!/3 is wrong, let’s proceed as we did before. Begin by distin-

guishing the three L’s, say L1, L2, and L3. There are 4! different-looking words that

can be made up by rearranging the four letters L1, L2, L3, and U. If we were to make

a list of these 24 words and then erase all the subscripts, how many times would,

say, LLLU appear? The answer to this question can be obtained from the funda-

mental counting principle! There are three decisions: decision 1 has three choices,

namely which of the three L’s to write first. There are two choices for decision 2

(which of the two remaining L’s to write second) and one choice for the third deci-

sion, which L to put last. Once the subscripts are erased, LLLU would appear 3!

times on the list. We should divide 4! ¼ 24, not by 3, but by 3! ¼ 6. Indeed,

4!=3! ¼ 4 is the correct answer.

Whoops! if the answer corresponding to LULL is 4!/3!, why didn’t we get 4!/2!

for the answer to LOOT? In fact, we did: 2! ¼ 2.

Are you ready for MISSISSIPPI? It’s the same problem! If the letters were all

different, the answer would be 11!. Dividing 11! by 4! makes up for the fact that

there are four I’s. Dividing the quotient by another 4! compensates for the four S’s.

LOoT LOTo LoO T LoT O LTOo LToO
OLoT OToL
oLO T oTOL
TLOo

OLTo

oLTO

TLoO

OoLT

oOLT

TOLo

OoTL

oOTL

TOoL

OTLo

oTLO

ToLO ToOL

Figure 1.1.2. Rearrangements of LOoT.
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Dividing that quotient by 2! makes up for the two P’s. In fact, no harm is done if

that quotient is divided by 1! ¼ 1 in honor of the single M. The result is

11!

4! 4! 2! 1!
¼ 34; 650:

(Confirm the arithmetic.) The 11 letters in MISSISSIPPI can be (re)arranged in

34,650 different ways.*

There is a special notation that summarizes the solution to what we might call

the ‘‘MISSISSIPPI problem.’’

1.1.2 Definition. The multinomial coefficient

n

r1; r2; . . . ; rk

� �
¼ n!

r1!r2! � � � rk!
;

where r1 þ r2 þ � � � þ rk ¼ n.

So, ‘‘multinomial coefficient’’ is a name for the answer to the question, how

many n-letter ‘‘words’’ can be assembled using r1 copies of one letter, r2 copies

of a second (different) letter, r3 copies of a third letter, . . . ; and rk copies of a

kth letter?

1.1.3 Example. After cancellation,

9

4; 3; 1; 1

� �
¼ 9� 8� 7� 6� 5� 4� 3� 2� 1

4� 3� 2� 1� 3� 2� 1� 1� 1

¼ 9� 8� 7� 5 ¼ 2520:

Therefore, 2520 different words can be manufactured by rearranging the nine letters

in the word SASSAFRAS. &

In real-life applications, the words need not be assembled from the English

alphabet. Consider, e.g., POSTNET{ barcodes commonly attached to U.S. mail

by the Postal Service. In this scheme, various numerical delivery codesz are repre-

sented by ‘‘words’’ whose letters, or bits, come from the alphabet ;
n o

. Correspond-

ing, e.g., to a ZIPþ 4 code is a 52-bit barcode that begins and ends with . The 50-

bit middle part is partitioned into ten 5-bit zones. The first nine of these zones are

for the digits that comprise the ZIPþ 4 code. The last zone accommodates a parity

* This number is roughly equal to the number of members of the Mathematical Association of America

(MAA), the largest professional organization for mathematicians in the United States.
{ Postal Numeric Encoding Technique.
zThe original five-digit Zoning Improvement Plan (ZIP) code was introduced in 1964; ZIPþ4 codes

followed about 25 years later. The 11-digit Delivery Point Barcode (DPBC) is a more recent variation.
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check digit, chosen so that the sum of all ten digits is a multiple of 10. Finally, each

digit is represented by one of the 5-bit barcodes in Fig. 1.1.3. Consider, e.g., the ZIP

þ4 code 20090-0973, for the Mathematical Association of America. Because the

sum of these digits is 30, the parity check digit is 0. The corresponding 52-bit

word can be found in Fig. 1.1.4.

20090-0973
Figure 1.1.4

We conclude this section with another application of the fundamental counting

principle.

1.1.4 Example. Suppose you wanted to determine the number of positive

integers that exactly divide n ¼ 12. That isn’t much of a problem; there are six

of them, namely, 1, 2, 3, 4, 6, and 12. What about the analogous problem for

n ¼ 360 or for n ¼ 360; 000? Solving even the first of these by brute-force list

making would be a lot of work. Having already found another strategy whose

implementation requires a lot less work, let’s take advantage of it.

Consider 360 ¼ 23 � 32 � 5, for example. If 360 ¼ dq for positive integers d

and q, then, by the uniqueness part of the fundamental theorem of arithmetic, the

prime factors of d, together with the prime factors of q, are precisely the prime

factors of 360, multiplicities included. It follows that the prime factorization of d

must be of the form d ¼ 2a � 3b � 5c, where 0 � a � 3, 0 � b � 2, and 0 � c � 1.

Evidently, there are four choices for a (namely 0, 1, 2, or 3), three choices for b, and

two choices for c. So, the number of possibile d’s is 4� 3� 2 ¼ 24. &

1.1. EXERCISES

1 The Hawaiian alphabet consists of 12 letters, the vowels a, e, i, o, u and the

consonants h, k, l, m, n, p, w.

(a) Show that 20,736 different 4-letter ‘‘words’’ could be constructed using the

12-letter Hawaiian alphabet.

0   =

5   =

1   =

6   =

2   =

7   =

3   =

8   =

4   =

9   =

Figure 1.1.3. POSTNET barcodes.
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(b) Show that 456,976 different 4-letter ‘‘words’’ could be produced using the

26-letter English alphabet.*

(c) How many four-letter ‘‘words’’ can be assembled using the Hawaiian

alphabet if the second and last letters are vowels and the other 2 are

consonants?

(d) How many four-letter ‘‘words’’ can be produced from the Hawaiian

alphabet if the second and last letters are vowels but there are no restrictions

on the other 2 letters?

2 Show that

(a) 3!� 5! ¼ 6!.

(b) 6!� 7! ¼ 10!.

(c) ðnþ 1Þ � ðn!Þ ¼ ðnþ 1Þ!.
(d) n2 ¼ n!½1=ðn� 1Þ!þ 1=ðn� 2Þ!�.
(e) n3 ¼ n!½1=ðn� 1Þ!þ 3=ðn� 2Þ!þ 1=ðn� 3Þ!�.

3 One brand of electric garage door opener permits the owner to select his or her

own electronic ‘‘combination’’ by setting six different switches either in the

‘‘up’’ or the ‘‘down’’ position. How many different combinations are possible?

4 One generation back you have two ancestors, your (biological) parents. Two

generations back you have four ancestors, your grandparents. Estimating 210 as

103, approximately how many ancestors do you have

(a) 20 generations back?

(b) 40 generations back?

(c) In round numbers, what do you estimate is the total population of the

planet?

(d) What’s wrong?

5 Make a list of all the ‘‘words’’ that can be made up by rearranging the letters in

(a) TO. (b) TOO. (c) TWO.

6 Evaluate multinomial coefficient

(a)
6

4; 1; 1

� �
: (b)

6

3; 3

� �
. (c)

6

2; 2; 2

� �
.

*Based on these calculations, might it be reasonable to expect Hawaiian words, on average, to be longer

than their English counterparts? Certainly such a conclusion would be warranted if both languages had the

same vocabulary and both were equally ‘‘efficient’’ in avoiding long words when short ones are available.

How efficient is English? Given that the total number of words defined in a typical ‘‘unabridged

dictionary’’ is at most 350,000, one could, at least in principle, construct a new language with the same

vocabulary as English but in which every word has four letters—and there would be 100,000 words to

spare!
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(d)
6

3; 2; 1

� �
: (e)

6

1; 3; 2

� �
. (f)

6

1; 1; 1; 1; 1; 1

� �
.

7 How many different ‘‘words’’ can be constructed by rearranging the letters in

(a) ALLELE? (b) BANANA? (c) PAPAYA?

(d) BUBBLE? (e) ALABAMA? (f) TENNESSEE?

(g) HALEAKALA? (h) KAMEHAMEHA? (i) MATHEMATICS?

8 Prove that

(a) 1þ 2þ 22 þ 23 þ � � � þ 2n ¼ 2nþ1 � 1.

(b) 1� 1!þ 2� 2!þ 3� 3!þ � � � þ n� n! ¼ ðnþ 1Þ!� 1.

(c) ð2nÞ!=2n is an integer.

9 Show that the barcodes in Fig. 1.1.3 comprise all possible five-letter words

consisting of two ’s and three ’s.

10 Explain how the following barcodes fail the POSTNET standard:

(a)

(b)

(c)

11 ‘‘Read’’ the ZIPþ4 Code

(a)

(b)

12 Given that the first nine zones correspond to the ZIPþ4 delivery code 94542-

2520, determine the parity check digit and the two ‘‘hidden digits’’ in the

62-bit DPBC

(Hint: Do you need to be told that the parity check digit is last?)

13 Write out the 52-bit POSTNET barcode for 20742-2461, the ZIPþ4 code at

the University of Maryland used by the Association for Women in

Mathematics.

14 Write out all 24 divisors of 360. (See Example 1.1.4.)

15 Compute the number of positive integer divisors of

(a) 210. (b) 1010. (c) 1210. (d) 3110.

(e) 360,000. (f) 10!.
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16 Prove that the positive integer n has an odd number of positive-integer divisors

if and only if it is a perfect square.

17 Let D ¼ d1; d2; d3; d4f g and R ¼ r1; r2; r3; r4; r5; r6f g. Compute the number

(a) of different functions f : D! R.

(b) of one-to-one functions f : D! R.

18 The latest automobile license plates issued by the California Department of

Motor Vehicles begin with a single numeric digit, followed by three letters,

followed by three more digits. How many different license ‘‘numbers’’ are

available using this scheme?

19 One brand of padlocks uses combinations consisting of three (not necessarily

different) numbers chosen from 0; 1; 2; . . . ; 39f g. If it takes five seconds to

‘‘dial in’’ a three-number combination, how long would it take to try all

possible combinations?

20 The International Standard Book Number (ISBN) is a 10-digit numerical code

for identifying books. The groupings of the digits (by means of hyphens)

varies from one book to another. The first grouping indicates where the book

was published. In ISBN 0-88175-083-2, the zero shows that the book was

published in the English-speaking world. The code for the Netherlands is ‘‘90’’

as, e.g., in ISBN 90-5699-078-0. Like POSTNET, ISBN employs a check digit

scheme. The first nine digits (ignoring hyphens) are multiplied, respectively,

by 10, 9, 8; . . . ; 2, and the resulting products summed to obtain S. In 0-88175-

083-2, e.g.,

S ¼ 10� 0þ 9� 8þ 8� 8þ 7� 1þ 6� 7þ 5� 5þ 4� 0

þ 3� 8þ 2� 3 ¼ 240:

The last (check) digit, L, is chosen so that Sþ L is a multiple of 11. (In our

example, L ¼ 2 and Sþ L ¼ 242 ¼ 11� 22.)

(a) Show that, when S is divided by 11, the quotient Q and remainder R satisfy

S ¼ 11Qþ R.

(b) Show that L ¼ 11� R. (When R ¼ 1, the check digit is X.)

(c) What is the value of the check digit, L, in ISBN 0-534-95154-L?

(d) Unlike POSTNET, the more sophisticated ISBN system can not

only detect common errors, it can sometimes ‘‘correct’’ them. Suppose,

e.g., that a single digit is wrong in ISBN 90-5599-078-0. Assuming

the check digit is correct, can you identify the position of the erroneous

digit?

(e) Now that you know the position of the (single) erroneous digit in part (d),

can you recover the correct ISBN?

(f) What if it were expected that exactly two digits were wrong in part (d).

Which two digits might they be?
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21 A total of 9! ¼ 362; 880 different nine-letter ‘‘words’’ can be produced by

rearranging the letters in FULBRIGHT. Of these, how many contain the four-

letter sequence GRIT?

22 In how many different ways can eight coins be arranged on an 8� 8

checkerboard so that no two coins lie in the same row or column?

23 If A is a finite set, its cardinality, oðAÞ, is the number of elements in A.

Compute

(a) oðAÞ when A is the set consisting of all five-digit integers, each digit of

which is 1, 2, or 3.

(b) oðBÞ, where B ¼ x 2 A : each of 1; 2; and 3 is among the digits of xf g
and A is the set in part (a).

1.2. PASCAL’S TRIANGLE

Mathematics is the art of giving the same name to different things.

— Henri Poincaré (1854–1912)

In how many different ways can an r-element subset be chosen from an n-element

set S? Denote the number by Cðn; rÞ. Pronounced ‘‘n-choose-r’’, Cðn; rÞ is just a

name for the answer. Let’s find the number represented by this name.

Some facts about Cðn; rÞ are clear right away, e.g., the nature of the elements of

S is immaterial. All that matters is that there are n of them. Because the only way to

choose an n-element subset from S is to choose all of its elements, Cðn; nÞ ¼ 1.

Having n single elements, S has n single-element subsets, i.e., Cðn; 1Þ ¼ n. For

essentially the same reason, Cðn; n� 1Þ ¼ n: A subset of S that contains all but

one element is uniquely determined by the one element that is left out. Indeed,

this idea has a nice generalization. A subset of S that contains all but r elements

is uniquely determined by the r elements that are left out. This natural one-to-

one correspondence between subsets and their complements yields the following

symmetry property:

Cðn; n� rÞ ¼ Cðn; rÞ:

1.2.1 Example. By definition, there are Cð5; 2Þ ways to select two elements

from A;B;C;D;Ef g. One of these corresponds to the two-element subset A;Bf g.
The complement of A;Bf g is C;D;Ef g. This pair is listed first in the following one-

to-one correspondence between two-element subsets and their three-element

complements:
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A;Bf g $ C;D;Ef g; B;Df g $ A;C;Ef g;
A;Cf g $ B;D;Ef g; B;Ef g $ A;C;Df g;
A;Df g $ B;C;Ef g; C;Df g $ A;B;Ef g;
A;Ef g $ B;C;Df g; C;Ef g $ A;B;Df g;
B;Cf g $ A;D;Ef g; D;Ef g $ A;B;Cf g:

By counting these pairs, we find that Cð5; 2Þ ¼ Cð5; 3Þ ¼ 10. &

A special case of symmetry is Cðn; 0Þ ¼ Cðn; nÞ ¼ 1. Given n objects, there is

just one way to reject all of them and, hence, just one way to choose none of them.

What if n ¼ 0? How many ways are there to choose no elements from the empty

set? To avoid a deep philosophical discussion, let us simply adopt as a convention

that Cð0; 0Þ ¼ 1.

A less obvious fact about choosing these numbers is the following.

1.2.2 Theorem (Pascal’s Relation). If 1 � r � n, then

Cðnþ 1; rÞ ¼ Cðn; r � 1Þ þ Cðn; rÞ: ð1:1Þ

Together with Example 1.2.1, Pascal’s relation implies, e.g., that Cð6; 3Þ ¼
Cð5; 2Þ þ Cð5; 3Þ ¼ 20.

Proof. Consider the ðnþ 1Þ-element set x1; x2; . . . ; xn; yf g. Its r-element subsets

can be partitioned into two families, those that contain y and those that do not.

To count the subsets that contain y, simply observe that the remaining r � 1 ele-

ments can be chosen from x1; x2; . . . ; xnf g in Cðn; r � 1Þ ways. The r-element

subsets that do not contain y are precisely the r-element subsets of

x1; x2; . . . ; xnf g, of which there are Cðn; rÞ. &

The proof of Theorem 1.2.2 used another self-evident fact that is worth men-

tioning explicitly. (A much deeper extension of this result will be discussed in

Chapter 2.)

1.2.3 The Second Counting Principle. If a set can be expressed as the disjoint

union of two (or more) subsets, then the number of elements in the set is the sum of

the numbers of elements in the subsets.

So far, we have been viewing Cðn; rÞ as a single number. There are some advan-

tages to looking at these choosing numbers collectively, as in Fig. 1.2.1. The trian-

gular shape of this array is a consequence of not bothering to write 0 ¼ Cðn; rÞ,
r > n. Filling in the entries we know, i.e., Cðn; 0Þ ¼ Cðn; nÞ ¼ 1; Cðn; 1Þ ¼ n ¼
Cðn; n� 1Þ, Cð5; 2Þ ¼ Cð5; 3Þ ¼ 10, and Cð6; 3Þ ¼ 20, we obtain Fig. 1.2.2.

1.2. Pascal’s Triangle 11



Given the fourth row of the array (corresponding to n ¼ 3), we can use Pascal’s

relation to compute Cð4; 2Þ ¼ Cð3; 1Þ þ Cð3; 2Þ ¼ 3þ 3 ¼ 6. Similarly, Cð6; 4Þ ¼
Cð6; 2Þ ¼ Cð5; 1Þ þ Cð5; 2Þ ¼ 5þ 10 ¼ 15. Continuing in this way, one row at a

time, we can complete as much of the array as we like.

Following Western tradition, we refer to the array in Fig. 1.2.3 as Pascal’s

triangle.* (Take care not to forget, e.g., that Cð6; 3Þ ¼ 20 appears, not in the third

column of the sixth row, but in the fourth column of the seventh!)

Pascal’s triangle is the source of many interesting identities. One of these con-

cerns the sum of the entries in each row:

1þ 1 ¼ 2;

1þ 2þ 1 ¼ 4;

1þ 3þ 3þ 1 ¼ 8;

1þ 4þ 6þ 4þ 1 ¼ 16;

ð1:2Þ

r 0 1 2 3 4 5 6 7
n
0 C(0,0)
1 C(1,0) C(1,1)
2 C(2,0) C(2,1) C(2,2)
3 C(3,0) C(3,1) C(3,2) C(3,3)
4 C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)
5 C(5,0) C(5,1) C(5,2) C(5,3) C(5,4) C(5,5)
6 C(6,0) C(6,1) C(6,2) C(6,3) C(6,4) C(6,5) C(6,6)
7 C(7,0) C(7,1) C(7,2) C(7,3) C(7,4) C(7,5) C(7,6) C(7,7)

. . .

Figure 1.2.1. Cðn; rÞ.

r 1 2 30 4 5 6 7
n
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 C(4,2) 4 1
5 1 5 10 10 5 1
6 1 6 C(6,2) 20 C(6,4) 6 1
7 1 7 C(7,2) C(7,3) C(7,4) C(7,5) 7 1

. . .

Figure 1.2.2

*After Blaise Pascal (1623–1662), who described it in the book Traité du triangle arithmétique. Rumored

to have been included in a lost mathematical work by Omar Khayyam (ca. 1050–1130), author of the

Rubaiyat, the triangle is also found in surviving works by the Arab astronomer al-Tusi (1265), the Chinese

mathematician Chu Shih-Chieh (1303), and the Hindu writer Narayana Pandita (1365). The first European

author to mention it was Petrus Apianus (1495–1552), who put it on the title page of his 1527 book,

Rechnung.
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and so on. Why should each row sum to a power of 2? In

Cðn; 0Þ þ Cðn; 1Þ þ � � � þ Cðn; nÞ ¼
Xn

r¼0

Cðn; rÞ;

Cðn; 0Þ is the number of subsets of S ¼ x1; x2; . . . ; xnf g that have no elements;

Cðn; 1Þ is the number of one-element subsets of S; Cðn; 2Þ is the number of

two-element subsets, and so on. Evidently, the sum of the numbers in row n of

Pascal’s triangle is the total number of subsets of S (even when n ¼ 0 and

S ¼ [Þ. The empirical evidence from Equations (1.2) suggests that an n-element

set has a total of 2n subsets. How might one go about proving this conjecture?

One way to do it is by mathematical induction. There is, however, another

approach that is both easier and more revealing. Imagine youself in the process

of listing the subsets of S ¼ x1; x2; . . . ; xnf g. Specifying a subset involves a

sequence of decisions. Decision 1 is whether to include x1. There are two choices,

Yes or No. Decision 2, whether to put x2 into the subset, also has two choices.

Indeed, there are two choices for each of the n decisions. So, by the fundamental

counting principle, S has a total of 2� 2� � � � � 2 ¼ 2n subsets.

There is more. Suppose, for example, that n ¼ 9. Consider the sequence of deci-

sions that produces the subset x2; x3; x6; x8f g, a sequence that might be recorded as

NYYNNYNYN. The first letter of this word corresponds to No, as in ‘‘no to x1’’; the

second letter corresponds to Yes, as in ‘‘yes to x2’’; because x3 is in the subset, the

third letter is Y; and so on for each of the nine letters. Similarly, x1; x2; x3f g cor-

responds to the nine-leter word YYYNNNNNN. In general, there is a one-to-one

correspondence between subsets of fx1; x2; . . . ; xng, and n-letter words assembled

from the alphabet N;Yf g. Moreover, in this correspondence, r-element subsets

correspond to words with r Y’s and n� r N’s.

We seem to have discovered a new way to think about Cðn; rÞ. It is the number

of n-letter words that can be produced by (re)arranging r Y’s and n� r N’s. This

interpretation can be verified directly. An n-letter word consists of n spaces, or loca-

tions, occupied by letters. Each of the words we are discussing is completely deter-

mined once the r locations of the Y’s have been chosen (the remaining n� r spaces

being occupied by N’s).

n
r 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

1

3

6

10

15

21

1

4

10

20

35

1

5

15

35

1

6

21

1

7 1
. . .

Figure 1.2.3. Pascal’s triangle.

1.2. Pascal’s Triangle 13



The significance of this new perspective is that we know how to count the num-

ber of n-letter words with r Y’s and n� r N’s. That’s the MISSISSIPPI problem!

The answer is multinomial coefficient
�

n
r;n�r

�
. Evidently,

Cðn; rÞ ¼ n

r; n� r

� �
¼ n!

r!ðn� rÞ! :

For things to work out properly when r ¼ 0 and r ¼ n, we need to adopt another

convention. Define 0! ¼ 1. (So, 0! is not equal to the nonsensical 0 � ð0� 1Þ�
ð0� 2Þ � � � � � 1:Þ

It is common in the mathematical literature to write
�

n
r

�
instead of

�
n

r;n�r

�
, one

justification being that the information conveyed by ‘‘n� r’’ is redundant. It can be

computed from n and r. The same thing could, of course, be said about any multi-

nomial coefficient. The last number in the second row is always redundant. So, that

particular argument is not especially compelling. The honest reason for writing
�

n
r

�
is tradition.

We now have two ways to look at Cðn; rÞ ¼
�

n
r

�
. One is what we might call the

combinatorial definition: n-choose-r is the number of ways to choose r things from

a collection of n things. The alternative, what we might call the algebraic definition,

is

Cðn; rÞ ¼ n!

r!ðn� rÞ! :

Don’t make the mistake of asuming, just because it is more familiar, that the

algebraic definition will always be easiest. (Try giving an algebraic proof of the

identity
Pn

r¼0 Cðn; rÞ ¼ 2n.) Some applications are easier to approach using alge-

braic methods, while the combinatorial definition is easier for others. Only by

becoming familiar with both will you be in a position to choose the easiest

approach in every situation!

1.2.4 Example. In the basic version of poker, each player is dealt five cards (as

in Fig. 1.2.4) from a standard 52-card deck (no joker). How many different five-card

poker hands are there? Because someone (in a fair game it might be Lady Luck)

chooses five cards from the deck, the answer is Cð52; 5Þ. The ways to find the num-

ber behind this name are: (1) Make an exhaustive list of all possible hands, (2) work

out 52 rows of Pascal’s triangle, or (3) use the algebraic definition

Cð52; 5Þ ¼ 52!

5! 47!

¼ 52� 51� 50� 49� 48� 47!

5� 4� 3� 2� 1� 47!

¼ 52� 51� 50� 49� 48

5� 4� 3� 2� 1

¼ 52� 51� 10� 49� 2

¼ 2; 598; 960: &
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1.2.5 Example. The game of bridge uses the same 52 cards as poker.* The

number of different 13-card bridge hands is

Cð52; 13Þ ¼ 52!

13! 39!

¼ 52� 51� � � � � 40� 39!

13!� 39!

¼ 52� 51� � � � � 40

13!
;

about 635,000,000,000. &

It may surprise you to learn that Cð52; 13Þ is so much larger than Cð52; 5Þ. On

the other hand, it does seem clear from Fig. 1.2.3 that the numbers in each row of

Pascal’s triangle increase, from left to right, up to the middle of the row and then

decrease from the middle to the right-hand end. Rows for which this property holds

are said to be unimodal.

1.2.6 Theorem. The rows of Pascal’s triangle are unimodal.

*The actual, physical cards are typically slimmer to accommodate the larger, 13-card hands.

Figure 1.2.4. A five-card poker hand.
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Proof. If n > 2r þ 1, the ratio

Cðn; r þ 1Þ
Cðn; rÞ ¼ r!ðn� rÞ!

ðr þ 1Þ!ðn� r � 1Þ! ¼
n� r

r þ 1
> 1;

implying that Cðn; r þ 1Þ > Cðn; rÞ. &

1.2. EXERCISES

1 Compute

(a) Cð7; 4Þ. (b) Cð10; 5Þ. (c) Cð12; 4Þ.
(d) Cð101; 2Þ. (e) Cð101; 99Þ. (f) Cð12; 6Þ.

2 If n and r are integers satisfying n > r � 0, prove that

(a) ðr þ 1ÞCðn; r þ 1Þ ¼ ðn� rÞCðn; rÞ.
(b) ðr þ 1ÞCðn; r þ 1Þ ¼ nCðn� 1; rÞ.

3 Write out rows 7 through 10 of Pascal’s triangle and confirm that the sum of

the numbers in the 10th row is 210 ¼ 1024.

4 Consider the sequence of numbers 0, 0, 1, 3, 6, 10, 15, . . . from the third

ðr ¼ 2Þ column of Pascal’s triangle. Starting with n ¼ 0, the nth term of the

sequence is an ¼ Cðn; 2Þ. Prove that, for all n � 0,

(a) anþ1 � an ¼ n. (b) anþ1 þ an ¼ n2.

5 Consider the sequence b0; b1; b2; b3; . . . ; where bn ¼ Cðn; 3Þ. Prove that, for

all n � 0,

(a) bnþ1 � bn ¼ Cðn; 2Þ.
(b) bnþ2 � bn is a perfect square.

6 Poker is sometimes played with a joker. How many different five-card poker

hands can be ‘‘chosen’’ from a deck of 53 cards?

7 Phrobana is a game played with a deck of 48 cards (no aces). How many

different 12-card phrobana hands are there?

8 Give the inductive proof that an n-element set has 2n subsets.

9 Let ri be a positive integer, 1 � i � k. If n ¼ r1 þ r2 þ � � � þ rk, prove that

n

r1; r2; . . . ; rk

� �
¼

n� 1

r1 � 1; r2; . . . ; rk

� �
þ

n� 1

r1; r2 � 1; . . . ; rk

� �
þ � � �

þ
n� 1

r1; r2; . . . ; rk � 1

� �
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(a) using algebraic arguments.

(b) using combinatorial arguments.

10 Suppose n, k, and r are integers that satisfy n � k � r � 0 and k > 0. Prove

that

(a) Cðn; kÞCðk; rÞ ¼ Cðn; rÞCðn� r; k � rÞ.
(b) Cðn; kÞCðk; rÞ ¼ Cðn; k � rÞCðn� k þ r; rÞ.
(c)

Pn
j¼ 0 Cðn; jÞCð j; rÞ ¼ Cðn; rÞ2n�r.

(d)
Pn

j¼ k ð�1Þjþk
Cðn; jÞ ¼ Cðn� 1; k � 1Þ.

11 Prove that
Pn

r¼ 0 Cðn; rÞ
	 
2¼P2n

s¼ 0 Cð2n; sÞ.

12 Prove that Cð2n; nÞ, n > 0, is always even.

13 Probably first studied by Leonhard Euler (1707–1783), the Catalan sequence*

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862; . . . is defined by cn ¼ Cð2n; nÞ=
ðnþ 1Þ, n � 0. Confirm that the Catalan numbers satisfy

(a) c2 ¼ 2c1. (b) c3 ¼ 3c2 � c1.

(c) c4 ¼ 4c3 � 3c2. (d) c5 ¼ 5c4 � 6c3 þ c2.

(e) c6 ¼ 6c5 � 10c4 þ 4c3. (f) c7 ¼ 7c6 � 15c5 þ 10c4 � c3.

(g) Speculate about the general form of these equations.

(h) Prove or disprove your speculations from part (g).

14 Show that the Catalan numbers (Exercise 13) satisfy

(a) cn ¼ Cð2n� 1; n� 1Þ � Cð2n� 1; nþ 1Þ.
(b) cn ¼ Cð2n; nÞ � Cð2n; n� 1Þ.
(c) cnþ1 ¼ 4nþ 2

nþ 2 cn.

15 One way to illustrate an r-element subset S of 1; 2; . . . ; nf g is this: Let P0 be

the origin of the xy-plane. Setting x0 ¼ y0 ¼ 0, define

Pk ¼ ðxk; ykÞ ¼
ðxk�1 þ 1; yk�1Þ if k 2 S;
ðxk�1; yk�1 þ 1Þ if k 62 S:

�

Finally, connect successive points by unit segments (either horizontal or

vertical) to form a ‘‘path’’. Figure 1.2.5 illustrates the path corresponding to

S ¼ 3; 4; 6; 8f g and n ¼ 8.

*Euler was so prolific that more than one topic has come to be named for the first person to work on it after

Euler, in this case, Eugene Catalan (1814–1894).
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P0

P1

P2

P3 P4

P6

P8

P7

P5

Figure 1.2.5

(a) Illustrate E ¼ 2; 4; 6; 8f g when n ¼ 8.

(b) Illustrate E ¼ 2; 4; 6; 8f g when n ¼ 9.

(c) Illustrate D ¼ 1; 3; 5; 7f g when n ¼ 8.

(d) Show that Pn ¼ ðr; n� rÞ when S is an r-element set.

(e) A lattice path of length n in the xy-plane begins at the origin and consists

of n unit ‘‘steps’’ each of which is either up or to the right. If r of the steps

are to the right and s ¼ n� r of them are up, the lattice path terminates at

the point ðr; sÞ. How many different lattice paths terminate at ðr; sÞ?

16 Define c0 ¼ 1 and let cn be the number of lattice paths of length 2n

(Exercise 15) that terminate at ðn; nÞ and never rise above the line y ¼ x,

i.e., such that xk � yk for each point Pk ¼ xk; ykð Þ. Show that

(a) c1 ¼ 1; c2 ¼ 2, and c3 ¼ 5.

(b) cnþ1 ¼
Pn

r¼0 crcn�r. (Hint: Lattice paths ‘‘touch’’ the line y ¼ x for the

last time at the point ðn; nÞ. Count those whose next-to-last touch is at the

point ðr; rÞ).
(c) cn is the nth Catalan number of Exercises 13–14, n � 1.

17 Let X and Y be disjoint sets containing n and m elements, respectively. In how

many different ways can an ðr þ sÞ-element subset Z be chosen from X [ Y if

r of its elements must come from X and s of them from Y?

18 Packing for a vacation, a young man decides to take 3 long-sleeve shirts,

4 short-sleeve shirts, and 2 pairs of pants. If he owns 16 long-sleeve shirts,

20 short-sleeve shirts, and 13 pairs of pants, in how many different ways can

he pack for the trip?
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n
r 0 1 2 3 4 5 6 7

0 C(0,0)

1 C(1,0) C(1,1)

2 C(2,0) C(2,1) C(2,2)

3 C(3,0) C(3,1) C(3,2)
+

C(3,3)

4 C(4,0) C(4,1)
+

C(4,2) C(4,3) C(4,4)

5 C(5,0)
+

C(5,1) C(5,2) C(5,3) C(5,4) C(5,5)

6 C(6,0) C(6,1) C(6,2) C(6,3) C(6,4) C(6,5) C(6,6)

7 C(7,0) C(7,1) C(7,2) C(7,3) C(7,4) C(7,5) C(7,6) C(7,7)

. . .

Figure 1.2.6

19 Suppose n is a positive integer and let k ¼ bn=2c, the greatest integer not larger

than n=2. Define

Fn ¼ Cðn; 0Þ þ Cðn� 1; 1Þ þ Cðn� 2; 2Þ þ � � � þ Cðn� k; kÞ:

Starting with n ¼ 0, the sequence Fnf g is

1; 1; 2; 3; 5; 8; 13; . . . ;

where, e.g., the 7th number in the sequence, F6 ¼ 13, is computed by

summing the boldface numbers in Fig. 1.2.6.*

(a) Compute F7 directly from the definition.

(b) Prove the recurrence Fnþ2 ¼ Fnþ1 þ Fn, n � 0.

(c) Compute F7 using part (b) and the initial fragment of the sequence given

above.

(d) Prove that
Pn

i¼0 Fi ¼ Fnþ2 � 1.

20 C. A. Tovey used the Fibonacci sequence (Exercise 19) to prove that infinitely

many pairs ðn; kÞ solve the equation Cðn; kÞ ¼ Cðn� 1; k þ 1Þ. The first pair is

Cð2; 0Þ ¼ Cð1; 1Þ. Find the second. (Hint: n < 20. Your solution need not

make use of the Fibonacci sequence.)

21 The Buda side of the Danube is hilly and suburban while the Pest side is flat

and urban. In short, Budapest is a divided city. Following the creation of a new

commission on culture, suppose 6 candidates from Pest and 4 from Buda

volunteer to serve. In how many ways can the mayor choose a 5-member

commission.

*It was the French number theorist François Édouard Anatole Lucas (1842–1891) who named these

numbers after Leonardo of Pisa (ca. 1180–1250), a man also known as Fibonacci.
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(a) from the 10 candidates?

(b) if proportional representation dictates that 3 members come from Pest and

2 from Buda?

22 H. B. Mann and D. Shanks discovered a criterion for primality in terms of

Pascal’s triangle: Shift each of the nþ 1 entries in row n to the right so that

they begin in column 2n. Circle the entries in row n that are multiples of n.

Then r is prime if and only if all the entries in column r have been circled.

Columns 0–11 are shown in Fig. 1.2.7. Continue the figure down to row 9 and

out to column 20.

2

1

n
0 1 2 3 4 5 6 7 8 9 1110r

1 1

21 1

31

41

51

46

3 13

4

5

Figure 1.2.7

23 The superintendent of the Hardluck Elementary School District suggests that

the Board of Education meet a $5 million budget deficit by raising average

class sizes, from 30 to 36 students, a 20% increase. A district teacher objects,

pointing out that if the proposal is adopted, the potential for a pair of

classmates to get into trouble will increase by 45%. What is the teacher

talking about?

24 Strictly speaking, Theorem 1.2.6 establishes only half of the unimodality

property. Prove the other half.

25 If n and r are nonnegative integers and x is an indeterminate, define

Kðn; rÞ ¼ ð1þ xÞnxr.

(a) Show that Kðnþ 1; rÞ ¼ Kðn; rÞ þ Kðn; r þ 1Þ.
(b) Compare and contrast the identity in part (a) with Pascal’s relation.

(c) Since part (a) is a polynomial identity, it holds when numbers are

substituted for x. Let kðn; rÞ be the value of Kðn; rÞ when x ¼ 2 and

exhibit the numbers kðn; rÞ, 0 � n, r � 4, in a 5� 5 array, the rows of

which are indexed by n and the columns by r. (Hint: Visually confirm that

kðnþ 1; rÞ ¼ kðn; rÞ þ kðn; r þ 1Þ, 0 � n, r � 3.)
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26 Let S be an n-element set, where n � 1. If A is a subset of S, denote by oðAÞ
the cardinality of (number of elements in) A. Say that A is odd (even) if oðAÞ is

odd (even). Prove that the number of odd subsets of S is equal to the number of

its even subsets.

27 Show that there are exactly seven different ways to factor n ¼ 63;000 as a

product of two relatively prime integers, each greater than one.

28 Suppose n ¼ pa1

1 pa2

2 � � � par
r , where p1; p2; . . . ; pr are distinct primes. Prove that

there are exactly 2r�1 � 1 different ways to factor n as a product of two

relatively prime integers, each greater than one.

*1.3. ELEMENTARY PROBABILITY

The theory of probabilities is basically only common sense reduced to calculation; it

makes us appreciate with precision what reasonable minds feel by a kind of instinct,

often being unable to account for it. . . . It is remarkable that [this] science, which

began with the consideration of games of chance, should have become the most impor-

tant object of human knowledge.

— Pierre Simon, Marquis de Laplace (1749–1827)

Elementary probability theory begins with the consideration of D equally likely

‘‘events’’ (or ‘‘outcomes’’). If N of these are ‘‘noteworthy’’, then the probability

of a noteworthy event is the fraction N=D. Maybe a brown paper bag contains a

dozen jelly beans, say, 1 red, 2 orange, 2 blue, 3 green, and 4 purple. If a jelly

bean is chosen at random from the bag, the probability that it will be blue is
2

12
¼ 1

6
; the probability that it will be green is 3

12
¼ 1

4
; the probability that it will

be blue or green is ð2þ 3Þ=12 ¼ 5
12

; and the probability that it will be blue and

green is 0
12
¼ 0.

Dice are commonly associated with games of chance. In a dice game, one is

typically interested only in the numbers that rise to the top. If a single die is rolled,

there are just six outcomes; if the die is ‘‘fair’’, each of them is equally likely. In

computing the probability, say, of rolling a number greater than 4 with a single fair

die, the denominator is D ¼ 6. Since there are N ¼ 2 noteworthy outcomes, namely

5 and 6, the probability we want is P ¼ 2
6
¼ 1

3
.

The situation is more complicated when two dice are rolled. If all we care about

is their sum, then there are 11 possible outcomes, anything from 2 to 12. But, the

probability of rolling a sum, say, of 7 is not 1
11

because these 11 outcomes are not

equally likely. To help facilitate the discussion, assume that one of the dice is green

and the other is red. Each time the dice are rolled, Lady Luck makes two decisions,

choosing a number for the green die, and one for the red. Since there are 6 choices

for each of them, the two decisions can be made in any one of 62 ¼ 36 ways. If both

dice are fair, then each of these 36 outcomes is equally likely. Glancing at Fig. 1.3.1,
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one sees that there are six ways the dice can sum to 7, namely, a green 1 and a red 6,

a green 2 and a red 5, a green 3 and a red 4, and so on. So, the probability of rolling

a (sum of ) 7 is not 1
11

but 6
36
¼ 1

6
:

1.3.1 Example. Denote by PðnÞ the probability of rolling (a sum of ) n with

two fair dice. Using Fig. 1.3.1, it is easy to see that Pð2Þ ¼ 1
36
¼ Pð12Þ,

Pð3Þ ¼ 2
36
¼ 1

18
¼ Pð11Þ, Pð4Þ ¼ 3

36
¼ 1

12
¼ Pð10Þ, and so on. What about Pð1Þ?

Since 1 is not among the outcomes, Pð1Þ ¼ 0
36
¼ 0. In fact, if P is some probability

(any probability at all), then 0 � P � 1. &

1.3.2 Example. A popular game at charity fundraisers is Chuck-a-Luck. The

apparatus for the game consists of three dice housed in an hourglass-shaped

cage. Once the patrons have placed their bets, the operator turns the cage and the

dice roll to the bottom. If none of the dice comes up 1, the bets are lost. Otherwise,

the operator matches, doubles, or triples each wager depending on the number of

‘‘aces’’ (1’s) showing on the three dice.

Let’s compute probabilities for various numbers of 1’s. By the fundamental

counting principle, there are 63 ¼ 216 possible outcomes (all of which are equally

Figure 1.3.1. The 36 outcomes of rolling two dice.
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likely if the dice are fair). Of these 216 outcomes, only one consists of three 1’s.

Thus, the probability that the bets will have to be tripled is 1
216

.

In how many ways can two 1’s come up? Think of it as a sequence of two deci-

sions. The first is which die should produce a number different from 1. The second

is what number should appear on that die. There are three choices for the first deci-

sion and five for the second. So, there are 3� 5 ¼ 15 ways for the three dice to

produce exactly two 1’s. The probability that the bets will have to be doubled is 15
216

.

What about a single ace? This case can be approached as a sequence of three

decisions. Decision 1 is which die should produce the 1 (three choices). The second

decision is what number should appear on the second die (five choices, anything but

1). The third decision is the number on the third die (also five choices). Evidently,

there are 3� 5� 5 ¼ 75 ways to get exactly one ace. So far, we have accounted for

1þ 15þ 75 ¼ 91 of the 216 possible outcomes. (In other words, the probability of

getting at least one ace is 91
216

.) In the remaining 216� 91 ¼ 125 outcomes, three

are no 1’s at all. These results are tabulated in Fig. 1.3.2. &

Some things, like determining which team kicks off to start a football game, are

decided by tossing a coin. A fair coin is one in which each of the two possible out-

comes, heads or tails, is equally likely. When a fair coin is tossed, the probability

that it will come up heads is 1
2
.

Suppose four (fair) coins are tossed. What is the probability that half of them

will be heads and half tails? Is it obvious that the answer is 3
8
? Once again, Lady

Luck has a sequence of decisions to make, this time four of them. Since there are

two choices for each decision, D ¼ 24. With the noteworthies in boldface, these 16

outcomes are arrayed in Fig. 1.3.3. By inspection, N ¼ 6, so the probability we seek

is 6
16
¼ 3

8
.

HHHH HTHH THHH TTHH

HHHT HTHT THHT TTHT

HHTH HTTH THTH TTTH

HHTT HTTT THTT T T T T

Figure 1.3.3

1.3.3 Example. If 10 (fair) coins are tossed, what is the probability that half of

them will be heads and half tails? Ten decisions, each with two choices, yields

D ¼ 210 ¼ 1024. To compute the numerator, imagine a systematic list analogous

to Fig. 1.3.3. In the case of 10 coins, the noteworthy outcomes correspond to

Number of 1’s 0 1 2 3

Probability
125 75 15 1

216 216 216 216

Figure 1.3.2. Chuck-a-Luck probabilities.
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10-letter ‘‘words’’ with five H’s and five T ’s, so N ¼
�

10
5;5Þ ¼ Cð10; 5Þ ¼ 252, and

the desired probability is 252
1024

_¼ 0:246. More generally, if n coins are tossed, the

probability that exactly r of them will come up heads is Cðn; rÞ=2n.

What about the probability that at most r of them will come up heads? That’s

easy enough: P ¼ N=2n, where N ¼ Nðn; rÞ ¼ Cðn; 0Þ þ Cðn; 1Þ þ � � � þ Cðn; rÞ
is the number of n-letter words that can be assembled from the alphabet H; Tf g
and that contain at most r H’s. &

Here is a different kind of problem: Suppose two fair coins are tossed, say a

dime and a quarter. If you are told (only) that one of them is heads, what is the

probability that the other one is also heads? (Don’t just guess, think about it.)

May we assume, without loss of generality, that the dime is heads? If so, because

the quarter has a head of its own, so to speak, the answer should be 1
2
. To see why

this is wrong, consider the equally likely outcomes when two fair coins are tossed,

namely, HH, HT , TH, and TT . If all we know is that one (at least) of the coins is

heads, then TT is eliminated. Since the remaining three possibilities are still equally

likely, D ¼ 3, and the answer is 1
3
.

There are two ‘‘morals’’ here. One is that the most reliable guide to navigating

probability theory is equal likelihood. The other is that finding a correct answer

often depends on having a precise understanding of the question, and that requires

precise language.

1.3.4 Definition. A nonempty finite set E of equally likely outcomes is called a

sample space. The number of elements in E is denoted oðEÞ. For any subset A of E,

the probability of A is PðAÞ ¼ oðAÞ=oðEÞ. If B is a subset of E, then PðA or BÞ ¼
PðA [ BÞ, and PðA and BÞ ¼ PðA \ BÞ.

In mathematical writing, an unqualified ‘‘or’’ is inclusive, as in ‘‘A or B or both’’.*

1.3.5 Theorem. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, then

PðA or BÞ ¼ PðAÞ þ PðBÞ � PðA and BÞ:

Proof. The sum oðAÞ þ oðBÞ counts all the elements of A and all the elements of

B. It even counts some elements twice, namely those in A \ B. Subtracting oðA \ BÞ
compensates for this double counting and yields

oðA [ BÞ ¼ oðAÞ þ oðBÞ � oðA \ BÞ:

(Notice that this formula generalizes the second counting principle; it is a

special case of the even more general principle of inclusion and exclusion, to be

discussed in Chapter 2.) It remains to divide both sides by oðEÞ and use

Definition 1.3.4.

&

*The exclusive ‘‘or’’ can be expressed using phrases like ‘‘either A or B’’ or ‘‘A or B but not both’’.
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1.3.6 Corollary. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, then PðA or BÞ � PðAÞ þ PðBÞ with equality if and only if A and B

are disjoint.

Proof. PðA and BÞ¼ 0 if and only if oðA \ BÞ¼ 0 if and only if A \ B ¼ [.

&

A special case of this corollary involves the complement, Ac ¼ x 2 E : x 62 Af g.
Since A [ Ac ¼ E and A \ Ac ¼ [, oðAÞ þ oðAcÞ ¼ oðEÞ. Dividing both sides of

this equation by oðEÞ yields the useful identity

PðAÞ þ PðAcÞ ¼ 1:

1.3.7 Example. Suppose two fair dice are rolled, say a red one and a green one.

What is the probability of rolling a 3 on the red die, call it a red 3, or a green 2?

Let’s abbreviate by setting R3 ¼ red 3 and G2 ¼ green 2 so that, e.g.,

PðR3Þ ¼ 1
6
¼ PðG2Þ.

Solution 1: When both dice are rolled, only one of the 62 ¼ 36 equally likely

outcomes corresponds to R3 and G2, so PðR3 and G2Þ ¼ 1
36

. Thus, by Theorem

1.3.5,

PðR3 or G2Þ ¼ PðR3Þ þ PðG2Þ � PðR3 and G2Þ
¼ 1

6
þ 1

6
� 1

36

¼ 11
36
:

Solution 2: Let Pc be the complementary probability that neither R3 nor G2

occurs. Then Pc ¼ N=D, where D ¼ 36. The evaluation of N can be viewed in

terms of a sequence of two decisions. There are five choices for the ‘‘red’’ decision,

anything but number 3, and five for the ‘‘green’’ one, anything but number 2.

Hence, N ¼ 5� 5 ¼ 25, and Pc ¼ 25
36

, so the probability we want is

PðR3 or G2Þ ¼ 1� Pc ¼ 11
36
:

&

1.3.8 Example. Suppose a single (fair) die is rolled twice. What is the probabil-

ity that the first roll is a 3 or the second roll is a 2? Solution: 11
36

. This problem is

equivalent to the one in Example 1.3.7. &

1.3.9 Example. Suppose a single (fair) die is rolled twice. What is the probabil-

ity of getting a 3 or a 2?

Solution 1: Of the 6� 6 ¼ 36 equally likely outcomes, 4� 4 ¼ 16 involve

neither a 3 nor a 2. The complementary probability is Pð2 or 3Þ ¼ 1� 16
36
¼ 5

9
.
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Solution 2: There are two ways to roll a 3 and a 2; either the 3 comes first fol-

lowed by the 2 or the other way around. So, Pð3 and 2Þ ¼ 2
36
¼ 1

18
. Using Theorem

1.3.5, Pð3 or 2Þ ¼ 1
6
þ 1

6
� 1

18
¼ 5

18
.

Whoops! Since 5
9
6¼ 5

18
, one (at least) of these ‘‘solutions’’ is incorrect. The prob-

ability computed in solution 1 is greater than 1
2
, which seems too large. On the other

hand, it is not hard to spot an error in solution 2, namely, the incorrect application of

Theorem 1.3.5. The calculation Pð3Þ ¼ 1
6

would be valid had the die been rolled

only once. For this problem, the correct interpretation of Pð3Þ is the probability

that the first roll is 3 or the second roll is 3. That should be identical to the prob-

ability determined in Example 1.3.8. (Why?) Using the (correct) values

Pð3Þ ¼ Pð2Þ ¼ 11
36

in solution 2, we obtain Pð2 or 3Þ ¼ 11
36
þ 11

36
� 1

18
¼ 5

9
.

The next time you get a chance, roll a couple of dice and see if you can avoid

both 2’s and 3’s more than 44 times out of 99. &

Another approach to PðA and BÞ emerges from the notion of ‘‘conditional

probability’’.

1.3.10 Definition. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, the conditional probability

PðBjAÞ ¼ PðBÞ if A ¼ [;
oðA \ BÞ=oðAÞ otherwise:

�

When A is not empty, PðBjAÞ may be viewed as the probability of B given that A

is certain (e.g., known already to have occurred). The problem of tossing two fair

coins, a dime and a quarter, involved conditional probabilities. If h and t represent

heads and tails, respectively, for the dime and H and T for the quarter, then the

sample space E ¼ hH; hT ; tH; tTf g. If A ¼ hH; hT ; tHf g and B ¼ hHf g, then

PðBjAÞ ¼ 1
3

is the probability that both coins are heads given that one of them is.

If C ¼ hH; hTf g, then PðBjCÞ ¼ 1
2

is the probability that both coins are heads given

that the dime is.

1.3.11 Theorem. Let E be a fixed but arbitrary sample space. If A and B are

subsets of E, then

PðA and BÞ ¼ PðAÞPðBjAÞ:

Proof. Let D ¼ oðEÞ, a ¼ oðAÞ, and N ¼ oðA \ BÞ. If a ¼ 0, there is nothing to

prove. Otherwise, PðAÞ ¼ a=D, PðBjAÞ ¼ N=a, and PðAÞPðBjAÞ ¼ ða=DÞðN=aÞ ¼
N=D ¼ PðA and BÞ. &

1.3.12 Corollary (Bayes’s* First Rule). Let E be a fixed but arbitrary sample

space. If A and B are subsets of E, then PðAÞPðBjAÞ ¼ PðBÞPðAjBÞ.

Proof. Because PðA and BÞ ¼ PðB and AÞ, the result is immediate from Theorem

1.3.11. &
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1.3.13 Definition. Suppose E is a fixed but arbitrary sample space. Let A and B

be subsets of E. If PðBjAÞ ¼ PðBÞ, then A and B are independent.

Definitions like this one are meant to associate a name with a phenomenon. In

particular, Definition 1.3.13 is to be understood in the sense that A and B are inde-

pendent if and only if PðBjAÞ ¼ PðBÞ. (In statements of theorems, on the other

hand, ‘‘if’’ should never be interpreted to mean ‘‘if and only if’’.)

In plain English, A and B are independent if A ¼ [ or if A 6¼ [ and the prob-

ability of B is the same whether A is known to have occurred or not. It follows from

Corollary 1.3.12 (and the definition) that PðBjAÞ ¼ PðBÞ if and only if

PðAjBÞ ¼ PðAÞ, i.e., A and B are independent if and only if B and A are indepen-

dent. A combination of Definition 1.3.13 and Theorem 1.3.11 yields

PðA and BÞ ¼ PðAÞPðBÞ ð1:3Þ

if and only if A and B are independent.

Equation (1.3) is analogous to the case of equality in Corollary 1.3.6, i.e.,

that

PðA or BÞ ¼ PðAÞ þ PðBÞ ð1:4Þ

if and only if A and B are disjoint. Let’s compare and contrast the words indepen-

dent and disjoint.

1.3.14 Example. Suppose a card is drawn from a standard 52-card deck. Let K

represent the outcome that the card is a king and C the outcome that it is a club.{-

Because PðCÞ ¼ 13
52
¼ 1

4
¼ PðCjKÞ, these outcomes are independent and, as

expected,

PðKÞPðCÞ ¼ 1
13

� �
1
4

� �
¼ 1

52

¼ Pðking of clubsÞ
¼ PðK and CÞ:

Because K \ C ¼ king of clubsf g 6¼ [, K and C are not disjoint. As expected,

PðK or CÞ ¼ 16
52

differs from PðKÞ þ PðCÞ ¼ 4
52
þ 13

52
¼ 17

52
by 1

52
¼ PðK and CÞ.

If Q is the outcome that the card is a queen, then K and Q are disjoint but not

independent. In particular, PðK or QÞ ¼ 8
52
¼ PðKÞ þ PðQÞ, but PðQÞ ¼ 4

52
¼ 1

13

while PðQjKÞ ¼ 0.

*Thomas Bayes (1702–1761), an English mathematician and clergyman, was among those who defended

Newton’s calculus against the philosophical attack of Bishop Berkeley. He is better known, however, for

his Essay Towards Solving a Problem in the Doctrine of Chances.
{Alternatively, let E be the set of all 52 cards, K the four-element subset of kings, and C the subset of all 13

clubs.
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Finally, let F be the outcome that the chosen card is a ‘‘face card’’ (a king,

queen, or jack). Because K \ F ¼ K 6¼ [, outcomes K and F are not disjoint. Since

PðFÞ ¼ 12
52
¼ 3

13
while PðFjKÞ ¼ 1, neither are they independent. &

1.3.15 Example. Imagine two copy editors independently proofreading the

same manuscript. Suppose editor X finds x typographical errors while editor Y finds

y. Denote by z the number of typos discovered by both editors so that, together, they

identify a total of xþ y� z errors. George Pólya showed* how this information can

be used to estimate the number of typographical errors overlooked by both editors!

If the manuscript contains a total of t typos, then the empirical probability that

editor X discovered (some randomly chosen) one of them is PðXÞ ¼ x=t. If, on

the other hand, one of the errors discovered by Y is chosen at random, the empirical

probability that X found it is PðXjYÞ ¼ z=y. If X is a consistent, experienced

worker, these two ‘‘productivity ratings’’ should be about the same. Setting

z=y _¼ x=t (i.e., assuming PðXjYÞ _¼ PðXÞÞ yields t _¼ xy=z. &

1.3.16 Example. In the popular game Yahtzee, five dice are rolled in hopes of

obtaining various outcomes. Suppose you needed to roll three 4’s to win the

game. What is the probability of rolling exactly three 4’s in a single throw of the

five dice?

Solution: There are Cð5; 3Þ ¼ 10 ways for Lady Luck to choose three dice to be

the 4’s, e.g., the ‘‘first’’ three dice might be 4’s while the remaining two are not;

dice 1, 2, and 5 might be 4’s while dice 3 and 4 are not; and so on. Label these

ten outcomes A1;A2; . . . ;A10.

The computation of PðA1Þ, say, is a classic application of Equation (1.3). The

probability of rolling a 4 on one die is independent of the number rolled on any

of the other dice. Since the probability that any one of the first three dice shows

a 4 is 1
6

and the probability that either one of the last two does not is 5
6
,

PðA1Þ ¼ 1
6
� 1

6
� 1

6
� 5

6
� 5

6
:

Similarly, PðAiÞ ¼ 1
6

� �3 5
6

� �2
, 2 � i � 10.

If, e.g.,

A1 ¼ dice 1; 2; and 3 are 4’s while dice 4 and 5 are notf g

and

A3 ¼ dice 1; 2; and 5 are 4’s while dice 3 and 4 are notf g;

*In a 1976 article published in the American Mathematical Monthly.
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then the third die is a 4 in every outcome belonging to A1 while it is anything but a 4

in each outcome of A3, i.e., A1 \ A3 ¼ [. Similarly, Ai and Aj are disjoint for all

i 6¼ j. Therefore, by Equation (1.4),

Pðthree 4’sÞ ¼ PðA1 or A2 or . . . or A10Þ
¼ PðA1Þ þ PðA2Þ þ � � � þ PðA10Þ
¼ 10 1

6

� �3 5
6

� �2
:

So, the probability of rolling exactly three 4’s in a single throw of five fair dice

is

Cð5; 3Þ 1
6

� �3 5
6

� �2¼ 0:032 � � � : &

Example 1.3.16 illustrates a more general pattern. The probability of rolling

exactly r 4’s in a single throw of n fair dice is Cðn; rÞ 1
6

� �r 5
6

� �n�r
. If a single fair

die is thrown n times, the probability of rolling exactly r 4’s is the same:

Cðn; rÞ 1
6

� �r 5
6

� �n�r
. A similar argument applies to n independent attempts to perform

any other ‘‘trick’’. If the probability of a successful attempt is p, then the probability

of an unsuccessful attempt is q ¼ 1� p, and the probability of being successful in

exactly r of the n attempts is

PðrÞ ¼ Cðn; rÞprqn�r; 0 � r � n: ð1:5Þ

Equation (1.5) governs what has come to be known as a binomial probability

distribution.

1.3. EXERCISES

1 According to an old adage, it is unsafe to eat shellfish during a month whose

name does not contain the letter R. What is the probability that it is unsafe to

eat shellfish (according to the adage) during a randomly chosen month of the

year?

2 Suppose two fair dice are rolled. What is the probability that their sum is

(a) 5? (b) 6? (c) 8? (d) 9?

3 Suppose three fair dice are rolled. What is the probability that their sum is

(a) 5? (b) 9? (c) 12? (d) 15?
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4 Suppose a fair coin is tossed 10 times and the result is 10 successive

heads. What is the probability that heads will be the outcome the next

time the coin is tossed? (If you didn’t know the coin was fair, you might

begin to suspect otherwise. The chi-squared statistic, which is beyond the

scope of this book, affords a way to estimate the probability that a fair coin

would produce discrepancies from expected behavior that are this bad or

worse.)

5 Many game stores carry dodecahedral dice having 12 pentagonal faces

numbered 1–12. Suppose a pair of fair dodecahedral dice are rolled. What is

the probability that they will sum to

(a) 5? (b) 7? (c) 13? (d) 25?

6 In what fraction of six-child families are half the children girls and half boys?

(Assume that boys and girls are equally likely.)

7 Suppose you learn that in a particular two-child family one (at least) of the

children is a boy. What is the probability that the other child is a boy? (Assume

that boys and girls are equally likely.)

8 Suppose the king and queen of hearts are shuffled together with the king and

queen of spades and all four cards are placed face down on a table.

(a) If your roommate picks up two of the cards and says, ‘‘I have a king!’’

what is the probability that s/he has both kings? (Don’t just guess. Work it

out as if your life depended on getting the right answer.)

(b) If your roommate picks up two of the cards and says, ‘‘I have the king of

spades’’, what is the probability that s/he has both kings?

9 In the Chuck-a-Luck game of Example 1.3.2, show how the fundamental

counting principle can be used to enumerate the outcomes that don’t contain

any 1’s at all.

10 Suppose that six dice are tossed. What is the probability of rolling exactly

(a) three 4’s? (b) four 4’s? (c) five 4’s?

11 Suppose that five cards are chosen at random from a standard 52-card deck.

Show that the probability they comprise a ‘‘flush’’ is about 1
505

. (A flush is a

poker hand each card of which comes from the same suit.)

12 Suppose some game of chance offers the possibility of winning one of a

variety of prizes. Maybe there are n prizes with values v1; v2; . . . ; vn. If the

probability of winning the ith prizes is pi, then the expected value of the game

is Xn

i¼1

viPi:

Consider, e.g., a version of Chuck-a-Luck in which, on any given turn, you win

$1 for each ace.
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(a) Show that the expected value of this game is 50 cents. (Hint: Figure 1.3.2.)

(b) What is the maximum amount anyone should be willing to pay for the

privilege of playing this version each time the cage is turned?

(c) What is the maximum amount anyone should be willing to wager on this

version each time the cage is turned? (The difference between ‘‘paying for

the privilege of playing’’ and ‘‘wagering’’ is that, in the first case, your

payment is lost, regardless of the outcome, whereas in the second case,

you keep your wager unless the outcome is no aces at all.)

13 Does Chuck-a-Luck follow a binomial probability distribution? (Justify your

answer.)

14 Suppose four fair coins are tossed. Let A be the set of outcomes in which at

least two of the coins are heads, B the set in which at most two of the coins are

heads, and C the set in which exactly two of the coins are heads. Compute

(a) PðAÞ. (b) PðBÞ. (c) PðCÞ.
(d) PðAjBÞ. (d) PðAjCÞ. (e) PðA or BÞ.

15 In 1654, Antoine Gombaud, the Chevalier de Méré, played a game in which

he bet that at least one 6 would result when four dice are rolled. What is the

probability that de Méré won in any particular instance of this game? (Assume

the dice were fair.)

16 Perhaps beause he could no longer find anyone to take his bets (see

Exercise 15), the Chevalier de Méré switched to betting that, in any 24

consecutive rolls of two (fair) dice, ‘‘boxcars’’ (double 6’s) would occur at

least once. What is the probability that he won in any particular instance of this

new game?

17 Suppose you toss a half-dollar coin n times. How large must n be to guarantee

that your probability of getting heads at least once is better than 0.99?

18 The following problem was once posed by the diarist Samuel Pepys to Isaac

Newton. ‘‘Who has the greatest chance of success: a man who throws six dice

in hopes of obtaining at least one 6; a man who throws twelve dice in hopes of

obtaining at least two 6’s; or a man who throws eighteen dice in hopes of

obtaining at least three 6’s?’’ Compute the probability of success in each of the

three cases posed by Pepys.

19 Are PðAjBÞ and PðBjAÞ always the same? (Justify your answer.)

20 Suppose that each of k people secretly chooses as integer between 1 and m

(inclusive). Let P be the probability that some two of them choose the same

number. Compute P (rounded to two decimal places) when

(a) ðm; kÞ ¼ ð10; 4Þ (b) ðm; kÞ ¼ ð20; 6Þ (c) ðm; kÞ ¼ ð365; 23Þ
(Hint: Compute the complementary probability that everyone chooses differ-

ent numbers.)
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21 Suppose 23 people are chosen at random from a crowd. Show the probability

that some two of them share the same birthday ( just the day, not the day and

year) is greater than 1
2
. (Assume that none of them was born on February 29.)

22 Let E be a fixed but arbitrary sample space. Let A and B be nonempty subsets

of E. Prove that A and B cannot be both independent and disjoint.

23 The four alternate die numberings illustrated in Fig. 1.3.4 were discovered by

Stanford statistician Bradley Efron. Note that when dice A and B are thrown

together, die A beats (rolls a higher number than) die B with probability 2
3
.

Compute the probability that

(a) die B beats die C.

(b) die C beats die D.

(c) die D beats die A.

0 4

4

4

A

4

0 3 3

3

3

B

3

3 6 2

2

2

C

2

6 1 5

5

1

D

5

1

Figure 1.3.4. Efron dice.

24 One variation on the notion of a random walk takes place in the first quadrant

of the xy-plane. Starting from the origin, the direction of each ‘‘step’’ is

determined by the flip of a coin. If the kth coin flip is ‘‘heads’’, the kth step is

one unit in the positive x-direction; if the coin flip is ‘‘tails’’, the step is one

unit in the positive y-direction.

(a) Show that, after n steps, a random walker arrives at a point Pn ¼ ðr; n� rÞ,
where n � r � 0. (Hint: Exercise 15, Section 1.2.)

(b) Assuming the coin is fair, compute the probability that the point

P8 ¼ ð4; 4Þ.
(c) Assuming the coin is fair, compute the probability that P7 lies on the line

y ¼ x.

(d) Assuming the coin is fair, compute the probability that P2k lies on the line

y ¼ x.

(e) Let r and n be fixed integers, n � r � 0. Assuming the coin comes up

heads with probability p and tails with probability q ¼ 1� p, compute the

probability that, after n steps, a random walker arrives at the point

Pn ¼ ðr; n� rÞ.
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25 Imagine having been bitten by an exotic, poisonous snake. Suppose the ER

physician estimates that the probability you will die is 1
3

unless you receive

effective treatment immediately. At the moment, she can offer you a choice of

experimental antivenins from two competing ‘‘snake farms.’’ Antivenin X has

been administered to ten previous victims of the same type of snake bite and

nine of them survived. Antivenin Y , on the other hand, has only been

administered to four previous patients, but all of them survived. Unfortunately,

mixing the two drugs in your body would create a toxic substance much

deadlier than the venom from the snake. Under these circumstances, which

antivenin would you choose, and why?

26 In California’s SuperLotto Plus drawing of February 16, 2002, three winners

shared a record $193 million jackpot. SuperLotto Plus players choose five

numbers, ranging from 1 through 47 Plus a ‘‘Mega’’ number between 1 and 27

(inclusive). The winning numbers in the drawing of February 16 were 6, 11,

31, 32, and 39 Plus 20. (Order matters only to the extent that the Mega number

is separate from the other five numbers.)

(a) Compute the probability of winning a share of the jackpot (with a single

ticket).

(b) The jackpot is not the only prize awarded in the SuperLotto game. In

the February 16 drawing, 56 tickets won $27,859 (each) by matching all

five (ordinary) numbers but missing the Mega number. Compute the

probability of correctly guessing all five (ordinary) numbers.

(c) Compute the probability of correctly guessing all five (ordinary) numbers

and missing the Mega number.

(d) In the February 16 drawing, 496 ticket holders won $1572 (each) by

correctly guessing the Mega number and four out of the other five.

Compute the probability of winning this prize (with a single ticket).

*1.4. ERROR-CORRECTING CODES

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 1 1 1 1 1 0

0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1

The key to the connection between the combinatorial and algebraic definitions of

Cðn; rÞ ¼
�

n
r

�
involves n-letter words constructed from two-letter alphabets. A

binary code is a vocabulary comprised of such words. Binary codes have a wide
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variety of applications ranging from stunning interplanetary images to everyday

digital recordings. A common theme in these applications is the reliable movement

of data through unreliable communication channels. The general problem is to

detect and correct transmission errors that might arise from something as mundane

as scratches on a CD to something as exotic as solar flares during an interplanetary

voyage.

Our primary focus will be on words assembled using the alphabet F ¼ 0; 1f g,
the letters of which are typically called bits.

1.4.1 Definition. An n-bit word is also known as a binary word of length n. The

set of all 2n binary words of length n will be denoted Fn. A binary code of length n

is a nonempty subset of Fn.

A ‘‘good’’ code is one that can be used to transmit lots of information down a

noisy channel, quickly and reliably. Consider, e.g., the code C ¼ 00000; 11111f g �
F5, where 00000 might represent ‘‘yes’’ and 11111 might mean ‘‘no.’’ Suppose one

of these two codewords is sent down a noisy channel, only to have 000_0, or worse,

00010 come out the other end. While it is a binary word of length 5, 00010 is not a

codeword. Thus, we detect an error. Just to make things interesting, suppose no

further communication is possible. (Maybe the original message consisted of a sin-

gle prerecorded burst.) Assuming it is more likely for any particular bit to be trans-

mitted correctly than not, 00000 is more likely to have been the transmitted

message than 11111. Thus, we might correct 00010 to 00000. Note that a binary

word ‘‘corrected’’ in this way need not be correct in the sense that it was the trans-

mitted codeword. It is just the legitimate codeword most likely to be correct.

1.4.2 Definition. Suppose b and w are binary words of length n. The distance

between them, dðb;wÞ, is the number of places in which they differ.

Nearest-neighbor decoding refers to a process by which an erroneous binary

word w is corrected to a legitimate codeword c in a way that minimizes dðw; cÞ.
With the code C ¼ 00000; 11111f g, it is possible to detect as many as four errors.

With nearest-neighbor decoding, it is possible (correctly) to correct as many as two;

C is a two-error-correcting code. (If 00000 were sent and 10101 received, nearest-

neighbor decoding would produce 11111, the wrong message, Code C is not three-

error correcting.)

1.4.3 Definition. An r-error-correcting code is one for which nearest-neighbor

decoding reliably corrects as many as r errors.

Using the code C ¼ 100; 101f g, suppose 100 is sent. If 110 is received, an error

is detected. Because dð110; 100Þ ¼ 1 < 2 ¼ dð110; 101Þ nearest-neighbor decod-

ing corrects 110 to 100, the correct message. But, this is not enough to make C
a one-error-correcting code. If 100 is sent and a single transmission error occurs,

in the third bit, so that 101 is received, the error will not even be detected, much
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less corrected. An r-error-correcting code must reliably correct r erroneous bits, no

matter which r bits they happen to be.

Calling d a ‘‘distance’’ doesn’t make it one. To be a distance , dðb;wÞ should be

zero whenever b ¼ w, positive whenever b 6¼ w, symmetric in the sense that

dðb;wÞ ¼ dðw; bÞ for all b and w, and it should satisfy the shortest-distance-

between-two-points rule, also known as the triangle inequality. Of these conditions,

only the last one is not obviously valid.

1.4.4 Lemma (Triangle Inequality). If u, v, and w are fixed but arbitrary

binary words of length n, then

dðu;wÞ � dðu; vÞ þ dðv;wÞ:

Proof. The words u and w cannot differ from each other in a place where neither

of them differs from v. Being binary words, they also cannot differ from each other

in a place where both of them differ from v. It follows that dðu;wÞ is the sum of the

number of places where u differs from v but w does not, and the number of places

where w differs from v but u does not. Because the first term in this sum is at most

dðu; vÞ, the number of places where u differs from v, and the second is at most

dðw; vÞ, the number of places where w differs from v, dðu;wÞ � dðu; vÞ þ dðw; vÞ.
&

1.4.5 Definition. An ðn;M; dÞ code consists of M binary words of length n, the

minimum distance between any pair of which is d.

1.4.6 Example. The code 00000; 11111f g, is evidently a (5, 2, 5) code. While

it is easy to see that n ¼ 5 and M ¼ 4 for the code C ¼ 00000; 11101;f 10011;
01110g, the value of d is less obvious. Computing the distances dð00000;
11101Þ ¼ 4, dð00000; 10011Þ ¼ 3, dð00000; 01110Þ ¼ 3, dð11101; 10011Þ ¼ 3,

dð11101; 01110Þ ¼ 3, and dð10011; 01110Þ ¼ 4, between all Cð4; 2Þ ¼ 6 pairs of

codewords, yields the minimum d ¼ 3. So, C is a (5, 4, 3) code. &

An ðn;M; dÞ code C can reliably detect as many as d � 1 errors. To determine

how many erros C can reliably correct, consider the possibility that, for some erro-

neous binary word w, there is a tie for the codeword nearest w. Maybe dðc;wÞ � r

for every c 2 C, with equality for c1 and c2. In practice, such ties are broken by

some predetermined rule. Because it can happen that this arbitrary rule dictates

decoding w as c1, even when c2 was the transmitted codeword, no such code can

reliably correct as many as r errors. However, by the triangle inequality,

dðc1;wÞ ¼ dðw; c2Þ ¼ r implies that dðc1; c2Þ � 2r, guaranteeing that no such

situation can occur when 2r < d. It seems we have proved the following.

1.4.7 Theorem. An ðn;M; dÞ code is r-error-correcting if and only if 2rþ
1 � d.
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Recall that our informal notion of a good code is one that can transmit lots of

information down a noisy channel, quickly and reliably. So far, our discussion has

focused on reliability. Let’s talk about speed. For the sake of rapid transmission, one

would like to have short words (small n) and a large vocabulary (big M). Because

M � 2n, these are conflicting requirements.

Suppose we fix n and d and ask how large M can be. The following notion is

useful in addressing this question.

1.4.8 Definition. Let w be a binary word of length n. The sphere of radius r cen-

tered at w is

SrðwÞ ¼ b 2 Fn : dðw; bÞ � rf g;
the set of binary words that differ from w in at most r bits.

Because it is a sphere together with its interior, ‘‘ball’’ might be a more appro-

priate name for SrðwÞ.

1.4.9 Example. Let C be a ð10;M; 7Þ code and suppose c 2 C. Because there

are 10 places in which a binary word can differ from c, there must be 10 binary

words that differ from c in just 1 place. Similarly, Cð10; 2Þ ¼ 45 words differ

from c in exactly 2 places and Cð10; 3Þ ¼ 120 words differ from it in 3 places.

Evidently, including c itself, S3ðcÞ contains a total of

1þ 10þ 45þ 120 ¼ 176

binary words only one of which, namely, c, is a codeword.

If c1 and c2 are different codewords, then S3ðc1Þ \ S3ðc2Þ 6¼ [ only if there is a

binary word w such that dðw; c1Þ � 3 and dðw; c2Þ � 3, implying that

dðc1; c2Þ � dðc1;wÞ þ dðw; c2Þ
� 6

and contradicting our assumption that the minimum distance between codewords

is 7. In other words, if c1 6¼ c2, then S3ðc1Þ \ S3ðc2Þ ¼ [.

One might think of S3ðcÞ as a sphere of influence for c. Because different spheres

of influence are disjoint and since each sphere contains 176 of the 1024 binary

words of length 10, there is insufficient room in F10 for as many as six spheres

of influence. (Check it: 6� 176 ¼ 1056.) Evidently, the vocabulary of a three-

error-correcting binary code of length 10 can consist of no more than five words!

If C is a (10, M, 7) code, then M � 5. &

Example 1.4.9 has the following natural generalization.

1.4.10 Theorem (Sphere-Packing Bound). The vocabulary of an r-error-

correcting code of length n contains no more than 2n=Nðn; rÞ codewords, where

Nðn; rÞ ¼ Cðn; 0Þ þ Cðn; 1Þ þ � � � þ Cðn; rÞ:
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Proof. Suppose C ¼ c1; c2; . . . ; cMf g � Fn is an r-error-correcting code. Let

SrðciÞ be the sphere of influence centered at codeword ci, 1 � i � M. Since spheres

corresponding to different codewords are disjoint and oðSrðciÞÞ ¼ Nðn; rÞ,
1 � i � M, the number of different binary words of length n contained in the union

of the M spheres is M � Nðn; rÞ, a number that cannot exceed the total number of

binary words of length n. &

1.4.11 Example. Suppose you were asked to design a three-error-correcting

code capable of sending the four messages NORTH, EAST, WEST, or SOUTH.

Among the easiest solutions is the (16, 4, 8) code

0000000000000000; 1111111100000000; 1111000011110000; 1111000000001111f g:

However, if speed (or professional pride) is an issue, you might want to hold this

one in reserve and look for something better.

For a solution to be optmal, it should (at the very least) be an (n; 4; 7) code with n

as small as possible. According to Example 1.4.9, a three-error-correcting code of

length 10 can have at most five codewords, which would be ample for our needs.

Moreover, because 4� Nð9; 3Þ ¼ 4� ð1þ 9þ 36þ 84Þ ¼ 520 > 29, there can be

no (9, 4, 7) codes. So, the best we can hope to achieve is a (10, 4, 7) code.

Without loss of generality, we can choose c1 ¼ 0000000000. (Why?) Since it

must differ from c1 in (no fewer than) 7 places, we may as well let

c2 ¼ 1111111000. To differ from c1 in 7 places, c3 must contain 7 (or more) 1’s.

But, c3 can differ from c2 in 7 places only if (at least) four of its first seven bits are

0’s! It is, of course, asking too much of a 10-bit word that it contain at least four 0’s

and at least seven 1’s. The same problem arises no matter which seven bits are set

equal to 1 in c2, and setting more than seven bits equal to 1 only makes matters

worse! It seems there do not exist even three binary words of length 10 each differ-

ing from the other two in (at least) seven bits. (Evidently, the sphere-packing bound

is not always attainable!)

If there are no (10, 3, 7) codes, there certainly cannot be any (10, 4, 7) codes.

What about an (11, 4, 7) code? This time, the obvious choices, c1 ¼ 00000000000

and c2 ¼ 11111110000, leave room for c3 ¼ 00001111111, which differs from c2

in eight places and from c1 in seven. Because c4 ¼ 11110001111 differs from c2

and c3 in seven places and from c1 in eight, C ¼ c1; c2; c3; c4f g is an (11, 4, 7) code.

&

Our discovery, in Example 1.4.11, that M � 2 in any ð10;M; 7Þ code is a little

surprising. Because a sphere of radius 3 in F10 holds (only) 176 words, two non-

overlapping spheres contain little more than a third of the 1024 words in F10! On the

other hand, how many solid Euclidean balls of radius 3 will fit inside a Euclidean

cube of volume 1024?*

*Even in the familiar world of three-dimensional Euclidean space, sphere-packing problems can be highly

nontrivial. On the other hand, in at least one sense, packing Euclidean spheres in three-space is a bad

analogy. Orange growers are interested in sphere packing because, without damaging the produce, they

want to minimize the fraction of empty space in each ‘‘full’’ box of oranges. Apart from degenerate cases,

equality is never achievable in the grower’s version of the sphere-packing bound.
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1.4.12 Example. As illustrated in Fig. 1.4.1, three-dimensional binary space F3

is comparable, not to a Euclidean cube, but to the set consisting of its eight vertices!

While packing the Euclidean cube with Euclidean spheres always results in ‘‘left-

over’’ Euclidean points, F3 is easily seen* to be the disjoint union of the spheres

S1ð000Þ ¼ 000; 100; 010; 001f g and S1ð111Þ ¼ 111; 011; 101; 110f g. (Note the

two different ways in which S1ð111Þ is ‘‘complementary’’ to S1ð000Þ.) &

1.4.13 Definition. An ðn;M; dÞ code is perfect if 2n ¼ M � ½Cðn; 0Þþ
Cðn; 1Þ þ � � � þ Cðn; rÞ�, where r ¼ bðd � 1Þ=2c is the greatest integer not exceed-

ing ðd � 1Þ=2.

So, an r-error-correcting code C is perfect if and only if its vocabulary achieves

the sphere-packing bound, if and only if Fn is the disjoint union of the spheres SrðcÞ
as c ranges over C, if and only if every binary word of length n belongs to the

sphere of influence of some (unique) codeword. In particular, a perfect code is as

efficient as it is possible for codes to be.

It follows from Definition 1.4.13 that Fn, itself, is perfect. It is the disjoint union

of the (degenerate) spheres S0ðbÞ, b 2 Fn. Such trivial examples are uninteresting

for a number of reasons, not the least of which is that Fn cannot detect, much

less correct, even a single error. A nontrivial perfect code emerges from

Example 1.4.12, namely, the one-error-correcting ð3; 2; 3Þ code 000; 111f g. Might

this be the only nontrivial example? No, 100; 011f g is another. All right, might the

only nontrivial examples have parameters ð3; 2; 3Þ?

1.4.14 Lemma. Suppose C is an ðn;M; dÞ code for which r ¼ bðd � 1Þ=2c ¼ 1.

Then C is perfect if and only if there exists an integer m � 2 such that n ¼ 2m � 1

and M ¼ 2n�m.

Proof. If C is perfect, then 2n ¼ M � Nðn; 1Þ ¼ Mð1þ nÞ, so that M ¼ 2n=
ð1þ nÞ. Now, 1þ n exactly divides 2n only if 1þ n ¼ 2m for some positive integer

010 110

000 100

111011

101

Figure 1.4.1. Three-dimensional binary space.

*Because one vertex is hidden from view, ‘‘seen’’ may not be the most appropriate word to use here.
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m � n, in which case M ¼ 2n=2m ¼ 2n�m. Moreover, 2m � 1 ¼ n � d � 3 implies

m � 2.

Conversely, if n¼2m � 1 and M¼2n�m, then Mð1þ nÞ¼2n�m � 2m¼2n. &

1.4.15 Example. The parameters of the perfect (3, 2, 3) code C ¼ 000; 111f g
satisfy the conditions of Lemma 1.4.14 when m ¼ 2.

Setting d ¼ 3 and m ¼ 3 in Lemma 1.4.14 shows that every (7, 16, 3) code is

perfect. What it does not show is the existence of even one (7, 16, 3) code! How-

ever, as the reader may confirm, (7, 16, 3) is the triple of parameters for the so-called

Hamming code H3 ¼ f0000000; 1000011; 0100101; 0010110; 0001111; 1100110;
1010101; 1001100; 0110011; 0101010; 0011001; 0111100; 1011010; 1101001;
1110000; 1111111g. In Chapter 6, the existence of an ðn;M; 3Þ code that satisfies

the conditions of Lemma 1.4.14 will be established for every m � 4. &

1.4. EXERCISES

1 What is the largest possible value for M in any ð8;M; 1Þ code?

2 How many errors can an ðn;M; 8Þ code

(a) detect? (b) correct?

3 Find the parameters ðn;M; dÞ for the binary code

(a) C1 ¼ 000; 011; 101; 110f g.
(b) C2 ¼ 000; 011; 101; 110; 111; 100; 010; 001f g.
(c) C3 ¼ 0000; 0110; 1010; 1100; 1111; 1001; 0101; 0011f g.
(d) C4 ¼ f11000; 00011; 00101; 00110; 01001; 01010; 01100; 10001; 10010;

10100g, (Compare C4 with the POSTNET barcodes of Fig. 1.1.3.)

4 Construct a code (or explain why none exists) with parameters

(a) (3, 4, 2). (b) (6, 4, 4). (c) (12, 4, 8).

(d) (4, 7, 2). (e) (8, 7, 4). (f) (8, 8, 4).

5 The American Standard Code for Information Interchange (ASCII) is a scheme

for assigning numerical values from 0 through 255 to selected symbols. For

example, the uppercase letters of the English alphabet correspond to 65 through

90, respectively. Why 256 symbols? Good question. The answer involves bits

and bytes. Consisting of two four-bit ‘‘zones’’, a byte can store any binary

numeral in the range 0 through 255.

Apart from representing binary numerals, bytes can also be viewed as

codewords in C ¼ F8. Because it corresponds to the base-2 numeral for 65,

the codeword/byte 01000001 represents A (in the ASCII scheme). Similarly, Z,

corresponding to 90, is represented by the codeword/byte 01011010.

(a) What is the ASCII number for the letter S?

(b) What byte represents S?
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(c) What letter corresponds to ASCII number 76?

(d) What letter is represented by codeword/byte 01010101?

(e) The ASCII number for the square-root symbol is 251. What codeword/byte

represents
ffip

?

(f) Decode the message 01001101-01000001-01010100-01001000.

6 The complement of a binary word b is the word b	 obtained from b by

changing all if its zeros to ones and all of its ones to zeros. For any binary code

C, define C	 ¼ c	 : c 2 Cf g.
(a) Show that C2 ¼ C1 [ C	1, where C1 and C2 are the codes in Exercises 3(a)

and (b), respectively.

(b) Find a code C of length 3 satisfying C	 ¼ F3nC, the set-theoretic

complement of C. (Hint: Example 1.4.12.)

(c) Find a code C of length 3 satisfying C	 ¼ C.

(d) If C is an ðn;M; dÞ code, prove or disprove that C	 has the same parameters.

(e) IfC is an ðn;M; dÞ code, prove or disprove that FnnC has the same parameters.

7 The weight of a binary word b, wtðbÞ, is the number of bits of b equal to 1. A

constant-weight code is one in which every codeword has the same weight.

(a) Show that d � 2 in any constant-weight ðn;M; dÞ code (in which n > 1).

(b) Find a constant-weight ð8;M; dÞ code with d > 2.

(c) Find the largest possible value for M in a constant-weight (8, M, d) code.

8 Let C be the (8, 56, 2) code consisting of all binary words of length 8 and

weight 5. (See Exercise 7.) Let C	 be the code consisting of the complements

of the codewords of C. (See Exercise 6.) Prove that C [ C	 is an (8, 112, 2)

code.

9 M. Plotkin* proved that if n < 2d in the ðn;M; dÞ code C, then M �
2bd=ð2d � nÞc, where bxc is the greatest integer not larger that x. Does the

Plotkin bound preclude the existence of

(a) (12, 52, 5) codes? (b) (12, 7, 7) codes?

(c) (13, 13, 7) codes? (d) (15, 2048, 3) codes?

(Justify your answers.)

10 Does the sphere-packing bound (Theorem 1.4.10) rule out the existence of a

(a) (12, 52, 5) code? (b) (12, 7, 7) code?

(c) (13, 13, 7) code? (d) (15, 2048, 3) code?

(Justify your answers.)

*Binary codes with specified minimum distances, IEEE Trans. Info. Theory 6 (1960), 445–450.
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11 The purpose of this exercise is to prove the Plotkin bound from Exercise 9. Let

C ¼ c1; c2; . . . ; cMf g be an ðn;M; dÞ code where n < 2d. Define

D ¼
XM

i;j¼1

dðci; cjÞ:

(a) Prove that D � MðM � 1Þd.

(b) Let A be the M � n (0, 1)-matrix whose ith row consists of the bits of

codeword ci. If the kth column of A contains zk 0’s (and M � zk 1’s), prove

that

D ¼ 2
Xn

k¼1

zkðM � zkÞ:

(c) If M is even, show that f ðzÞ ¼ zðM � zÞ is maximized when z ¼ 1
2

M.

(d) Prove the Plotkin bound in the case that M is even.

(e) If M is odd, show that D � 1
2

nðM2 � 1Þ.
(f) Prove the Plotkin bound in the case that M is odd.

(g) Where is the hypothesis n < 2d used in the proof?

12 The parity of binary word b is 0 if wt(b) is even and 1 if wt(b) is odd. (See

Exercise 7.) If b ¼ xy . . . z is a binary word of length n and parity p, denote by

bþ ¼ xy . . . zp the binary word of length nþ 1 obtained from b by appending a

new bit equal to its parity. For any binary code C of length n, let

Cþ ¼ cþ : c 2 Cf g.
(a) Show that C3 ¼ Cþ2 , where C2 and C3 are the codes from Exercises 3(b)

and (c), respectively.

(b) If C is an ðn;M; dÞ code, where d is odd, prove that Cþ is an

ðnþ 1;M; d þ 1Þ code.

(c) Prove that exactly half the words in Fn have parity p ¼ 0.

(d) Prove or disprove that if C is a fixed but arbitrary binary code of length n,

then exactly half the words in C have even weight.

13 Let Mðn; dÞ be the largest possible value of M in any ðn;M; dÞ code. Prove that

Mðn; 2r � 1Þ ¼ Mðnþ 1; 2rÞ.

14 If C is a code of length n, its ‘‘weight enumerator’’ is the two-variable

polynomial defined by

WCðx; yÞ ¼
X
c2C

xwtðcÞyn�wtðcÞ;

where wtðcÞ is the weight of c defined in Exercise 7.

(a) Compute WCðx; yÞ for each of the codes in Exercise 3.
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(b) Show that WCðx; yÞ ¼ x7 þ 7x4y3 þ 7x3y4 þ y7 for the perfect Hamming

code C ¼H3 of Example 1.4.15.

(c) Two codes are equivalent if one can be obtained from the other by

uniformly permuting (rearranging) the order of the bits in each codeword.

Show that equivalent codes have the same parameters.

(d) Show that equivalent codes have the same weight enumerator.

(e) Exhibit two inequivalent codes with the same weight enumerator.

15 Exhibit the parameters for the perfect Hamming code H4 (corresponding to

m ¼ 4 in Lemma 1.4.14).

16 Show that the Plotkin bound (Exercise 9) is strong enough to preclude the

existence of a (10, 3, 7) code (see Example 1.4.11).

17 Can the (11, 4, 7) code in Example 1.4.11 be extended to an (11, 5, 7) code?

18 Let u, v, and w be binary words of length n. Show that dðu;wÞ ¼ dðu; vÞþ
dðv;wÞ � 2b, where b is the number of places in which u and w both differ from v.

19 Following up on the discussion between Examples 1.4.11 and 1.4.12, show

that two solid Euclidean spheres of radius 3 cannot be fit inside a cubical box

of volume 1024 in such a way that both spheres touch the bottom of the box.

20 Show that the necessary condition for the existence of an r-error-correcting

code given by the sphere-packing bound is not sufficient.

21 Let Mðn; dÞ be the largest possible value of M in any ðn;M; dÞ code.

(a) If n � 2, prove that Mðn; dÞ � 2Mðn� 1; dÞ.
(b) Prove that Mð2d; dÞ � 4d.

22 Show that a necessary condition for equality to hold in the Plotkin bound

(Exercises 9 and 11) is dðci; cjÞ ¼ d, i 6¼ j.

23 The (7, 16, 3) code H3 in Example 1.4.15 is advertised as a perfect code.

While it is easy to check that H3 is a binary code of length 7 containing 16

codewords, (given what we know now) it might take a minite or two to confirm

that the minimum distance between any two codewords is 3. Assuming that

has been done, how hard is it to confirm that H3 is a perfect code? (Justify

your answer by providing the confirmation.)

24 Let A ¼ F3nS1ð110Þ the (set-theoretic) complement of S1ð110Þ in F3.

(a) Show that A is a sphere in F3.

(b) Do A and S1ð110Þ exhibit both kinds of complementarity discussed in

Exercise 6?

25 Prove that every (23, 4096, 7) code is perfect.

26 Construct a code with parameters (8, 16, 4).

27 Construct a code with parameters

(a) (6, 8, 3). (b) (7, 8, 4).
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28 The purpose of this exercise is to justify nearest-neighbor decoding. We begin

with some assumptions about the transmission channel. The simplest case is a

so-called symmetric channel in which the probability of a 1 being changed to 0

is the same as that of a 0 being changed to 1. If we assume this common error

probability, call it p, is the same for each bit of every word, then q ¼ 1� p is

the probability that any particular bit is transmitted correctly.

(a) Show that the probability of transmitting codeword c and receiving binary

word w along such a channel is prqn�r, where r is the number of places in

which c and w differ.

(b) Under the assumption that p < 1
2

(engineers work very hard to ensure that

p is much less than 1
2
, show that the probability in part (a) is maximized

when r is as small as possible.

29 Suppose the two-error-correcting code C ¼ 00000; 11111f g is used in a

symmetric channel for which the probability of a transmission error in each

bit is p ¼ 0:05. (See exercise 28.)

(a) Show that the probability of more than two errors in the transmission of a

single codeword is less than 0.0012.

(b) There may be cases in which a probability of failure as high as 0.0012 is

unacceptable. What is the probability of more than three errors in the

transmission of a single codeword using the same channel and the code

0000000; 1111111f g?

1.5. COMBINATORIAL IDENTITIES

Poetry is the art of giving different names to the same thing.

— Anonymous

As we saw in Section1.2, Cðn; rÞ ¼
�

n
r

�
is the same as multinomial coefficient�

n
r;n�r

�
. In fact, Cðn; rÞ is commonly called a binomial coefficient.* Given that

binomial coefficients are special cases of multinomial coefficients, it is natural to

wonder whether we still need a separate name and notation for n-choose-r. On the

other hand, it turns out that multinomial coefficients can be expressed as products of

binomial coefficients. Thus, one could just as well argue for discarding the multi-

nomial coefficients!

1.5.1 Theorem. If r1 þ r2 þ � � � þ rk ¼ n, then

n

r1; r2; . . . ; rk

� �
¼ n

r1

� �
n� r1

r2

� �
n� r1 � r2

r3

� �
� � � n� r1 � r2 � � � � � rk�1

rk

� �
:

*This name is thought to have been coined by Michael Stifel (ca. 1485–1567), among the most celebrated

algebraists of the sixteenth century. Also known for numerological prophesy, Stifel predicted publicly that

the world would end on October 3, 1533.
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Proof. Multinomial coefficient
�

n
r1;r2;...;rk

�
is the number of n-letter ‘‘words’’ that

can be assembled using r1 copies of one ‘‘letter’’, say A1; r2 copies of a second, A2;

and so on, finally using rk copies of some kth character, Ak. The theorem is proved

by counting these words another way and setting the two (different-looking)

answers equal to each other.

Think of the process of writing one of the words as a sequence of k decisions.

Decision 1 is which of n spaces to fill with A1’s. Because this amounts to selecting

r1 of the n available positions, it involves Cðn; r1Þ choices. Decision 2 is which of

the remaining n� r1 spaces to fill with A2’s. Since there are r2 of these characters,

the second decision can be made in any one of Cðn� r1; r2Þ ways. Once the A1’s

and A2’s have been placed, there are n� r1 � r2 positions remaining to be filled,

and A3’s can be assigned to r3 of them in Cðn� r1 � r2; r3Þ ways, and so on. By

the fundamental counting principle, the number of ways to make this sequence of

decisions is the product

Cðn; r1Þ � Cðn� r1; r2Þ � Cðn� r1 � r2; r3Þ � � � � � Cðn� r1 � r2 � � � � � rk�1;rkÞ:

(Because r1 þ r2 þ � � � þ rk ¼ n, the last factor in this product is Cðrk; rkÞ ¼ 1.)

&

It turns out that both binomial and multinomial coefficients have their unique

qualities and uses. Keeping both is vastly more convenient than eliminating

either.

Let’s do some mathemagic. Pick a number, any number, just so long as it is an

entry from Pascal’s triangle. Suppose your pick happened to be 15 ¼ Cð6; 2Þ. Start-

ing with Cð2; 2Þ, the first nonzero enry in column 2 (the third column of Fig. 1.5.1),

C(0,0)

C(1,0) C(1,1)

C(2,0) C(2,1) C(2,2)
+

C(3,0) C(3,1) C(3,2) C(3,3)
+

C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)
+

C(5,0) C(5,1) C(5,2) C(5,3) C(5,4)
+

C(6,0) C(6,1) C(6,2) C(6,3) C(6,4)

C(7,0) C(7,1) C(7,2) C(7,3) C(7,4)

Figure 1.5.1
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add the entries down to and including Cð6; 2Þ. The sum will be Cð7; 3Þ. Check it

out:

Cð2; 2Þ þ Cð3; 2Þ þ Cð4; 2Þ þ Cð5; 2Þ þ Cð6; 2Þ ¼ 1þ 3þ 6þ 10þ 15

¼ 35

¼ Cð7; 3Þ:

The trick is an easy consequence of Pascal’s relation and the fact that

Cð2; 2Þ ¼ Cð3; 3Þ. (See if you can reason it out before reading on.)

1.5.2 Chu’s Theorem.* If n � r, then

Xn

k¼0

Cðk; rÞ ¼ Cðr; rÞ þ Cðr þ 1; rÞ þ Cðr þ 2; rÞ þ � � � þ Cðn; rÞ

¼ Cðnþ 1; r þ 1Þ

ðwhere
Pn

k¼0 Cðk; rÞ ¼
Pn

k¼r Cðk; rÞ because Cðk; rÞ ¼ 0, k < rÞ.

Proof. Replace Cðr; rÞ with Cðr þ 1; r þ 1Þ and use Pascal’s relation repeatedly to

obtain

Cðr þ 1; r þ 1Þ þ Cðr þ 1; rÞ ¼ Cðr þ 2; r þ 1Þ;
Cðr þ 2; r þ 1Þ þ Cðr þ 2; rÞ ¼ Cðr þ 3; r þ 1Þ;

and so on, ending with

Cðn; r þ 1Þ þ Cðn; rÞ ¼ Cðnþ 1; r þ 1Þ: &

Chu’s theorem has many interesting applications. To set the stage for one of

them, we interrupt the mathematical discussion to relate a story about the young

Carl Friedrich Gauss.{ At the age of seven, Gauss entered St. Katharine’s

Volksschule in the duchy of Brunswick. One day his teacher, J. G. Büttner, assigned

Gauss’s class the problem of computing the sum

1þ 2þ � � � þ 100:

*Rediscovered many times, Theorem 1.5.2 can be found in Chu Shih-Chieh, Precious Mirror of the Four

Elements, 1303.
{Gauss (1777–1855) is one of the half-dozen greatest mathematicians of the last millenium.
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While his fellow pupils went right to work computing sums, Gauss merely stared at

his slate and, after a few minutes, wrote

100� 101

2
¼ 5050:

He seems to have reasoned that numbers can be added forwards or backwards,

1þ 2þ 3þ � � � þ 98þ 99þ 100;

100þ 99þ 98þ � � � þ 3þ 2þ 1;

or even sidewards. Adding sidewards gives 1þ 100 ¼ 101, 2þ 99 ¼ 101,

3þ 98 ¼ 101, and so on. With each of the hundred columns adding to 101,

the sum of the numbers in both rows, twice the total we’re looking for, is

100� 101.

Gauss’s method can just as well be used to sum the first n positive integers:

1þ 2þ � � � þ n ¼ nðnþ 1Þ
2

¼ Cðnþ 1; 2Þ:
ð1:6Þ

Seeing the answer expressed as a binomial coefficient may seem a little con-

trived, but, with its left-hand side rewritten as Cð1; 1Þ þ Cð2; 1Þ þ � � � þ Cðn; 1Þ,
Equation (1.6) is seen to be the r ¼ 1 case of Chu’s theorem!

There is a formula comparable to Equation (1.6) for the sum of the squares of

the first n positive integers, namely,

12 þ 22 þ � � � þ n2 ¼ nðnþ 1Þð2nþ 1Þ
6

: ð1:7Þ

Once one has seen it (or guessed it), Equation (1.7) is easy enough to prove by

induction. But, where did the formula come from in the first place? Chu’s theorem!

Summing both sides of

k2 ¼ k þ kðk � 1Þ
¼ Cðk; 1Þ þ 2Cðk; 2Þ;

ð1:8Þ

we obtain

Xn

k¼1

k2 ¼
Xn

k¼1

Cðk; 1Þ þ 2
Xn

k¼1

Cðk; 2Þ:
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Two applications of Chu’s theorem (one with r ¼ 1 and the other with r ¼ 2) yield

12 þ 22 þ � � � þ n2 ¼ Cðnþ 1; 2Þ þ 2Cðnþ 1; 3Þ

¼ ðnþ 1Þn
2

þ 2
ðnþ 1Þnðn� 1Þ

6

¼ nðnþ 1Þ 3þ 2ðn� 1Þ
6

 �

¼ nðnþ 1Þð2nþ 1Þ
6

;

precisely Equation (1.7).

What about summing mth powers? If we just had an analog of Equation (1.8),

i.e., an identity of the form

km ¼
Xm

r¼1

ar;mCðk; rÞ ð1:9Þ

(where ar;m is independent of k, 1 � r � m), we could sum both sides and use Chu’s

theorem to obtain

Xn

k¼1

km ¼
Xn

k¼1

Xm

r¼1

ar;mCðk; rÞ

¼
Xm

r¼1

ar;m

Xn

k¼1

Cðk; rÞ

¼
Xm

r¼1

ar;mCðnþ 1; r þ 1Þ: ð1:10Þ

To see what’s involved when m ¼ 3, consider the equation

k3 ¼ xCðk; 1Þ þ yCðk; 2Þ þ zCðk; 3Þ

¼ xk þ 1

2
ykðk � 1Þ þ 1

6
zkðk � 1Þðk � 2Þ;

which is equivalent to

6k3 ¼ ð6x� 3yþ 2zÞk þ ð3y� 3zÞk2 þ zk3:

(Check it.) Equating coefficients of like powers of the integer variable k yields the

system of linear equations

6x� 3yþ 2z ¼ 0;

3y� 3z ¼ 0;

z ¼ 6;
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which has the unique solution y ¼ z ¼ 6 and x ¼ 1. (Confirm this too.)

Therefore,

k3 ¼ Cðk; 1Þ þ 6Cðk; 2Þ þ 6Cðk; 3Þ ð1:11Þ

or, in the language of Equation (1.9), a1;3 ¼ x ¼ 1, a2;3 ¼ y ¼ 6, and a3;3 ¼ z ¼ 6.

Together, Equations (1.9)–(1.11) yield

13 þ 23 þ � � � þ n3 ¼ Cðnþ 1; 2Þ þ 6Cðnþ 1; 3Þ þ 6Cðnþ 1; 4Þ

¼ n2ðnþ 1Þ2

4
:

(Confirm these computations.)

Now we know where formulas for sums of powers of positive integers come

from. They are consequences of Chu’s theorem as manifested in Equations (1.9)-

(1.10). From a theoretical point of view, that is all very well. The disagreeable part

is the prospect of having to solve a system of m equations in m unknowns in order to

identify the mystery coefficients ar;m. In fact, there is an elegant solution to this

difficulty!

In the form

Xm

r¼1

Cðk; rÞar;m ¼ km;

Equation (1.9) is reminiscent of matrix multiplication. To illustrate this perspective,

let m ¼ 6 and consider that portion of Pascal’s triangle lying in rows and columns

numbered 1– 6, i.e.,

1

2 1

3 3 1

4 6 4 1

5 10 10 5 1

6 15 20 15 6 1

Filling in the zeros corresponding to Cðn; rÞ, n < r � 6, we obtain the matrix

C6 ¼

1 0 0 0 0 0

2 1 0 0 0 0

3 3 1 0 0 0

4 6 4 1 0 0

5 10 10 5 1 0

6 15 20 15 6 1

0
BBBBBB@

1
CCCCCCA
:
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Anyone familiar with determinants will see that this matrix has an inverse. It is

one of the most remarkable properties of binomial coefficients that C�1
n can be

obtained from Cn, just by sprinkling in some minus signs, e.g.,

C�1
6 ¼

1 0 0 0 0 0

�2 1 0 0 0 0

3 �3 1 0 0 0

�4 6 �4 1 0 0

5 �10 10 �5 1 0

�6 15 �20 15 �6 1

0
BBBBBB@

1
CCCCCCA
:

(Before reading on, confirm that the product of these two matrices is the identity

matrix, I6.)

1.5.3 Definition. Let Cn be the n� n Pascal matrix whose ði; jÞ-entry is bino-

mial coefficient Cði; jÞ, 1 � i, j � n.

1.5.4 Alternating-Sign Theorem. The Pascal matrix Cn is invertible; the ði; jÞ-
entry of C�1

n is ð�1Þiþj
Cði; jÞ.

While it may seem a little like eating the dessert before the broccoli, let’s defer

the proof of the alternating-sign theorem to the end of the section and go directly to

the application.

1.5.5 Theorem. If m and r are positive integers, the coefficient of Cðk; rÞ in the

equation km ¼
Pm

r¼1 ar;mCðk; rÞ is given by

ar;m ¼
Xm

t¼1

ð�1Þrþt
Cðr; tÞtm:

This more-or-less explicit formula for ar;m eliminates the need to solve a system

of equations. Put another way, Theorem 1.5.5 solves the corresponding system of m

equations in m unknowns, once and for all, for every m.

Proof of Theorem 1.5.5. Suppose n � m; r. Let An ¼ ðai;j Þ be the n� n matrix of

mystery coefficients (where ar;m ¼ 0 whenever r > m). Then, by Equation (1.9), the

ðk;mÞ-entry of CnAn is

Xm

r¼1

Cðk; rÞar;m ¼ km;

1 � k, m � n. In other words, CnAn ¼ Pn, where Pn is the n� n matrix whose ði; jÞ-
entry is i j. Thus, An ¼ C�1

n Pn, so the mystery coefficient ar;m is the ðr;mÞ-entry of

the matrix product C�1
n Pn. &
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1.5.6 Example. Let’s reconfirm Equation (1.11). By Theorem 1.5.5,

a1;3 ¼ ð�1Þ1þ1
Cð1; 1Þ13 ¼ 1;

a2;3 ¼ ð�1Þ2þ1
Cð2; 1Þ13 þ ð�1Þ2þ2

Cð2; 2Þ23

¼ �2þ 8 ¼ 6;

a3;3 ¼ ð�1Þ3þ1
Cð3; 1Þ13 þ ð�1Þ3þ2

Cð3; 2Þ23 þ ð�1Þ3þ3
Cð3; 3Þ33

¼ 3� 24þ 27 ¼ 6;

i.e., with m ¼ 3; Equation (1.9) becomes k3 ¼ Cðk; 1Þ þ 6Cðk; 2Þ þ 6Cðk; 3Þ: &

In fact, it isn’t necessary to compute ar;m for one value of r at a time, or even for

one value of m at a time! Using matrices, we can calculate the numbers ar;m,

1 � r � m, 1 � m � n, all at once!

1.5.7 Example. When n ¼ 4,

P4 ¼
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0
BB@

1
CCA:

So,

C�1
4 P4 ¼

1 0 0 0

�2 1 0 0

3 �3 1 0

�4 6 �4 1

0
BBB@

1
CCCA

1 1 1 1

2 4 8 16

3 9 27 81

4 16 64 256

0
BBB@

1
CCCA

¼

1 1 1 1

0 2 6 14

0 0 6 36

0 0 0 24

0
BBB@

1
CCCA ¼ A4:

(Check the substitutions and confirm the matrix multiplication.) Observe that

column 3 of A4 recaptures Equation (1.11), column 2 reconfirms Equation (1.8),

and column 1 reflects the fact that k1 ¼ k ¼ Cðk; 1Þ. Column 4 is new:

k4 ¼ Cðk; 1Þ þ 14Cðk; 2Þ þ 36Cðk; 3Þ þ 24Cðk; 4Þ: ð1:12Þ

&

So much for the desert. It’s time for the broccoli.

Proof of the Alternating-Sign Theorem. Given an n� n matrix C ¼ ðcijÞ, recall

that the n� n matrix B ¼ ðbijÞ is its inverse if and only if CB ¼ In if and only if

BC ¼ In. Let C ¼ Cn be the n� n Pascal matrix, so that cij ¼ Cði; jÞ. In the context
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of Theorem 1.5.4, we have a candidate for C�1, namely, the matrix B, whose ði; jÞ-
entry is bij ¼ ð�1Þiþj

Cði; jÞ. With these choices, CB ¼ In if and only if

Xn

k¼1

Cði; kÞð�1Þkþj
Cðk; jÞ ¼ di; j; ð1:13aÞ

1 � i, j � n, and BC ¼ In if and only if

Xn

k¼1

ð�1Þiþk
Cði; kÞCðk; jÞ ¼ di; j; ð1:13bÞ

1 � i, j � n, where

di; j ¼
1 if i ¼ j;
0 otherwise

�

is the so-called Knonecker delta.

Let’s prove Equation (1.13a). Because Cði; kÞ ¼ 0, k > i, and Cðk; jÞ ¼ 0, k < j,

Xn

k¼1

Cði; kÞð�1Þkþj
Cðk; jÞ ¼

Xi

k¼j

ð�1Þkþj
Cði; kÞCðk; jÞ:

If j > i, the right-hand sum is empty, meaning that the left-hand sum is zero. (So

far, so good.) If i � k � j, then (confirm it) Cði; kÞCðk; jÞ ¼ Cði; jÞCði� j; k � jÞ.
Substituting this identity into the right-hand sum yields

Xi

k¼j

ð�1Þkþj
Cði; jÞCði� j; k � jÞ ¼ Cði; jÞ

Xi

k¼j

ð�1Þjþk
Cði� j; k � jÞ

¼ Cði; jÞ
Xi�j

r¼0

ð�1ÞrCði� j; rÞ;

where r ¼ k � j. If i ¼ j, this expression contains just one term, namely, Cði; iÞ�
ð�1Þ0Cð0; 0Þ ¼ 1. So, to complete the proof of Theorem 1.5.4, it remains to estab-

lish the following. &

1.5.8 Lemma. If n > 0, then
Pn

r¼0 ð�1ÞrCðn; rÞ ¼ 0.

1.5.9 Example. With n ¼ 5, Lemma 1.5.8 becomes

Cð5; 0Þ � Cð5; 1Þ þ Cð5; 2Þ � Cð5; 3Þ þ Cð5; 4Þ � Cð5; 5Þ ¼ 0;

which is an immediate consequence of symmetry: Cð5; 2Þ ¼ Cð5; 3Þ, Cð5; 1Þ ¼
Cð5; 4Þ, and Cð5; 0Þ ¼ Cð5; 5Þ. If n ¼ 4, the identity

Cð4; 0Þ � Cð4; 1Þ þ Cð4; 2Þ � Cð4; 3Þ þ Cð4; 4Þ ¼ 1� 4þ 6� 4þ 1

¼ 0;

while just as valid, is a little less obvious. &
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Proof of Lemma 1.5.8. The lemma follows from the binomial theorem, which will

be taken up in section 1.7. It is easy enough, however, to give a direct proof.

Observe that the conclusion is equivalent toX
r even

Cðn; rÞ ¼
X
r odd

Cðn; rÞ;

i.e., the number of subsets of T ¼ 1; 2; . . . ; nf g having even cardinality is equal to

the number of subsets of T with odd cardinality.

Temporarily denote the family of all 2n subsets of T by F. We will prove the

result by exhibiting a one-to-one, onto function* f : F!F such that A 2F has

an even (odd) number of elements if and only if f ðAÞ has an odd (even) number. If

n ¼ oðTÞ is odd, the function defined by f ðAÞ ¼ TnA ¼ x 2 T : x =2 Af g, the com-

plement of A, meets our needs. (This is the easy case, illustrated for n ¼ 5 in Exam-

ple 1.5.9.) If n is even, the function defined by

f ðAÞ ¼ A [ nf g when n 62 A;
An nf g when n 2 A

�

satisfies our requirements. &

1.5.10 Example. Some values of the function

f ðAÞ ¼ A [ 4f g when 4 62 A;
Anf4g when 4 2 A

�

(corresponding to n ¼ 4) are given in Fig. 1.5.2. &

A f (A)

φ {4}

{1} {1,4}

{2} {2,4}

{3,4} {3}

{1,3,4} {1,3}

{1,2,3,4} {1,2,3}

Figure 1.5.2

1.5. EXERCISES

1 Prove that

(a) The sum 2þ 4þ 6þ � � � þ 2n of the first n even integers is nðnþ 1Þ.
(b) The sum 1þ 3þ 5þ � � � þ ð2n� 1Þ of the first n odd integers is n2.

* One-to-one, onto functions are also known as bijections.
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2 Evaluate

(a)
Pn

i¼1 iði� 1Þ. (b)
Pn

i¼1 iðiþ 1Þ.
(c)

Pn
i¼3ð2i� 1Þ. (d)

Pn
i¼1 iði� 1Þði� 2Þ.

3 A sequence of numbers a1; a2; . . . is arithmetic if there is a fixed constant c

such that aiþ1 � ai ¼ c for all i � 1. For such a sequence, show that

(a) anþ1 ¼ a1 þ nc. (b)
Pn

i¼1 ai ¼ 1
2

nða1 þ anÞ.

4 The proof of Theorem 1.5.1 given in the text is the combinatorial proof. Sketch

the algebraic proof, i.e., write each of the binomial coefficients in terms of

factorials and do lots of cancelling to obtain the multinomial coefficient.

5 Show that

(a) Cðrk; rkÞ � Cðrk�1 þ rk; rk�1Þ � � � � � Cðr1 þ r2 þ � � � þ rk; r1Þ

¼
n

r1; r2; . . . ; rk

� �
:

(b)
r

0

� �
þ r þ 1

1

� �
þ r þ 2

2

� �
þ � � � þ r þ k

k

� �
¼ r þ k þ 1

k

� �
.

6 Use mathematical induction to prove that 13 þ 23 þ � � � þ n3 ¼ 1
4

n2ðnþ 1Þ2.

7 Confirm (by a brute-force computation) that

k4 ¼ Cðk; 1Þ þ 14Cðk; 2Þ þ 36Cðk; 3Þ þ 24Cðk; 4Þ:

8 Prove that 14 þ 24 þ � � � þ n4 ¼ 1
30

nðnþ 1Þð2nþ 1Þð3n2 þ 3n� 1Þ
(a) using Equations (1.9)–(1.10) and (1.12).

(b) using mathematical induction.

9 Solve for the coefficients ar; 5; 1 � r � 5; in the equation k5 ¼
P5

r¼1 ar; 5Cðk; rÞ
(a) using the matrix equation A5 ¼ C�1

5 P5:

(b) by solving a system of five equations in five unknowns without using the

matrix equation.

10 What is the formula for the sum of the fifth powers of the first n positive

integers? (Hint: Lots of computations afford lots of opportunities to make

mistakes. Confirm your formula for three or four values of n.)

11 Suppose f and g are functions of the positive integer variable n. If f ðnÞ ¼Pn
r¼1 Cðn; rÞgðrÞ for all n � 1, prove that gðnÞ ¼

Pn
r¼1ð�1Þnþr

Cðn; rÞf ðrÞ for

all n � 1.

12 If m � n, prove that

(a)
Pn

r¼1 Cðm; rÞCðn� 1; r � 1Þ ¼ Cðmþ n� 1; nÞ.
(b)

Pn
r¼1 rCðm; rÞCðn; rÞ ¼ nCðmþ n� 1; nÞ.
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13 Prove that 1� 2þ 2� 3þ 3� 4þ � � � þ n� ðnþ 1Þ ¼ 1
3

nðnþ 1Þðnþ 2Þ.

14 Prove that 1� 2� 3þ 2� 3� 4þ � � � þ nðnþ 1Þðnþ 2Þ ¼ 1
4

nðnþ 1Þ�
ðnþ 2Þðnþ 3Þ.

15 Prove Vandermonde’s identity*: If m and n are positive integers, then

Cðm; 0ÞCðn; rÞ þ Cðm; 1ÞCðn; r � 1Þ þ � � � þ Cðm; rÞCðn; 0Þ ¼ Cðmþ n; rÞ:

16 Prove that
Pn

r¼0 Cðn; rÞ2 ¼ Cð2n; nÞ. (Compare with Exercise 11, Section 1.2.)

17 How many of the Cð52; 5Þ different five-card poker hands contain

(a) a full house? (b) four of a kind?

18 How many of the Cð52; 13Þ different 13-card bridge hands contain

(a) all four aces? (b) a 4–3–3–3 suit distribution?

19 Show that

(a)
Pnþ1

r¼1ð�1Þr�1½Cðn; r � 1Þ=r� ¼ 1=ðnþ 1Þ.
(b)

Pn
r¼0ð�1Þr½Cðn; rÞ=ðr þ 1Þ� ¼ 1=ðnþ 1Þ:

(c)
Pn

r¼1ð�1Þr�1½Cðn; rÞ=r� ¼
Pn

k¼1 1=k.

(d) C�1
m vt ¼ wt, where v ¼ ð1=2; 1=3; . . . ; 1=½mþ 1�Þ and w ¼ ð1=2;�2=3;

3=4;�4=5; . . . ; ½ð�1Þmþ1
m=ðmþ 1Þ�Þ.

(e) Cmwt ¼ vt, where v and w are the vectors from part (d).

(f) Confirm the m ¼ 6 case of part (e); i.e., write down the 6� 6 matrix C6

and confirm that C6wt ¼ vt.

20 Let n be fixed. Denote the rth-power sum of the first n� 1 positive integers by

gðrÞ ¼ 1r þ 2r þ � � � þ ðn� 1Þr. Show that

(a) gð0Þ ¼ n� 1. (b) gð1Þ ¼ 1
2

n2 � 1
2

n.

(c) gð2Þ ¼ 1
3

n3 � 1
2

n2 þ 1
6

n. (d) gð3Þ ¼ 1
4

n4 � 1
2

n3 þ 1
4

n2.

(e) gð4Þ ¼ 1
5

n5 � 1
2

n4 þ 1
3

n3 � 1
30

n.

21 The nth Bernoulli number, br, is the coefficient of n in the function gðrÞ of

Exercise 20. The first few Bernoulli numbers are exhibited in Fig. 1.5.3. Jakob

Bernoulli (1654–1705) showed that the remaining coefficients in gðrÞ, r � 1,

* Named for Abnit-Theophile Vandermonde (1735–1796), who published the result in 1772 (469 years

after it appeared in Chu Shih-Chieh’s book).

r 0 1 2 3 4

br 1 0 − 1
30

− 1
2

1
6

Figure 1.5.3. Bernoulli numbers.

54 The Mathematics of Choice



can be expressed in terms of the br’s by means of the identity

gðrÞ ¼
Xr

k¼0

1

k þ 1
Cðr; kÞbr�knkþ1:

(a) use the r ¼ 4 case of this identity, along with Fig. 1.5.3, to recapture the

expression for gð4Þ in Exercise 20(e).

(b) Show that your solution to part (a) is consistent with Exercise 8.

(c) Compute gð5Þ.
(d) Show that your solution to part (c) is consistent with your solution to

Exercise 10.

22 The Bernoulli numbers (Exercise 21) satisfy the implicit recurrence
Pr

k¼0

Cðr þ 1; kÞbk ¼ 0, r � 1. Use this relation (and Fig. 1.5.3) to show that

(a) b5 ¼ 0. (b) b6 ¼ 1
42

. (c) b7 ¼ 0.

(d) b8 ¼ � 1
30

. (e) b9 ¼ 0. (f) b10 ¼ 5
66

.

23 Let n be fixed. Prove that the function gðrÞ ¼ 1r þ 2r þ � � � þ ðn� 1Þr, from

Exercise 20, can expressed in the form
Prþ1

k¼1 cr;knk, where the coefficients

satisfy the recurrence ðk þ 1Þcr;kþ1 ¼ rcr�1;k for all r, k � 1.

24 Use Exercises 20(e) and 23 and the fact that gðrÞ ¼ 1 when n ¼ 2 to compute

gð5Þ.

25 Let r and s be integers, 0 � r < s, and let

C½r;s� ¼

Cðr; rÞ Cðr; r þ 1Þ � � � Cðr; sÞ
Cðr þ 1; rÞ Cðr þ 1; r þ 1Þ � � � Cðr þ 1; sÞ

..

. ..
. . .

. ..
.

Cðs; rÞ Cðs; r þ 1Þ � � � Cðs; sÞ

0
BBB@

1
CCCA:

(a) Show that C½1;n� ¼ Cn.

(b) Exhibit C½2;6�.

(c) Show that C½r;s� is an ðs� r þ 1Þ-square matrix.

(d) Show that the ði; jÞ-entry of C½r;s� is Cðr þ i� 1; r þ j� 1Þ.
(e) Show that C½r;s� is invertible.

(f) Exhibit C�1
½2;6�.

(g) Prove that the ði; jÞ-entry of the inverse of C½r;s� is ð�1Þiþj
Cðr þ i� 1;

r þ j� 1Þ, 1 � i, j � s� r þ 1.

(h) Let t be a nonnegative integer. If f and g are functions that satisfy

f ðnÞ ¼
Pn

k¼t Cðn; kÞgðkÞ for all n � t, prove that gðnÞ ¼
Pn

k¼t

ð�1Þnþk
Cðn; kÞ f ðkÞ for all n � t.

1.5. Exercises 55



26 The Fibonacci sequence (Exercise 19, Section 1.2) may be defined by

F0 ¼ F1 ¼ 1 and Fnþ1 ¼ Fn þ Fn�1, n � 1.

(a) Show that F4 ¼ F2 þ 2F1 þ F0.

(b) Show that F5 ¼ F3 þ 2F2 þ F1.

(c) Show that F6 ¼ F3 þ 3F2 þ 3F1 þ F0.

(d) Show that F7 ¼ F4 þ 3F3 þ 3F2 þ F1.

(e) Given that F2nþ1 ¼
Pn

r¼0 Cðn; rÞFrþ1, prove that F2n ¼
Pn

r¼0 Cðn; rÞFr.

(f) Prove that Fn ¼
Pn

r¼0 ð�1Þnþr
Cðn; rÞF2r. (Hint: Use part (e) and the t ¼ 1

case of Exercise 25(h).)

27 If C ¼ C½0;m� is the matrix from Exercise 25, show that CK ¼ L, where

L ¼

Cð0; 0Þ Cð1; 1Þ Cð2; 2Þ Cð3; 3Þ � � � Cðm;mÞ
Cð1; 0Þ Cð2; 1Þ Cð3; 2Þ Cð4; 3Þ � � � Cðmþ 1;mÞ
Cð2; 0Þ Cð3; 1Þ Cð4; 2Þ Cð5; 3Þ � � � Cðmþ 2;mÞ

..

. ..
. ..

. ..
. . .

. ..
.

Cðm; 0Þ Cðmþ 1; 1Þ Cðmþ 2; 2Þ Cðmþ 3; 3Þ � � � Cðmþ m;mÞ

0
BBBBBBB@

1
CCCCCCCA
;

K ¼

Cð0; 0Þ Cð1; 1Þ Cð2; 2Þ Cð3; 3Þ . . . Cðm;mÞ
0 Cð1; 0Þ Cð2; 1Þ Cð3; 2Þ � � � Cðm;m� 1Þ
0 0 Cð2; 0Þ Cð3; 1Þ � � � Cðm;m� 2Þ
..
. ..

. ..
. ..

. . .
. ..

.

0 0 0 0 � � � Cðm; 0Þ

0
BBBBB@

1
CCCCCA:

28 For a fixed but arbitrary positive integer m, prove that the coefficients ar;m,

1 � r � m, in Equation (1.9) exist and are independent of k. (Hint: Show that

any polynomial f ðxÞ ¼ bmxm þ bm�1xm�1 þ � � � þ b0 of degree at most m can

be expressed (uniquely) as a linear combination of p0ðxÞ, p1ðxÞ; . . . ; pmðxÞ,
where p0ðxÞ ¼ 1 and prðxÞ ¼ ð1=r!Þxðx� 1Þ � � � ðx� r þ 1Þ, r � 1.)

1.6. FOUR WAYS TO CHOOSE

The prologues are over. . . . It is time to choose.

— Wallace Stevens (Asides on the Oboe)

From its combinatorial definition, n-choose-r is the number of different r-element

subsets of an n-element set. Because two subsets are equal if and only if they con-

tain the same elements,
�

n
r

�
depends on what elements are chosen, not when. In
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computing Cðn; rÞ, the order in which elements are chosen is irrelevant. The

Cð5; 2Þ ¼ 10 two-element subsets of L;U;C;K;Yf g are

L;Uf g; L;Cf g; L;Kf g; L;Yf g; U;Cf g; U;Kf g; U;Yf g; C;Kf g; C;Yf g; K;Yf g;

where, e.g., L;Uf g ¼ U;Lf g. There are, of course, circumstances in which order is

important.

1.6.1 Example. Consider all possible ‘‘words’’ that can be produced using two

letters from the word LUCKY. By the fundamental counting principle, the number

of such words is 5� 4, twice Cð5; 2Þ, reflecting the fact that order is important. The

20 possibilities are

LU;LC;LK;LY;UC;UK;UY;CK;CY;KY;

UL;CL;KL;YL;CU;KU;YU;KC;YC;YK: &

1.6.2 Definition. Denote by Pðn; rÞ the number of ordered selections of r ele-

ments chosen from an n-element set.

By the fundamental counting principle,

Pðn; rÞ ¼ nðn� 1Þðn� 2Þ � � � ðn� ½r � 1�Þ
¼ nðn� 1Þðn� 2Þ � � � ðn� r þ 1Þ

¼ n!

ðn� rÞ!
¼ r!Cðn; rÞ:

There is another way to arrive at this last identity: We may construe Pðn; rÞ as

the number of ways to make a sequence of just two decisions. Decision 1 is which

of the r elements to select, without regard to order, a decision having Cðn; rÞ
choices. Decision 2 is how to order the r elements once they have been selected,

and there are r! ways to do that. By the fundamental counting principle, the number

of ways to make the sequence of two decisions is Cðn; rÞ � r! ¼ Pðn; rÞ.

1.6.3 Example. Suppose nine members of the Alameda County School Boards

Association meet to select a three-member delegation to represent the association

at a statewide convention. There are Cð9; 3Þ ¼ 84 different ways to choose the dele-

gation from those present. If the bylaws stipulate that each delegation be comprised

of a delegate, a first alternate, and a second alternate, the nine members can comply

from among themselves in any one of Pð9; 3Þ ¼ 3!Cð9; 3Þ ¼ 504 ways. &

1.6.4 Example. Door prizes are a common feature of fundraising luncheons.

Suppose each of 100 patrons is given a numbered ticket, while its duplicate is

placed in a bowl from which prize-winning numbers will be drawn. If the prizes

are $10, $50, and $150, then (assuming winning tickets are not returned to the
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bowl) a total of Pð100; 3Þ ¼ 970; 200 different outcomes are possible. If, on the

other hand, the three prizes are each $70, then the order in which the numbers

are drawn is immaterial. In this case, the number of different outcomes is

Cð100; 3Þ ¼ 161; 700. &

Both Cðn; rÞ and Pðn; rÞ involve situations in which an object can be chosen at

most once. We have been choosing without replacement. What about choosing with

replacement? What if we recycle the objects, putting them back so they can be cho-

sen again? How many ways are there to choose r things from n things with replace-

ment? The answer depends on whether order matters. If it does, the answer is easy.

The number of ways to make a sequence of r decisions each of which has n choices

is nr.

1.6.5 Example. How many different two-letter ‘‘words’’ can be produced using

the ‘‘alphabet’’ L;U;C;K;Yf g? If there are no restrictions on the number of times

a letter can be used, then 52 ¼ 25 such words can be produced; i.e., there are 25

ways to choose 2 things from 5 with replacement if order matters. In addition to

the 20 words from Example 1.6.1, there are five new ones, namely, LL, UU, CC,

KK, and YY. &

This brings us to the fourth way to choose.

1.6.6 Example. In how many ways can r ¼ 10 items be chosen from

A;B;C;D;Ef g with replacement if order doesn’t matter? As so often happens in

combinatorics, the solution is most easily obtained by solving another problem

that has the same answer. Suppose, e.g., A were chosen three times, B once, C

twice, D not at all, and E four times. Associate with this selection the 14-letter

‘‘word’’

jjj---j---jj------jjjj:

In this word, the ‘‘letter’’ j represents a tally mark. Since we are choosing 10 times,

there are ten j’s. The dashes are used to separate tally marks corresponding to one

letter from those that correspond to another. The first three j’s are for the three A’s.

The first dash separates the three A tallies from the single tally corresponding to the

only B; the second dash separates the B tally from the two C tallies. There is no

tally mark between the third and fourth dashes because there are no D’s. Finally,

the last four j’s represent the four E’s. Since A;B;C;D;Ef g has n ¼ 5 elements,

we need 4 dashes to keep their respective tally marks separate. Conversely, any

14-letter word consisting of ten j’s and four ��’s corresponds to a unique selection.

The word jjjjjjj------j---jj---, e.g., correspons to seven A’s, no B’s, one C, two D’s, and

no E’s.

Because the correspondence is one-to-one, the number of ways to select r ¼ 10

things from n ¼ 5 things with replacement where order doesn’t matter is equal to

the number of 14-letter words that can be made up from ten j’s and four ��’s, i.e., to

Cð14; 10Þ ¼ 1001. &
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1.6.7 Theorem. The number of different ways to choose r things from n things

with replacement if order doesn’t matter is Cðr þ n� 1; rÞ.

Proof. As in Example 1.6.6, there is a one-to-one correspondence between selec-

tions and ½r þ ðn� 1Þ�-letter words consisting of r tally marks and n� 1 dashes.

The number of such words is Cðr þ n� 1; rÞ. &

1.6.8 Example. Let’s return to the door prizes of Example 1.6.4, but, this time,

suppose that winning tickets are returned to the bowl so they have a chance to be

drawn again. When the prizes are different, the r ¼ 3 winning tickets are chosen

from the n ¼ 100 tickets in the bowl with replacement where order matters, and

1003 ¼ 1 million different outcomes are possible. When the prizes are all the

same (choosing with replacement when order doesn’t matter), the number of differ-

ent outcomes is only Cð3þ 100� 1; 3Þ ¼ Cð102; 3Þ ¼ 171; 700. &

The four ways to choose are summarized in Fig. 1.6.1. Because Cðrþ
n� 1; rÞ ¼ Cðr þ n� 1; n� 1Þ 6¼ Cðr þ n� 1; nÞ, it is important to remember

that in the last column of the table each entry takes the form Cð	; rÞ, where r is

the number of things chosen, replacement or not. (Don’t expect this second variable

always to be labeled r.)

Choosing with replacement just means that elements may be chosen more than

once. If order doesn’t matter, then the only thing of interest is the multiplicity with

which each element is chosen. As we saw in Example 1.6.6, Cð14; 10Þ ¼ 1001

different outcomes are possible when choosing 10 times from A;B;C;D;Ef g
with replacement when order doesn’t matter. If, in one of these outcomes, A is cho-

sen a times, B a total of b times, and so on, then

aþ bþ cþ dþ e ¼ 10: ð1:14Þ

Evidently, each of the 1001 outcomes gives rise to a different nonnegative integer

solution to Equation (1.14), and every nonnegative integer solution of this equation

corresponds to a different outcome. In particular, Equation (1.14) must have

precisely 1001 nonnegative integer solutions! The obvious generalization is this.

1.6.9 Corollary. The equation x1 þ x2 þ � � � þ xn ¼ r has exactly Cðrþ
n� 1; rÞ nonnegative integer solutions.

Order
matters

Order
doesn’t matter

Without replacement P(n,r) C(n,r)

With replacement nr C (r + n − 1, r)

Figure 1.6.1. The four ways to choose.
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What about positive integer solutions? That’s easy! The number of positive inte-

ger solutions to Equation (1.14) is equal to the number of nonnegative integer solu-

tions to the equation

ða� 1Þ þ ðb� 1Þ þ ðc� 1Þ þ ðd � 1Þ þ ðe� 1Þ ¼ 10� 5;

namely, to Cð5þ 5� 1; 5Þ ¼ Cð9; 5Þ ¼ 126. [Of the 1001 nonnegative integer

solutions to Equation (1.14), at least one variable is zero in all but 126 of them.]

1.6.10 Definition. A composition* of n having m parts is a solution, in positive

integers, to the equation

n ¼ x1 þ x2 þ � � � þ xm: ð1:15Þ

Notice the change in notation. This is not deliberately meant to be confusing.

Notation varies with context, and we are now moving on to a new idea. It might

be useful to think of the integer variables n, r, k, m, etc., as a traveling company

of players whose roles depend upon the demands of the current drama production.

A composition expresses n as a sum of parts; 7 ¼ 5þ 2 is a two-part composi-

tion of 7, not to be confused with 7 ¼ 2þ 5. In the first case, x1 ¼ 5 and x2 ¼ 2; in

the second, x1 ¼ 2 and x2 ¼ 5. Never mind that addition is commutative. A com-

position is an ordered or labeled solution of Equation (1.15). The six two-part com-

positions of n ¼ 7 are 6þ 1, 5þ 2, 4þ 3, 3þ 4, 2þ 5, and 1þ 6, corresponding,

e.g., to the six ways to roll a 7 with two dice (one red and one green).

1.6.11 Theorem. The number of m-part compositions of n is Cðn� 1;m� 1Þ.

Proof. The number of positive integer solutions to Equation (1.15) is equal to the

number of nonnegative integer solutions to

ðx1 � 1Þ þ ðx2 � 1Þ þ � � � þ ðxm � 1Þ ¼ n� m:

By Corollary 1.6.9, this equation has Cð½n� m� þ m� 1; n� mÞ ¼ Cðn� 1;
n� mÞ ¼ Cðn� 1;m� 1Þ nonnegative integer solutions. &

1.6.12 Example. The Cð6� 1; 3� 1Þ ¼ Cð5; 2Þ ¼ 10 three-part compositions

of 6 are illustrated in Fig. 1.6.2. &

1.6.13 Corollary. The (total) number of compositions of n is 2n�1.

* The term was coined by Major Percy A. MacMahon (1854–1929). Decomposition might be a more

descriptive word.
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Proof. The number of compositions of n is the sum, as m goes from 1 to n, of the

number of m-part compositions of n. According to Theorem 1.6.11, that sum is

equal to

Cðn� 1; 0Þ þ Cðn� 1; 1Þ þ � � � þ Cðn� 1; n� 1Þ;

the sum of the numbers in row n� 1 of Pascal’s triangle. &

By Corollary 1.6.13, there are 25 ¼ 32 different compositions of 6. Ten of them

are tabulated in Fig. 1.6.2. You will be asked to list the remaining 22 compositions

in Exercise 11, but why not do it now, while the idea is still fresh?

1.6.14 Example. How many integer solutions of xþ yþ z ¼ 20 satisfy x � 1,

y � 2, and z � 3? Solution: xþ yþ z ¼ 20 if and only if ðx� 1Þ þ ðy� 2Þþ
ðz� 3Þ ¼ 14. Setting a ¼ x� 1, b ¼ y� 2, and c ¼ z� 3 transforms the problem

into one involving the number of nonnegative integer solutions of aþ bþ c ¼ 14.

By Corollary 1.6.9, the answer is Cð14þ 3� 1; 14Þ ¼ 120. &

1.6.15 Example. Some people are suspicious when consecutive integers occur

among winning lottery numbers. This reaction is probably due to the common mis-

conception that truly random numbers would be ‘‘spread out’’. Consider a simple

example. Of the Cð6; 3Þ ¼ 20 three-element subsets of 1; 2; 3; 4; 5; 6f g, how many

fail to contain at least one pair of consecutive integers? Here is the complete list:

1; 3; 5f g, 1; 3; 6f g, 1; 4; 6f g, and 2; 4; 6f g.
What about the general case? Of the Cðn; rÞ r-element subsets of

S ¼ 1; 2; . . . ; nf g, how many do not contain even a single pair of consecutive inte-

gers? Recall the correspondence between r-element subsets of S and n-letter

‘‘words’’ consisting of r Y ’s and n� r N’s. In any such word, w, there will be

some number, x0, of N ’s that come before the first Y , some number x1 of N ’s

x1 x2 x3

4 1

1 1

1 4

3 1

3 2

2 1

2 3

1 2

1 3

2

1

4

1

2

1

3

1

3

2

2 2

Figure 1.6.2
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between the first and second Y , some number x2 of N ’s between the second and

third Y , and so on, with some number xr or N’s coming after the last (rth) Y . Since

w must contain a total of n� r N ’s, it must be the case that

x0 þ x1 þ � � � þ xr ¼ n� r:

Every r-element subset of S corresponds to a unique solution of this equation, in

nonnegative integers, and every nonnegative integer solution of this equation cor-

responds to a unique r-element subset of S. (Confirm that Cð½n� r� þ ½r þ 1� � 1;
½n� r�Þ ¼ Cðn; rÞ.)

In this correspondence between subsets and words, a subset contains no conse-

cutive integers if and only if xi > 0, 1 � i � r � 1. If we substitute y0 ¼ x0, yr ¼ xr,

and yi ¼ xi � 1, 1 � i � r � 1, then, as in Example 1.6.14, the answer to our pro-

blem is equal to the number of nonnegative integer solutions of

y0 þ y1 þ � � � þ yr ¼ ðn� rÞ � ðr � 1Þ
¼ n� 2r þ 1;

i.e., to

Cð½n� 2r þ 1� þ ½r þ 1� � 1; ½n� 2r þ 1�Þ ¼ Cðn� r þ 1; n� 2r þ 1Þ
¼ Cðn� r þ 1; rÞ:

(Be careful, Cðn� r þ 1; rÞ 6¼ Cðr þ n� 1; rÞ.)
When n ¼ 6 and r ¼ 3, Cð6� 3þ 1; 3Þ ¼ Cð4; 3Þ ¼ 4, confirming the result of

the brute-force list in the first paragraph of this example. &

1.6. EXERCISES

1 Compute

(a) Pð5; 3Þ. (b) Cð5; 3Þ. (c) Cð5; 2Þ.
(d) Pð5; 2Þ. (e) Cð10; 4Þ. (f) Pð10; 4Þ.
(g) 7!.

2 Show that

(a) nPðn� 1; rÞ ¼ Pðn; r þ 1Þ.
(b) Pðnþ 1; rÞ ¼ rPðn; r � 1Þ þ Pðn; rÞ.

3 In how many ways can four elements be chosen from a seven-element set

(a) with replacement if order doesn’t matter?

(b) without replacement if order does matter?

(c) without replacement if order doesn’t matter?

(d) with replacement if order matters?
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4 In how many ways can seven elements be chosen from a four-element set

(a) with replacement if order matters?

(b) with replacement if order doesn’t matter?

(c) without replacement if order matters?

(d) without replacement if order doesn’t matter?

5 In how many ways can four elements be chosen from a ten-element set

(a) with replacement if order matters?

(b) with replacement if order doesn’t matter?

(c) without replacement if order doesn’t matter?

(d) without replacement if order matters?

6 In how many ways can seven elements be chosen from a ten-element set

(a) without replacement if order matters?

(b) with replacement if order doesn’t matter?

(c) without replacement if order doesn’t matter?

(d) with replacement if order matters?

7 Show that multinomial coefficient
�

n
n�r;1;1;���;1

�
¼ Pðn; rÞ.

8 Compute the number of nonnegative integer solutions to

(a) aþ b ¼ 9. (b) aþ bþ c ¼ 9.

(c) aþ bþ c ¼ 30. (d) aþ bþ cþ d ¼ 30.

9 How many integer solutions of aþ bþ cþ d ¼ 30 satisfy

(a) d � 3, c � 2, b � 1, a � 0?

(b) a � 3, b � 2, c � 1, d � 0?

(c) a � 7, b � 2, c � 5, d � 6?

(d) a � �3, b � 20, c � 0, d � �2?

10 Write down all 16 compositions of 5.

11 Ten of the 32 compositions of 6 appear in Fig. 1.6.2. Write down the

remaining 22 compositions of 6.

12 How many compositions of 8 have

(a) 4 parts? (b) 4 or fewer parts?

(c) 6 parts? (d) 6 or fewer parts?

13 Prove that the inequality xþ yþ z � 14 has a total of 680 nonnegative integer

solutions.
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14 Prove that the inequality x1 þ x2 þ � � � þ xm � n has a total of Cðnþ m;mÞ
nonnegative integer solutions.

15 Starting with F0 ¼ F1 ¼ 1, the Fibonacci numbers satisfy the recurrence

Fn ¼ Fn�1 þ Fn�2, n � 2. Prove that

(a) Fkþn ¼ FkFn þ Fk�1Fn�1, k, n � 1.

(b) F2kþ1 is a multiple of Fk, k � 1.

(c) F3kþ2 is a multiple of Fk, k � 1.

16 Let Fn, n � 0, be the nth Fibonacci number. (See Exercise 15.) Prove that

(a)
�

1 1
1 0

�nþ1 ¼
�

Fnþ1 Fn

Fn Fn�1

�
; n � 1.

(b) Fnþ1Fn�1 ¼ F2
n þ ð�1Þnþ1

.

(c) Fn and Fnþ1 are relatively prime.

17 Let n be a positive integer. Prove that there is a composition of n each of whose

parts is a different Fibonacci number. (See Exercise 15.)

18 Let rn be the number of compositions of n each of whose parts is greater

than 1.

(a) Show that r6 ¼ 5 by writing down the compositions of 6 each of whose

parts is at least 2.

(b) Show that r7 ¼ 8.

(c) If n � 2, prove that rn is a Fibonacci number. (Hint: Exercise 19,

Section 1.2.)

19 Let ln be the number of compositions of n each of whose parts is at most 2. If

n � 1, prove that ln ¼ Fn, the nth Fibonacci number.

20 The first ‘‘diagonal’’ of Pascal’s triangle consists entirely of 1’s. The second is

comprised of the numbers 1, 2, 3, 4, 5, . . . . The fourth is illustrated in boldface
in Fig. 1.6.3. Explain the relationship between the kth entry of the mth diagonal

and choosing, with replacement, from 1; 2; . . . ; kf g where order doesn’t

matter.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

. . .

Figure 1.6.3
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21 Suppose five different door prizes are distributed among three patrons, Betty,

Joan, and Marge. In how many different outcomes does

(a) Betty get three prizes while Joan and Marge each get one?

(b) Betty get one prize while Joan and Marge each get two?

22 Let A be the collection of all 32 compositions of 6. Let B be the 32-element

family consisting of all subsets of 1; 2; 3; 4; 5f g. Because oðAÞ ¼ oðBÞ, there is

a one-to-one correspondence between A and B.

(a) Prove that there are a total of 32! different one-to-one correspondences

between A and B.

(b) Of the more than 2:6� 1035 one-to-one correspondences between A and

B, can any be described by an algorithm, or recipe, that transforms

compositions into subsets?

23 What about choosing with limited replacement? Maybe the fundraising

patrons in Examples 1.6.4 and 1.6.8 should be limited to at most two prizes.

How many different outcomes are possible, under these terms of limited

replacement, if there are 100 patrons and

(a) three different prizes? (b) three equal prizes?

(c) four different prizes? (d) four equal prizes?

24 Revisiting the ‘‘birthday paradox’’ (Exercises 20–21, Section 1.3), suppose

each of k people independently chooses an integer between 1 and m

(inclusive). Let p be the probability that some two of them choose the same

number.

(a) Show that p ¼ 1� Pðm; kÞ=mk.

(b) M. Sayrafiezadeh showed that p _¼ 1� ½1� ðk=2mÞ�k�1
as long as k � m,

where ‘‘ _¼ ’’ means ‘‘about equal’’. Find the error in Sayrafiezadeh’s

estimate when k ¼ 23 and m ¼ 365.

25 Show that the number of compositions of n having k or fewer parts is

Nðn� 1; k � 1Þ ¼ Cðn� 1; 0Þ þ Cðn� 1; 1Þ þ � � � þ Cðn� 1; k � 1Þ (a num-

ber involved in the sphere-packing bound of Section 1.4).

26 There is evidence in tomb paintings that ancient Egyptians used astragali

(ankle bones of animals) to determine moves in simple board games. In later

Greek and Roman times it was common to gamble on the outcome of throwing

several astragali at once. When an astragalus is thrown, it can land in one of

four ways. Compute the number of different outcomes when five astragali are

thrown simultaneously.

27 Suppose you have four boxes, labeled A, B, C, and D. How many ways are

there to distribute

(a) ten identical marbles among the four boxes?

(b) the numbers 0–9 among the four boxes?
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28 Suppose, to win a share of the grand prize in the weekly lottery, you must

match five numbers chosen at random from 1 to 49.

(a) Of the Cð49; 5Þ ¼ 1; 906; 884 five-element subsets of 1; 2; . . . ; 49f g, how

many contain no consecutive integers? (Hint: Example 1.6.15.)

(b) Show that the probability of at least one pair of consecutive integers

occurring in the weekly drawing is greater than 1
3
.

29 Prove that the (total!) number of subsets of 1; 2; . . . ; nf g that contain no

two consecutive integers is Fnþ1, the ðnþ 1Þst Fibonacci number. (See

Exercises 15–19.)

1.7. THE BINOMIAL AND MULTINOMIAL THEOREMS

Two roads diverged in a wood, and I—

I took the one less traveled by,

And that has made all the difference.

— Robert Frost (The Road Not Taken)

Among the most widely known applications of binomial coefficients is the

following.

1.7.1 Binomial Theorem. If n is a nonnegative integer, then

ðxþ yÞn ¼
Xn

r¼0

Cðn; rÞxryn�r:

Three applications of distributivity produce the identity

ðxþ yÞ2 ¼ ðxþ yÞðxþ yÞ
¼ xðxþ yÞ þ yðxþ yÞ
¼ xxþ xyþ yxþ yy:

ð1:16Þ

The familiar next step would be to replace xx with x2, xyþ yx with 2xy, and so on,

but let’s freeze the action with Equation (1.16). As it stands, the right-hand side of

this identity looks as if it could be a sum of two-letter ‘‘words’’. There is an alter-

native way to think about this word sum.

Starting with the expression ðxþ yÞðxþ yÞ, choose a letter, x or y, from the first

set of parentheses, and one letter from the second set. Juxtapose the choices, in

order, so as to produce what looks like a two-letter word. Do this in all possible

ways, and sum the results. From this perspective, the right-hand side of

66 The Mathematics of Choice



Equation (1.16) is a kind of inventory* of the four ways to make a sequence of two

decisions. The term yx, e.g., records the sequence in which y is the choice for deci-

sion 1, namely, which letter to take from the first set of parentheses, and x is the

choice for decision 2.

Applied to the expression

ðxþ yÞ3 ¼ ðxþ yÞ2ðxþ yÞ
¼ ðxxþ xyþ yxþ yyÞðxþ yÞ;

this alternative view of distributivity suggests the following process: Select a two-

letter word from ðxxþ xyþ yxþ yyÞ and a letter from ðxþ yÞ. Juxtapose

these selections (in order), so as to produce a three-letter word. Do this in

all ð4� 2 ¼ 8Þ possible ways and sum, obtaining the following analog of

Equation (1.16):

xxxþ xyxþ yxxþ yyxþ xxyþ xyyþ yxyþ yyy: ð1:17Þ

A variation on this alternative view of distributivity would be to picture

ðxþ yÞ3 ¼ ðxþ yÞðxþ yÞðxþ yÞ in terms, not of two decisions, but of three.

Choose one of x or y from the first set of parentheses, one of x or y from the second

set, and one of x or y from the third. String the three letters together (in order) to

produce a three-letter word. Doing this in all ð2� 2� 2 ¼ 8Þ possible ways and

summing the results leads to Expression (1.17). However one arrives at that expres-

sion, replacing words like xyx with monomials like x2y, and then combining like

terms, produces the identity

ðxþ yÞ3 ¼ x3 þ 3x2yþ 3xy2 þ y3: ð1:18Þ

The two variations on our alternative view of distributivity afford two different

routes to a proof of the binomial theorem. One is inductive: Given the binomial

expansion of ðxþ yÞn�1
, the computation of ðxþ yÞn is viewed in terms of two

decisions, as in ðxþ yÞn ¼ ðxþ yÞn�1ðxþ yÞ, and the proof is completed using

Pascal’s relation. In the second route, the expansion of ðxþ yÞn is viewed in terms

of n decisions.

Proof of Theorem 1.7.1. Taking the route ‘‘less traveled by’’, we evaluate the

right-hand side of the equation

ðxþ yÞn ¼ ðxþ yÞðxþ yÞ � � � ðxþ yÞ

* Using distributivity to inventory the ways to make a sequence of decisions is an idea of fundamental

importance in Pólya’s enumeration theory (Chapter 3) and the theory of generating functions (Chapter 4).
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in a series of steps. Begin by choosing one of x or y from the first set of parentheses,

one from the second set, and so on, finally choosing one of x or y from the nth set.

String the n choices together in order. Do this in all possible ways and sum the cor-

responding n-letter words. The resulting analog of expressions (1.16)–(1.17) is both

an inventory of the 2n ways to make a sequence of decisions and a vocabulary of all

possible n-letter words that can be produced using the alphabet x; yf g. From this

sum of words, the analog of Equation (1.18) is reached in two steps. Viewing x

and y not as letters in an alphabet but as commuting variables, replace each n-letter

word with a monomial of the form xryn�r. Then combine like terms. In the resulting

two-variable polynomial, the coefficient of xryn�r is the number of n-letter words in

which r of the letters are x’s and n� r or them are y’s. That number is known to us

as Cðn; rÞ. &

Substituting x ¼ y ¼ 1 in the binomial theorem results in a new proof that

2n ¼
Xn

r¼0

Cðn; rÞ:

Setting x ¼ �1 and y ¼ 1 leads to another proof of Lemma 1.5.8, i.e.,

Xn

r¼0

ð�1ÞrCðn; rÞ ¼ 0

for all n � 1. New results can be derived by making other substitutions, e.g., x ¼ 2

and y ¼ 1 yields an identity expressing 3n in terms of powers of 2, namely,

3n ¼
Xn

r¼0

Cðn; rÞ2r: ð1:19Þ

What happens if there are three variables? This is where the road less traveled by

makes all the difference. Just as ðxþ yÞðxþ yÞ � � � ðxþ yÞ inventories the ways to

make a sequence of n decisions each having two choices, ðxþ yþ zÞ�
ðxþ yþ zÞ � � � ðxþ yþ zÞ inventories the ways to make a comparable sequence

of decisions each having three choices. From this perspective, the process of

expanding ðx1 þ x2 þ � � � þ xkÞn is the same whether k ¼ 2 or k ¼ 100.

Choose one of x1; x2; . . . ; xk from each of n sets of brackets. String the

choices together, in order, obtaining an n-letter word. Do this in all kn possible

ways and sum. The resulting inventory is then simplified in two steps. First,

each word is replaced with a monomial of (total) degree n, and then like terms

are combined. At the end of this process, the coefficient of xr1

1 xr2

2 � � � x
rk

k , is the num-

ber of n-letter words that can be produced using r1 copies of x1, r2 copies of x2; . . . ;
and rk copies of xk. This proves the following generalization of the binomial

theorem.
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1.7.2 Multinomial Theorem. If n is a nonnegative integer, then

ðx1 þ x2 þ � � � þ xkÞn ¼
X n

r1; r2; . . . ; rk

� �
xr1

1 xr2

2 � � � x
rk

k ; ð1:20Þ

where the sum is over all nonnegative integer solutions to the equation r1þ
r2 þ � � � þ rk ¼ n, and

n

r1; r2; . . . ; rk

� �
¼ n!

r1!r2! � � � rk!
:

Because some of the r’s in Equation (1.20) may be zero, the sum is not over the

k-part compositions of n. (Since 0! ¼ 1, the definition of multinomial coefficient is

easily modified so as to permit zeros among its entries.)

1.7.3 Example. It isn’t necessary to compute all 510 ¼ 9; 765; 625 products in

the expansion of ðaþ bþ cþ d þ eÞ10
just to determine the coefficient of a4d6!

From the multinomial theorem,

10

4; 0; 0; 6; 0

� �
¼ 10!

4!0!0!6!0!
¼ 10!

4!6!
¼ 210:

Observe that 210 ¼ Cð10; 4Þ is also the coefficient of a4d6 in ðaþ dÞ10
, just as it

should be. Setting b ¼ c ¼ e ¼ 0 in ðaþ bþ cþ d þ eÞ10
has no effect on the

coefficient of a4d6. Also, observe that
�

10
4;0;0;6;0

�
¼
�

10
0;0;6;0;4Þ. The coefficient of

c6e4 is also 210, reflecting the symmetry of ðaþ bþ cþ d þ eÞ10
. We will return

to this point momentarily. &

The usefulness of the multinomial theorem is not limited to picking off single

coefficients. The expansion of all 34 ¼ 81 terms of ðxþ yþ zÞ4, e.g., looks like

this:

4

1; 2; 1

� �
¼ 12

4

1; 0; 3

� �
¼ 4

x4 þ � � � þ ���
#

xy2zþ � � � þ ���
#

xz3 þ � � � þ z4:

1.7.4 Example. What is the coefficient of xy in the expansion of ð1þ xþ yÞ5?

Solution: Because xy ¼ 13xy, the multinomial theorem can be applied directly.

The answer is
�

5
3;1;1

�
¼ 20. Computing the coefficient of xy in ð2þ xþ yÞ5 requires

two steps. From the multinomial theorem, the coefficient of 23xy is
�

5
3;1;1Þ ¼ 20. So,

the xy-term in the expansion of ð2þ xþ yÞ5 is 20� 23 � xy, and the coefficient

we’re looking for is 20� 8 ¼ 160.
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What about the coefficient of x3y5z2 in ð2x� 3yþ 4zÞ10
? Since the coefficient of

ð2xÞ3ð�3yÞ5ð4zÞ2 is
�

10
3;5;2

�
¼ 2520, the coefficient of x3y5z2 must be 2520�

23 � ð�3Þ5 � 42 ¼ �78; 382; 080. &

As with the binomial theorem, numerous identities can be obtained by making

various substitutions for the variables in the multinomial theorem. Setting x ¼ y ¼
z ¼ 1 in ðxþ yþ zÞn, e.g., yields

3n ¼
X

rþsþt¼n

n

r; s; t

� �
: ð1:21Þ

Together with Equation (1.19), this produces the curious identity

Xn

r¼0

Cðn; rÞ2r ¼
X

rþsþt¼n

n

r; s; t

� �
:

The multinomial theorem tells us that xr1

1 xr2

2 � � � x
rk

k occurs among the kn products

in the expansion of ðx1 þ x2 þ � � � þ xkÞn with multiplicity
�

n
r1;r2;...;rk

�
, but it does

not tell us how many different monomial terms of the form
�

n
r1;r2;...;rk

�
xr1

1 xr2

2 � � � x
rk

k

occur in the expansion.

1.7.5 Theorem. The number of different monomials of degree n in the k vari-

ables x1; x2; . . . ; xk is Cðnþ k � 1; nÞ.

Proof. From Corollary 1.6.9, the equation r1 þ r2 þ � � � þ rk ¼ n has exactly

Cðnþ k � 1; nÞ nonnegative integer solutions. &

It makes perfect sense, of course, that the multinomial expansion of

ðx1 þ x2 þ � � � þ xkÞn should consist of Cðnþ k � 1; nÞ different monomial terms!

In the first stage of computing

ðx1 þ x2 þ � � � þ xkÞðx1 þ x2 þ � � � þ xkÞ � � � ðx1 þ x2 þ � � � þ xkÞ;

each n-letter word identifies one of the kn different ways to choose n times from

x1; x2; . . . ; xkf g with replacement where order matters. After simplifying, each

term in the resulting sum represents one of the Cðnþ k � 1; nÞ different ways

to choose n times from x1; x2; . . . ; xkf g with replacement where order doesn’t

matter.
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The multinomial expansion of ðxþ yþ zÞ4 is a homogeneous polynomial*

comprised of Cð4þ 3� 1; 4Þ ¼ 15 monomial terms, one of which is

4

1; 2; 1

� �
xy2z ¼ 12xy2z:

Because ðxþ yþ zÞ4 is symmetric{, its multinomial expansion must be symmetric

as well. Because switching x and y would interchange, e.g., xy2z and x2yz, these two

monomials must have the same coefficient in the expansion of ðxþ yþ zÞ4. Indeed,�
4

1;2;1

�
¼
�

4
2;1;1

�
; the value of a multinomial coefficient does not change when two

numbers in its bottom row are switched! Form either perspective, it is clear that

12x2yzþ 12xy2zþ 12xyz2 ¼ 12ðx2yzþ xy2zþ xyz2Þ

is a summand in the expansion of ðxþ yþ zÞ4, and it is natural to group these terms

together. Organizing the remaining 12 terms in a similar fashion yields

ðxþ yþ zÞ4 ¼ ðx4 þ y4 þ z4Þ þ 4ðx3yþ x3zþ xy3 þ xz3 þ y3zþ yz3Þ
þ 6ðx2y2 þ x2z2 þ y2z2Þ þ 12ðx2yzþ xy2zþ xyz2Þ: ð1:22Þ

The minimal symmetric polynomialsz on the right-hand side of this equation

have the symbolic names

M½4�ðx; y; zÞ ¼ x4 þ y4 þ z4;

M½3;1�ðx; y; zÞ ¼ x3yþ x3zþ xy3 þ xz3 þ y3zþ yz3;

M½2;2�ðx; y; zÞ ¼ x2y2 þ x2z2 þ y2z2;

M½2;1;1�ðx; y; zÞ ¼ x2yzþ xy2zþ xyz2:

Using this terminology, Equation (1.22) can be expressed as

ðxþ yþ zÞ4 ¼ M½4�ðx; y; zÞ þ
4

3; 1

� �
M½3;1�ðx; y; zÞ þ

4

2; 2

� �
M½2;2�ðx; y; zÞ

þ
4

2; 1; 1

� �
M½2;1;1�ðx; y; zÞ: ð1:23Þ

*Each term has the same (total) degree, in this case four.
{Switching (any) two variables does not change the polynomial.
z ‘‘Minimal symmetric polynomial’’ is a descriptive name. these polynomials are known to experts as

monomial symmetric functions.
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1.7.6 Example. If 37y3z is among the monomial terms of a symmetric polyno-

mial pðx; y; zÞ, then

37ðx3yþ x3zþ xy3 þ xz3 þ y3zþ yz3Þ ¼ 37M½3;1�ðx; y; zÞ

must be a summand of pðx; y; zÞ. &

There is nothing quite like a mountain of superscripts and subscripts to dull

one’s enthusiasm. So, there must be very good reasons for tolerating them in an

introductory text. With a little getting used to, Equation (1.23) offers the best

way to get a handle on the multinomial theorem, and a whole lot more! Let’s see

some more examples.

1.7.7 Example. By the multinomial theorem,

ðxþ yþ zÞ5 ¼
X 5

a; b; c

� �
xaybzc; ð1:24Þ

where the sum is over the nonnegative integer solutions to aþ bþ c ¼ 5. The ana-

log of Equation (1.23) is

ðxþ yþ zÞ5 ¼ M½5�ðx; y; zÞ þ
5

4; 1

� �
M½4;1�ðx; y; zÞ þ

5

3; 2

� �
M½3;2�ðx; y; zÞ

þ
5

3; 1; 1

� �
M½3;1;1�ðx; y; zÞ þ

5

2; 2; 1

� �
M½2;2;1�ðx; y; zÞ; ð1:25Þ

where the Cð5þ 3� 1; 5Þ ¼ 21 monomials of degree 5 have been organized into

the minimal symmetric polynomials*

M½5�ðx; y; zÞ ¼ x5 þ y5 þ z5;

M½4;1�ðx; y; zÞ ¼ x4yþ x4zþ xy4 þ xz4 þ y4zþ yz4;

M½3;2�ðx; y; zÞ ¼ x3y2 þ x3z2 þ x2y3 þ x2z3 þ y3z2 þ y2z3;

M½3;1;1�ðx; y; zÞ ¼ x3yzþ xy3zþ xyz3;

M½2;2;1�ðx; y; zÞ ¼ x2y2zþ x2yz2 þ xy2z2: &

1.7.8 Example. The fifth power of a three-term sum was expanded in

Example 1.7.7. Applying the multinomial theorem to the third power of a five-

term sum produces

ðaþ bþ cþ d þ eÞ3 ¼ M½3�ða; b; c; d; eÞ þ 3M½2;1�ða; b; c; d; eÞ
þ 6M½1;1;1�ða; b; c; d; eÞ; ð1:26Þ

*It is just a coincidence that the 4th and 5th powers of xþ yþ z involve four and five minimal symmetric

polynomials, respectively. The 6th power involves seven.
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where

M½3�ða; b; c; d; eÞ ¼ a3 þ b3 þ c3 þ d3 þ e3;

M½2;1�ða; b; c; d; eÞ ¼ ða2bþ a2cþ a2d þ a2eÞ
þ ðab2 þ b2cþ b2d þ b2eÞ þ � � � þ ðae2 þ be2 þ ce2 þ de2Þ;

ð1:27Þ

and

M½1;1;1�ða; b; c; d; eÞ ¼ abcþ abd þ abeþ acd þ aceþ ade

þ bcd þ bceþ bdeþ cde: ð1:28Þ

&

1.7. EXERCISES

1 What is the coefficient of x5 in the binomial expansion of

(a) ðxþ yÞ5? (b) ð1þ xÞ7? (c) ð1þ xÞ9?

(d) ð2þ xÞ7? (e) ð1þ 2xÞ7? (f) ð1� xÞ9?

(g) ð2� xÞ4? (h) ð2xþ yÞ4? (i) ð2x� 3yÞ8?

2 What is the coefficient of x2y3 in the multinomial expansion of

(a) ðxþ yÞ5? (b) ð1þ xþ yÞ5?

(c) ð1þ xþ yÞ8? (d) ð2x� yÞ5?

(e) ð2þ xþ yÞ5? (f) ð3þ 2x� yÞ8?

(g) ðx� yþ zÞ5? (h) ð�3þ x� 2yþ zÞ8?

(i) ð1� 2xþ 3y� 4zÞ7? ( j) ð1� 2xþ 3y� 4zÞ4?

3 Confirm Equation (1.21) in the case

(a) n ¼ 4 by setting x ¼ y ¼ z ¼ 1 in Equation (1.22).

(b) n ¼ 5 by setting x ¼ y ¼ z ¼ 1 in Equation (1.25).

4 Prove that kn ¼
P�

n
r1;r2;...;rk

�
, where the sum is over all nonnegative integer

sequences ðr1; r2; . . . ; rkÞ that sum to n.

5 Consider the multinomial expansion of ðaþ bþ cþ d þ eÞ3 from Example 1.7.8.

(a) Explain why 3 and 6 are the correct coefficients of M½2;1�ða; b; c; d; eÞ and

M½1;1;1�ða; b; c; d; eÞ, respectively.
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(b) Explain why M½2;1�ða; b; c; d; eÞ is a sum, not of Cð5; 2Þ ¼ 10 monomials,

but of Pð5; 2Þ ¼ 20.

(c) Explain why M½1;1;1�ða; b; c; d; eÞ is a sum, not of Pð5; 3Þ ¼ 60 monomials,

but of Cð5; 3Þ ¼ 10.

(d) Explain why the equation 5þ Pð5; 2Þ þ Cð5; 3Þ ¼ Cð7; 3Þ is a confirming

instance of Theorem 1.7.5.

(e) Without doing any arithmetic, explain why 5þ 3Pð5; 2Þ þ 6Cð5; 3Þ ¼ 53.

6 Prove the following special case of Exercise 10(c), Section 1.2, by differ-

entiating ð1þ xÞn and setting x ¼ 1:

n

1

� �
þ 2

n

2

� �
þ 3

n

3

� �
þ � � � þ r

n

r

� �
þ � � � þ n

n

n

� �
¼ n2n�1:

7 Of the 66 terms in the multinomial expansion of ðxþ yþ zÞ10
, how many

involve

(a) just one variable?

(b) exactly two variables?

(c) all three variables?

8 Show how Vandermonde’s identity,

Cðm; 0ÞCðn; rÞ þ Cðm; 1ÞCðn; r � 1Þ þ � � � þ Cðm; rÞCðn; 0Þ ¼ Cðmþ n; rÞ;
follows from the equation ðxþ 1Þmðxþ 1Þn ¼ ðxþ 1Þmþn:

9 Let n be a fixed but arbitrary positive integer. Multiply each multinomial

coefficient of the form
�

n
a;b;c;d

�
by ð�1Þbþd

and add the results. Prove that the

sum is zero.

10 Compute the coefficient of

(a) x8 in ðx2 þ 1Þ7.

(b) x8 in ðx2 þ xÞ7.

(c) x8 in ðx2 þ xþ 1Þ7.

(d) x5 in ð1þ xþ x2Þ7.

(e) x2y2 in ð3þ xyþ xzþ yzÞ4.

(f) x2y2z2 in ð3þ xyþ xzþ yzÞ4.

11 Let n be a positive integer and p a positive prime.

(a) Suppose 0 � ri < p, 1 � i � n. Prove that
�

p
r1;r2;...;rn

�
is a multiple of p.

(b) Prove Fermat’s ‘‘little theorem’’*, i.e., that np � n is an integer multiple of p.

*After Pierre de Fermat (1601–1665).
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12 Give the (two-decision) inductive proof of the binomial theorem.

13 Write out all the terms of the minimal symmetric polynomial

(a) M½6;4�ðx; y; zÞ (b) M½5;5�ðx; y; zÞ

14 Denote the coefficient of xr in ð1þ xþ x2 þ � � � þ xk�1Þn by Ckðn; rÞ.
(a) Show that C2ðn; rÞ ¼ Cðn; rÞ.
(b) Compute C3ð3; 3Þ.
(c) If n > 1, show that Ckðn; rÞ ¼

Pk�1
i¼0 Ckðn� 1; r � iÞ.

15 The multinomial expansion of ðxþ yþ zÞ4 can be expressed as a linear

combination of four minimal symmetric polynomials and the expansion of

ðxþ yþ zÞ5 as a linear combination of five. How many minimal symmetric

polynomials are involved in the multinomial expansion of ðxþ yþ zÞ10
? (Two

of them appear in Exercise 13.)

16 It follows from Theorem 1.6.11 that the number of compositions of n having k

or fewer parts is Nðn� 1; k � 1Þ ¼ Cðn� 1; 0Þ þ Cðn� 1; 1Þ þ � � � þ
Cðn� 1; k � 1Þ. By Theorem 1.7.5, there are Cð½n� 1� þ k; k � 1Þ different

monomials in the multinomial expansion of ðx1 þ x2 þ � � � þ xkÞn. It does not

seem to follow, however, that Nðn� 1; k � 1Þ ¼ Cð½n� 1� þ k; k � 1Þ. With

n ¼ 6 and k ¼ 3, Nð5; 2Þ ¼ 16 while Cð½6� 1� þ 3; 3� 1Þ ¼ Cð8; 2Þ ¼ 28.

Write out enough terms in the expansion of ðxþ yþ zÞ6 to explain where the

numbers 16 and 28 come from.

17 Use Theorem 1.5.1 and the binomial theorem to give another proof of the

multinomial theorem.

18 Exercise 14, Section 1.1, asks for an explicit listing of the 24 (exact) positive

integer divisors of 360 ¼ 23325. Without doing any arithmetic, explain why the

sum of these 24 divisors is given by the product ð1þ 2þ 22 þ 23Þ�
ð1þ 3þ 32Þð1þ 5Þ.

19 Suppose the prime factorization of n ¼ pr1

1 pr2

2 � � � p
rk

k . Prove that the sum of the

divisors of n is the product

Yk

t¼1

Xrt

s¼0

ps
t

 !
:

20 Explain how the binomial theorem can be used to prove that
Pn

r¼0 PðrÞ ¼ 1,

where PðrÞ ¼ Cðn; rÞprqn�r is the binomial probability distribution of Section

1.3, Equation (1.5).

21 For a fixed but arbitrary integer n � 2, define gðrÞ ¼ M½r�ð1; 2; . . . ; n� 1Þ ¼
1r þ 2r þ � � � þ ðn� 1Þr.
(a) Prove that

Pk
r¼0 Cðk þ 1; rÞgðrÞ ¼ nkþ1 � 1.
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(b) Given gð0Þ; gð1Þ; . . . ; gðrÞ, the equation in part (a) can be used to solve for

gðr þ 1Þ. Starting from gð0Þ ¼ n� 1, use this method to compute gð1Þ,
gð2Þ, gð3Þ, and gð4Þ.

(c) Compare and contrast with the approach suggested by Section 1.5,

Exercise 11.

(d) Explain the connection with Bernoulli numbers (Section 1.5, Exer-

cises 20–22).

22 Show that
P25

r¼0 Cð50; rÞCð50� r; 25� rÞ ¼ 225Cð50; 25Þ.

23 Compute

(a)
P50

r¼25 Cð50; rÞCðr; 25Þ.
(b)

P25
r¼0 ð�1ÞrCð50; rÞCð50� r; 25Þ.

24 Prove that the alternative view of distributivity used to prove the binomial and

multinomial theorems is valid, i.e., suppose S1; S2; . . . ; Sn are sums of

algebraic terms. Prove that S1 � S2 � � � � � Sn is the sum of all products that

can be obtained by choosing one term from each sum, multiplying the choices

together, doing this in all oðS1Þ � oðS2Þ � � � � � oðSnÞ possible ways, and

adding the resulting products. (Hint: Induction on n.)

1.8. PARTITIONS

Something there is that doesn’t love a wall.

— Robert Frost (Mending Wall)

In the last section, we grouped the Cðnþ k � 1; nÞ different monomials from the

multinomial expansion of ðx1 þ x2 þ � � � þ xkÞn into certain minimal symmetric

polynomials with symbolic names like M½4;1� and M½2;2;1�.

1.8.1 Definition. A partition of n having m parts is an unordered collection of m

positive integers that sum to n.

1.8.2 Example. The number 6 is said to be perfect* because it is the sum of its

proper divisors: 6 ¼ 1þ 2þ 3. Since addition is commutative, this sum could just

as well have been written 2þ 3þ 1. In this context, 1þ 2þ 3 is the same as

*A Christian theologian once argued that God, who could have created the universe in an instant, chose

instead to labor for 6 days in order to emphasize the perfection of His creation. (It is just an accident that

this book has 6 chapters.)
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2þ 3þ 1 but different from 4þ 2. In expressing the prefection of 6, what interests

us is the unordered collection of its proper divisors, the partition whose parts are 3,

2, and 1. &

Two partitions of n are equal if and only if they have the same parts with the

same multiplicities. By way of contrast, a composition of n (Definition 1.6.10) is

an ordered collection of positive integers that sum to n. Compositions are some-

times called ordered partitions. Two compositions are equal if and only if they

have the same parts with the same multiplicities, in the same order.

Our discussion of partitions will be simplified by the adoption of some notation.

1.8.3 Definition. An m-part partition of n is represented by a sequence

p ¼ ½p1; p2; . . . ; pm� in which the parts are arranged so that p1 � p2 � � � � �
pm > 0. The number of parts is the length of p, denoted ‘ðpÞ ¼ m. The shorthand

expression p ‘ n signifies that ‘‘p is a partition of n’’.

In ordinary English usage, arranging the parts of a partition from largest to smal-

lest would typically be called ‘‘orderning’’ the parts. This semantic difficulty is the

source of more than a little confusion. It is precisely because a partition is unor-

dered that we are free to arrange its parts any way we like. The 5 cards comprising

a poker hand can be arranged in any one of 5! ¼ 120 different ways. But, no matter

how the cards are arranged or rearranged, the poker hand is the same. So it is with

partitions. A composition, on the other hand, is some specified arrangement of the

parts of a partition. By convention (Definition 1.8.3), we uniformly choose one such

composition to represent each partition.

1.8.4 Example. The three-part partitions of 6 are [4, 1, 1], [3, 2, 1], and [2, 2, 2].

There are 3 ways to arrange the parts of [4, 1, 1], 6 ways to arrange the parts of [3,

2, 1], but only one way to arrange the parts of [2, 2, 2]. Taken together, these

10 arrangements comprise the compositions of 6 having 3 parts (as illustrated in

Fig. 1.6.2). &

Already it seems convenient to introduce some additional shorthand notation.

Rather than [4, 1, 1] and [2, 2, 2], we will write ½4; 12� and ½23�, respectively. Simi-

larly, the partition [5, 5, 3, 3, 3, 3, 2, 2, 2, 1] is abbreviated ½52; 34; 23; 1�. In this

notation superscripts denote, not exponents, but multiplicities. In the 10-part

partition ½52; 34; 23; 1�, the piece 34 contributes, not 3� 3� 3� 3 ¼ 81, but

3þ 3þ 3þ 3 ¼ 12 to the sum

5þ 5þ 3þ 3þ 3þ 3þ 2þ 2þ 2þ 1 ¼ 29:

The m-part compositions of n were counted in Theorem 1.6.11. (They number

Cðn� 1;m� 1Þ.) Counting the m-part partitions of n is not so easy. Let’s begin by

giving this number a name.
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1.8.5 Definition. The number of m-part partitions of n is denoted pmðnÞ.

1.8.6 Example. From Example 1.8.4, p3ð6Þ ¼ 3. The seven partitions of 5 are

½5�, ½4; 1�, ½3; 2�, ½3; 12� ¼ ½3; 1; 1�, ½22; 1� ¼ ½2; 2; 1�, ½2; 13� ¼ ½2; 1; 1; 1�, and

½15� ¼ ½1; 1; 1; 1; 1�, having lengths 1, 2, 2, 3, 3, 4, and 5, respectively. Hence,

p1ð5Þ ¼ 1, p2ð5Þ ¼ 2, p3ð5Þ ¼ 2, p4ð5Þ ¼ 1, and p5ð5Þ ¼ 1. &

Because ½n� is the only partition of n having just one part and, at the other

extreme, ½1n� is the only partition of n having n parts, p1ðnÞ ¼ 1 ¼ pnðnÞ for all

n. If n � 2, then ½2; 1n�2� is the only partition of n having length n� 1, so

pn�1ðnÞ ¼ 1 as well.

The numbers pmðnÞ are displayed in the Pascal-like partition triangle of

Fig. 1.8.1, where it is understood that pmðnÞ ¼ 0 when m > n. What is needed is

a Pascal-like relation that would allow the entries of this triangle to be filled in a

row at a time.

1.8.7 Theorem. The number of m-part partitions of n is pmðnÞ ¼ pm�1ðn� 1Þþ
pmðn� mÞ, 1 < m < n.

Proof. If p is an m-part partition of n, then pm ¼ 1 or it doesn’t. There are

pm�1ðn� 1Þ partitions of the first kind. Because p$ ½p1 � 1; p2 � 1; . . . ; pm � 1�
is a one-to-one correspondence between the m-part partitions of n satisfying pm > 1

and the m-part partitions of n� m, there must be pmðn� mÞ partitions of the second

kind. &

From Theorem 1.8.7, p2ð4Þ ¼ p1ð3Þ þ p2ð4� 2Þ ¼ p1ð3Þ þ p2ð2Þ ¼ 1þ 1 ¼ 2.

(The two-part partitions of 4 are [3, 1] and ½22�.) Similarly, p2ð6Þ ¼ p1ð6Þþ
p2ð4Þ ¼ 1þ 2 ¼ 3, and p4ð6Þ ¼ p3ð5Þ þ p4ð2Þ ¼ 2þ 0 ¼ 2. This completes

Fig. 1.8.1 through row 6. Rows 7–10 are completed in Fig. 1.8.2.

1.8.8 Definition. Denote the number of partitions of n by pðnÞ ¼ p1ðnÞþ
p2ðnÞ þ � � � þ pnðnÞ.

n
m 1 2 3 4 5 6 7

1 1

1

1

1

1

1

1

2 1

3 1 1

4 p2(4)

p2(6)

p2(7) p3(7) p4(7) p5(7)

p4(6)

1 1

5 2 2 1 1

6 3 1 1

7 1 1

. . .

Figure 1.8.1. The partition triangle.
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Just as the nth row sum of Pascal’s triangle is 2n, the total number of subsets of

an n-element set, the nth row sum of the partition triangle is pðnÞ, the total number

of partitions of n. Summing, rows 9 and 10 of Fig. 1.8.2, e.g., yields the partition

numbers pð9Þ ¼ 30 and pð10Þ ¼ 42.*

If p is an m-part partition of n, its Ferrers diagram;y FðpÞ, consists of n

‘‘boxes’’ arrayed in m left-justified rows, where the number of boxes in row i is

pi. The diagrams for ½5; 32; 1� and ½4; 32; 12�, e.g., appear in Fig. 1.8.3.

1.8.9 Definition. The conjugate of p ‘ n is the partition p	 ‘ n whose jth part is

the number of boxes in the jth column of FðpÞ.

Because the number of boxes in row j of Fðp	Þ is equal to the number of boxes

in column j of FðpÞ for all j, the two diagrams are transposes of each other. In

m 1 2 3 4 5 6 7 8 9 10

n
1
2
3
4
5
6
7
8
9

10

1
1
1
1
1
1
1
1
1
1

1
1 1
2 1 1
2 2 1 1
3 3 2 1 1
3 4 3 2 1 1
4 5 5 3 2 1

14 7 6 5 3 2
5 8 9 7 5 3

1
1
2 11

. . .

Figure 1.8.2. The partition numbers pmðnÞ.

F ([5, 32, 1]) F ([4, 32, 12])
Figure 1.8.3. Two Ferrers diagrams.

*The partition numbers grow rapidly with n. MacMahon showed, e.g., that pð200Þ ¼ 3; 972;

999; 029; 388.
{Named for Norman Macleod Ferrers (1829–1903) but possibly used earlier by J. J. Sylvester

(1814–1897).
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particular, partition a ¼ p	 if and only if a	 ¼ p. This situation is illustrated in Fig.

1.8.3 for the conjugate pair ½5; 32; 1� and ½4; 32; 12�.
The number of boxes in the jth column of FðpÞ is equal to the number of rows of

FðpÞ that contain at least j boxes, i.e., p	j is equal to the number of parts of p that are

not less than j. Said another way, the jth part of p	 is

p	j ¼ oðfi : pi � jgÞ: ð1:29Þ

1.8.10 Theorem. The number of m-part partitions of n is equal to the number of

partitions of n whose largest part is m.

Proof. If p is an m-part partition of n, then m is the number of boxes in the first

column of FðpÞ, i.e., m ¼ p	1, the largest part of p	. Hence, in the one-to-one cor-

respondence between partitions and their conjugates, the set of m-part partitions

corresponds to the set of partitions whose largest part is m. &

1.8.11 Definition. Partition p is self-conjugate if p	 ¼ p.

1.8.12 Example. Because p ¼ p	 if and only if FðpÞ ¼ Fðp	Þ ¼ FðpÞt, the

transpose of FðpÞ, p is self-conjugate if and only if its Ferrers diagram is symmetric

about the ‘‘main diagonal’’. Thus, merely by glancing at Fig. 1.8.4, one sees that

½5; 4; 3; 2; 1� and ½5; 14� are self-conjugate partitions. On the other hand, without a

Ferrers diagram to look at, it is much less obvious that ½52; 4; 3; 2� is self-conjugate.
&

Knowing something about partitions, we can now give a formal definition of

‘‘minimal symmetric polynomial’’.

1.8.13 Definition. Let k and n be positive integers. Suppose p is an m-part parti-

tion of n. If k � m, the minimal symmetric polynomial

Mpðx1; x2; . . . ; xkÞ ¼
X

xr1

1 xr2

2 � � � x
rk

k ;

F ([5, 4, 3, 2, 1]) F ([5, 14])

Figure 1.8.4. Two self-conjugate partitions.
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where the sum is over all different rearrangements ðr1; r2; . . . ; rkÞ of the k-tuple

ðp1; p2; . . . ; pm; 0; . . . ; 0Þ that is obtained by appending k � m zeros to the end of

p. If k < m, then Mpðx1; x2; . . . ; xkÞ ¼ 0.

If, e.g., p ¼ ½p1; p2� ¼ ½2; 2� and k ¼ 3, the different rearrangements of

ðp1; p2; 0Þ are (2, 2, 0), (2, 0, 2), and (0, 2, 2), and not the six different-looking

ways to rearrange the symbols p1, p2, and 0. In particular,

M½2;2�ðx; y; zÞ ¼ x2y2 þ x2z2 þ y2z2:

If p ‘ n and m ¼ ‘ðpÞ � k, then each monomial xr1

1 xr2

2 � � � x
rk

k in Definition 1.8.13

has (total) degree r1 þ r2 þ � � � þ rk ¼ p1 þ p2 þ � � � þ pm ¼ n, i.e., Mpðx1; x2;
. . . ; xkÞ is homogeneous of degree n.

1.8.14 Example. From Fig. 1.8.2, there are p1ð6Þ þ p2ð6Þ þ p3ð6Þ ¼ 1þ 3þ
3 ¼ 7 different partitions of 6 having at most three parts. Hence, there are 7 differ-

ent minimal symmetric polynomials of degree 6 in the variables x, y, and z, namely,

M½6�ðx; y; zÞ ¼ x6 þ y6 þ z6;

M½5;1�ðx; y; zÞ ¼ x5yþ x5zþ xy5 þ xz5 þ y5zþ yz5;

M½4;2�ðx; y; zÞ ¼ x4y2 þ x4z2 þ x2y4 þ x2z4 þ y4z2 þ y2z4;

M½32�ðx; y; zÞ ¼ x3y3 þ x3z3 þ y3z3;

M½4;12�ðx; y; zÞ ¼ x4yzþ xy4zþ xyz4;

M½3;2;1�ðx; y; zÞ ¼ x3y2zþ x3yz2 þ x2y3zþ x2yz3 þ xy3z2 þ xy2z3;

and

M½23�ðx; y; zÞ ¼ x2y2z2: &

Minimal symmetric polynomials are to symmetric polynomials what atoms are

to molecules. they are the basic building blocks.

1.8.15 Theorem. The polynomial f ¼ f ðx1; x2; . . . ; xkÞ is symmetric in x1; x2;
. . . ; xk if and only if it is a linear combination of minimal symmetric polynomials.

Proof. Because minimal symmetric polynomials are symmetric, any linear

combination of minimal symmetric polynomials in x1; x2; . . . ; xk is symmetric.

Conversely, suppose cxs1

1 xs2

2 � � � x
sk

k is among the nonzero terms of f ðx1; x2; . . . ; xkÞ.
Then ðs1; s2; . . . ; skÞ is a rearrangement of ða1; a2; . . . ; am; 0; . . . ; 0Þ for some

partition a. Because f is symmetric, cxr1

1 xr2

2 � � � x
rk

k must occur among its terms

for every rearrangement ðr1; r2; . . . ; rkÞ of ða1; a2; . . . ; am; 0; . . . ; 0Þ, i.e.,
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cMaðx1; x2; . . . ; xkÞ is a summand of f . Therefore, f ðx1; x2; . . . ; xkÞ � cMaðx1;
x2; . . . ; xkÞ is a symmetric polynomial with fewer terms than f , and the result

follows by induction. &

1.8.16 Example. Let

f ða; b; c; dÞ ¼ 2a3 � a2b� a2c� a2d � ab2 þ abcþ abd � ac2 þ acd � ad2

þ 2b3 � b2c� b2d � bc2 þ bcd � bd2 þ 2c3 � c2d � cd2 þ 2d3:

Probably the easiest way to confirm that this polynomial is symmetric is to express

it as

f ða; b; c; dÞ ¼ 2M½3�ða; b; c; dÞ �M½2;1�ða; b; c; dÞ þM½13�ða; b; c; dÞ: &

There are, of course, easier ways to verify that the polynomial f ðx1; x2; . . . ; xkÞ ¼
ðx1 þ x2 þ � � � þ xkÞn is symmetric than by expressing it as a linear combination of

minimal symmetric polynomials. On the other hand, because it is symmetric,

f ðx1; x2; . . . ; xkÞ is a linear combination of minimal symmetric polynomials.

What combination? The answer to that question is what the multinomial theorem

is all about:

ðx1 þ x2 þ � � � þ xkÞn ¼
X
p‘n

n

p

� �
Mpðx1; x2; . . . ; xkÞ; ð1:30Þ

where the coefficient
�

n
p

�
is an abbreviation for the multinomial coefficient whose

bottom row consists of the ‘ðpÞ parts of p. (Recall that Mpðx1; x2; . . . ; xkÞ ¼ 0

whenever k < ‘ðpÞ.)

1.8.17 Example. Together with Example 1.8.14, Equation (1.30) yields

ðxþ yþ zÞ6 ¼ M½6�ðx; y; zÞ þ 6M½5;1�ðx; y; zÞ þ 15M½4;2�ðx; y; zÞ
þ 20M½32�ðx; y; zÞ þ 30M½4;12�ðx; y; zÞ
þ 60M½3;2;1�ðx; y; zÞ þ 90M½23�ðx; y; zÞ: &

1.8. EXERCISES

1 Explicitly write down

(a) all 11 partitions of 6.

(b) all 8 partitions of 7 having at most three parts.

(c) all 8 partitions of 7 whose largest part is at most three.
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2 Show that

(a) pn�2ðnÞ ¼ 2; n � 4.

(b) pn�3ðnÞ ¼ 3; n � 6.

(c) for all n � 6, the last four (nonzero) numbers in row n of the partition

triangle are 3, 2, 1, 1.

(d) p2ðnÞ ¼ bn=2c, the greatest integer not exceeding 1
2

n.

3 Compute rows 11–15 of the partition triangle.

4 Evaluate

(a) pð11Þ. (b) pð12Þ.
(c) pð13Þ. (d) pð14Þ.

5 The number of partitions of n into three or fewer parts turns out to be the

nearest integer to 1
12
ðnþ 3Þ2.

(a) Confirm this fact for 1 � n � 6.

(b) Confirm this fact for 7 � n � 10.

(c) Determine the number of different minimal symmetric polynomials, in

three variables, of degee n ¼ 27.

6 How many different eight-part compositions can be produced by rearranging

the parts of the partition

(a) ½53; 4; 24�? (b) ½25; 13�?
(c) ½8; 7; 6; 5; 4; 3; 2; 1�?
(Hint: Don’t try to write them all down.)

7 Confirm, by writing them all down, that there are p3ð9Þ four-part partitions

p ‘ 10 that satisfy p4 ¼ 1.

8 Confirm Theorem 1.8.10 for the pair

(a) n ¼ 5 and m ¼ 2. (b) n ¼ 6 and m ¼ 3.

(c) n ¼ 10 and m ¼ 3. (d) n ¼ 10 and m ¼ 5.

9 Prove that the partition number pðnÞ � 2b
ffiffi
n
p
c for all sufficiently large n.

10 Exhibit Ferrers diagrams for all the self-conjugate partitions of

(a) 6. (b) 10. (c) 17.

11 Let poddðnÞ be the number of partitions of n each of whose parts is odd and

pdistðnÞ be the number of partitions of n having distinct parts. It is proved in

Section 4.3 that poddðnÞ ¼ pdistðnÞ for all n. Confirm this result now for the

case

(a) n ¼ 5. (b) n ¼ 6. (c) n ¼ 7. (d) n ¼ 8.
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12 The first odd ‘‘abundant’’ number is 945.

(a) How many positive integer divisors does 945 have?

(b) Sum up the ‘‘proper’’ divisors of 945 (those divisors less than 945).

(c) What do you suppose an ‘‘abundant’’ number is?

13 Prove that the number of partitions of n with at most m parts is equal to the

number of partitions of nþ m with exactly m parts, i.e., prove that

Xm

k¼1

pkðnÞ ¼ pmðnþ mÞ

(a) by induction on m.

(b) by means of Ferrers diagrams.

14 Prove that

(a) pmðnÞ ¼ pmðn� mÞ þ pm�1ðn� mÞ þ � � � þ p1ðn� mÞ; m < n.

(b) pðnÞ ¼ pnð2nÞ.
(c) pðnÞ ¼ pnþmð2nþ mÞ; m � 0.

(d) For all n � 8, the last five (nonzero) numbers in row n of the partition

triangle are 5, 3, 2, 1, 1.

(e) What is the generalization of Exercises 2(c) and 14(d)?

15 Suppose a ¼ ½a1; a2; . . . ; am� and b ¼ ½b1; b2; . . . ; bk� are two partitions of n.

Then a majorizes b if m � k and

Xr

i¼1

ai �
Xr

i¼1

bi; 1 � r � m:

(a) Show that [6, 4] majorizes [4, 3, 2, 1].

(b) Show that [4, 3, 2, 1] majorizes ½32; 22�.
(c) If a majorizes b and b majorizes g, prove that a majorizes g.

(d) Prove that a majorizes b if and only if b	 majorizes a	.

16 Confirm that the coefficients 1, 6, 15, 20, 30, 60, and 90 in Example 1.8.17 are

all correct.

17 Prove that the number of self-conjugate partitions of n is equal to the number

of partitions of n that have distinct parts each of which is odd.

18 The great Indian mathematician Srinivasa Ramanujan (1887–1920) proved a

number of theorems about partition numbers. Among them is the fact that

pð5nþ 4Þ is always a multiple of 5. Confirm this fact for n ¼ 0, 1, and 2.
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19 We saw in Section 1.6 that the equation aþ bþ cþ d þ e ¼ 10 has a total of

Cð9; 4Þ ¼ 126 different positive integer solutions. Of these, how many satisfy

a � b � c � d � e?

20 Denote by tðnÞ the number of partitions of n each of whose parts is a power

of 2 (including 20 ¼ 1).

(a) Compute tðnÞ; 1 � n � 6.

(b) Prove that tð2nþ 1Þ ¼ tð2nÞ; n � 1.

(c) Prove that tð2nÞ ¼ tðnÞ þ tð2n� 2Þ; n � 2.

(d) Prove that tðnÞ is even, n � 2.

21 When pða; b; c; dÞ ¼ ðaþ bþ cþ dÞ10
is expressed as a linear combination of

minimal symmetric polynomials, compute the coefficient of

(a) M½8;12�ða; b; c; dÞ. (b) M½10�ða; b; c; dÞ.
(c) M½32;22�ða; b; c; dÞ. (d) M½32;2;12�ða; b; c; dÞ.

22 Compute the coefficient of

(a) M½2;13�ðx1; x2; x3; x4; x5; x6Þ in ðx1 þ x2 þ x3 þ x4 þ x5 þ x6Þ5.

(b) M½2;13�ðx1; x2; x3; x4; x5Þ in ðx1 þ x2 þ x3 þ x4 þ x5Þ5.

23 Express pðx; y; zÞ as a linear combination of minimal symmetric polynomials,

where

(a) pðx; y; zÞ ¼ 5x2 þ 5y2 þ 5z2 � xy� xz� yz.

(b) pðx; y; zÞ ¼ 2xð1þ 2yzÞ � 3x2 þ 2y� 3y2 þ 2z� 3z2.

24 Write out, in full,

(a) M½5�ðw; x; y; zÞ. (b) M½4;1�ðw; x; y; zÞ.
(c) M½13�ðw; x; y; zÞ. (d) M½8;1�ðx; y; zÞ.
(e) M½3;2;1�ðx; y; zÞ. (f) M½3;12�ðx; y; zÞ.

25 Theorem 1.8.15 can be use to custom design symmetric polynomials. The

homogeneous symmetric function of degree n is defined by H0ðx1; x2; . . . ;
xkÞ ¼ 1 and

Hnðx1; x2; . . . ; xkÞ ¼
X
p‘n

Mpðx1; x2; . . . ; xkÞ; n � 1;

where, recall, Mpðx1; x2; . . . ; xkÞ ¼ 0 whenever ‘ðpÞ > k. Explicitly write out

all the terms in

(a) H2ðx; yÞ. (b) H3ðx; yÞ.
(c) H2ða; b; cÞ. (d) H3ða; b; cÞ.

26 Let Hnðx1; x2; . . . ; xkÞ be the homogeneous symmetric function defined in

Exercise 25.
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(a) Compare and contrast Hnðx1; x2; . . . ; xkÞ with ðx1 þ x2 þ � � � þ xkÞn. (Hint:

See Equation (1.30).)

(b) Show that Hnðx1; x2; . . . ; xkÞ is the sum of p1ðnÞ þ p2ðnÞ þ � � � þ pkðnÞ
different minimal symmetric polynomials.

(c) Prove that Hnðx1; x2; . . . ; xkÞ is the sum of Cðnþ k � 1; nÞ different terms.

(Hint: Theorem 1.7.5.)

(d) Prove that Hnðx1; x2; . . . ; xkÞ ¼ Hnðx1; x2; . . . ; xk�1Þ þ xkHn�1ðx1; x2; . . . ;
xkÞ.

(e) Prove that Hsðx1; x2; . . . ; xnÞ � Hsðx2; . . . ; xn; xnþ1Þ ¼ ðx1 � xnþ1ÞHs�1

ðx1; x2; . . . ; xnþ1Þ.
27 Suppose m is a nonnegative integer. A lattice path of length m in the cartesian

plane begins at the origin and consists of m unit ‘‘steps’’ each of which is

either up or to the right. If s of the steps are up and r ¼ m� s of them are to

the right, the path terminates at the point ðr; sÞ. ‘‘Directions’’ for the lattice

path illustrated in Fig. 1.8.5 might go something like this: Beginning from

(0, 0) (the lower left-hand corner), take two steps up, two to the right, one up,

three right, one up, one right, and one up. If this grid were a street map and one

were in the business of delivering packages, lattice paths would probably

the called ‘‘routes’’, and these directions might be given in shorthand as

UURRURRRURU. Suppose r and s are fixed but arbitrary nonnegative

integers, with r þ s > 0.

(6, 5)

(0, 0)

Figure 1.8.5

(a) Compute the number of different lattice paths from ð0; 0Þ to ðr; sÞ.
(b) The lattice path in Figure 1.8.5 ‘‘partitions’’ the 5� 6 grid into two pieces.

In this case, the piece above the path might easily be mistaken for the

Ferrers diagram of partition p ¼ ½6; 5; 2�. Use this observation to compute

the number of partitions that have at most s parts each of which is at most r.
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(c) As an alternative to the alphabet R;Uf g, one could just as well encode lattice

paths using, say, the horizontal displacement of each step. In this scheme, each

vertical step would correspond to a 0 and each horizontal step to a 1. For

example, the lattice path in Fig. 1.8.5 would be encoded as the binary word

00110111010, a word of length 11 and ‘‘weight’’ 6. Compute the number of

different binary words of length r þ s and weight r.

(d) Consider a binary word w ¼ b1b2 . . . bm of length m consisting of the letters

(bits) b1; b2; . . . ; bm. The inversion number invðbiÞ ¼ 0 if bi ¼ 1; if bi ¼ 0, it is

the number of 1’s to the left of bi. If, e.g., u ¼ 00110111010 (corresponding to

Fig 1.8.5), the inversion numbers of its bits are 0, 0, 0, 0, 2, 0, 0, 0, 5, 0, and 6,

respectively. In this case, the nonzero inversion numbers of u are precisely the

parts of the corresponding partition p from part (b). Show that, in general, the

nonzero inversion numbers of the bits of w are the parts of the partition to

which w corresponds.

28 Galileo Galilei (1564–1642) once wondered about the frequency of throwing

totals of 9 and 10 with three dice.

(a) Show that 9 and 10 have the same number of 3-part partitions each of

whose parts is at most 6.

(b) Explain why it does not follow that 9 and 10 occur with equal frequency

when three dice are rolled (repeatedly).

29 Suppose p is an m-part partition of n. Show that the number of different

compositions of n that can be obtained by rearranging the parts of p is

multinomial coefficient
�

n
p

�
.

1.9. ELEMENTARY SYMMETRIC FUNCTIONS

What immortal hand or eye could frame thy fearful symmetry?

— William Blake (Songs of Experience)

Let’s begin by exploring the relationship between the coefficients of a monic poly-

nomial

pðxÞ ¼ xn þ c1xn�1 þ c2xn�2 þ � � � þ cn ð1:31aÞ

and its roots a1; a2; . . . ; an. Writing pðxÞ in the form

pðxÞ ¼ ðx� a1Þðx� a2Þ � � � ðx� anÞ ð1:31bÞ
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suggests mimicking the alternative view of distributivity used to prove the binomial

theorem, i.e., select one of x or �a1 from the first set of parentheses, one of x or �a2

from the second set, and so on. Finally, choose one of x or �an from the nth set.

String these selections together, in order, so as to create an n-letter ‘‘word’’, some-

thing like

ð�a1Þxxxð�a5Þx . . . xx:

If the total number of x’s in this word is n� r, then the remaining ‘‘letters’’ are of

the form ð�aiÞ for r different values of i.

The sum of all such words is an inventory of the 2n ways to make the sequence

of decisions. Replacing each word with a monomial of the form

ð�1Þrða1a5 � � �Þxn�r

and combining terms of the same degree (in x) should yield Equation (1.31a). So,

the coefficient of xn�r in Equation (1.31a) must be the sum of all possible terms of

the form

ð�1Þrai1 ai2 � � � air ;

where 1 � i1 < i2 < � � � < ir � n. In other words, cr is ð�1Þr times the sum of the

products of the roots taken r at a time. Let’s give that sum a name.

1.9.1 Definition. The rth elementary symmetric function

Erðx1; x2; . . . ; xnÞ

is the sum of all possible products of r elements chosen from x1; x2; . . . ; xnf g with-

out replacement where order doesn’t matter.

Evidently, Erðx1; x2; . . . ; xnÞ is the sum of all Cðn; rÞ ‘‘square-free’’ monomials

of (total) degree r in the variables x1; x2; . . . ; xn. Our conclusions about the relation-

ship between roots and coefficients can now be stated as follows.

1.9.2 Theorem. Let a1; a2; . . . ; an be the roots of a monic polynomial pðxÞ ¼
xn þ c1xn�1 þ c2xn�2 þ � � � þ cn. Then

cr ¼ ð�1ÞrErða1; a2; . . . ; anÞ; 1 � r � n: ð1:32Þ

1.9.3 Example. Suppose f ðxÞ ¼ x4 � x2 þ 2xþ 2. Then, counting multiplicities,

f ðxÞ has four (complex) roots; call them a1, a2, a3, and a4. Setting Er ¼
Erða1; a2; a3; a4Þ and comparing the actual coefficients of f ðxÞ with the generic
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formula f ðxÞ ¼ x4 � E1x3 þ E2x2 � E3xþ E4, we find that

0 ¼ E1ða1; a2; a3; a4Þ ¼ a1 þ a2 þ a3 þ a4;

�1 ¼ E2ða1; a2; a3; a4Þ ¼ a1a2 þ a1a3 þ a1a4 þ a2a3 þ a2a4 þ a3a4;

�2 ¼ E3ða1; a2; a3; a4Þ ¼ a1a2a3 þ a1a2a4 þ a1a3a4 þ a2a3a4;

2 ¼ E4ða1; a2; a3; a4Þ ¼ a1a2a3a4:

So, just from its coefficients, we can tell, e.g., that the sum of the roots of f ðxÞ is 0

and that their product is 2. &

1.9.4 Example. Suppose ai ¼ 1; 1 � i � n, so that

pðxÞ ¼ ðx� 1Þn

¼ Cðn; 0Þxn � Cðn; 1Þxn�1 þ Cðn; 2Þxn�2 � � � � þ ð�1ÞnCðn; nÞ:

In this case, Erð1; 1; . . . ; 1Þ ¼ Cðn; rÞ, 1 � r � n, which makes perfect sense. After

all, Erða1; a2; . . . ; anÞ is the sum of all Cðn; rÞ products of the ai’s taken r at a time.

If ai ¼ 1 for all i, then every one of these products is 1, and their sum is

Erð1; 1; . . . ; 1Þ ¼ Cðn; rÞ. &

Consistent with the fact that the leading coefficient of a monic polynomial is 1,

we define E0ðx1; x2; . . . ; xnÞ ¼ 1.

1.9.5 Example. If ai ¼ i, 1 � i � 4, then

E0ð1; 2; 3; 4Þ ¼ 1;

E1ð1; 2; 3; 4Þ ¼ 1þ 2þ 3þ 4 ¼ 10;

E2ð1; 2; 3; 4Þ ¼ 1� 2þ 1� 3þ 1� 4þ 2� 3þ 2� 4þ 3� 4 ¼ 35;

E3ð1; 2; 3; 4Þ ¼ 1� 2� 3þ 1� 2� 4þ 1� 3� 4þ 2� 3� 4 ¼ 50;

E4ð1; 2; 3; 4Þ ¼ 1� 2� 3� 4 ¼ 24:

If pðxÞ ¼ ðx� 1Þðx� 2Þðx� 3Þðx� 4Þ, then, with the abbreviation Er ¼ Er

ð1; 2; 3; 4Þ, 0 � r � 4, Theorem 1.9.2 yields

pðxÞ ¼ E0x4 � E1x3 þ E2x2 � E3xþ E4

¼ x4 � 10x3 þ 35x2 � 50xþ 24:

Let’s confirm this directly:

pðxÞ ¼ ðx� 1Þðx� 2Þðx� 3Þðx� 4Þ
¼ ðx2 � 3xþ 2Þðx2 � 7xþ 12Þ
¼ x4 � ð7þ 3Þx3 þ ð12þ 21þ 2Þx2 � ð36þ 14Þxþ 24: &

Apart from their intrinsic significance, elementary symmetric functions have

important (and, in some cases, unexpected) connections with other combinatorial
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objects. Recall, e.g., that the number of ways to choose nþ 1 items from an

m-element set without replacement where order matters is

Pðm; nþ 1Þ ¼ mðm� 1Þðm� 2Þ � � � ðm� nÞ:

1.9.6 Definition. The falling factorial function is defined by xð0Þ ¼ 1 and

xðnþ1Þ ¼ xðx� 1Þðx� 2Þ � � � ðx� nÞ; n � 0:

Since xðnþ1Þ is a polynomial of degree nþ 1, whose roots are 0; 1; . . . ; n, and

because Erð0; 1; . . . ; nÞ ¼ Erð1; 2; . . . ; nÞ, 0 � r � n, it follows that

xðnþ1Þ ¼ xnþ1 � E1ð1; 2; . . . ; nÞxn þ E2ð1; 2; . . . ; nÞxn�1 � � � �
þ ð�1ÞnEnð1; 2; . . . ; nÞx:

In particular,

Pðm; nþ 1Þ ¼ m mn � E1ð1; 2; . . . ; nÞmn�1 þ E2ð1; 2; . . . ; nÞmn�2 � � � �
	

þð�1ÞnEnð1; 2; . . . ; nÞ�:

Let’s take a brief excursion* and investigate the numbers Etð1; 2; . . . ; nÞ.

1.9.7 Definition. The elementary number

eðn; tÞ ¼ 0; t < 0 or t > n;
Etð1; 2; . . . ; nÞ; 0 � t � n:

�

Apart from Example 1.9.5, where we computed

ðx� 1Þðx� 2Þðx� 3Þðx� 4Þ ¼ x4 � 10x3 þ 35x2 � 50xþ 24

¼ x4 � eð4; 1Þx3 þ eð4; 2Þx2 � eð4; 3Þxþ eð4; 4Þ;

we know that

eðn; 0Þ ¼ E0ð1; 2; . . . ; nÞ
¼ 1;

eðn; 1Þ ¼ E1ð1; 2; . . . ; nÞ
¼ 1þ 2þ � � � þ n

¼ 1

2
nðnþ 1Þ;

eðn; nÞ ¼ Enð1; 2; . . . ; nÞ
¼ 1� 2� � � � � n

¼ n!:

*There is a serious side to this excursion. In Chapter 2, we will discover that sðn; rÞ ¼
En�rð1; 2; . . . ; n� 1Þ is a Stirling number of the first kind.
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This gives us a start at filling in some entries of the elementary triangle exhibited

in Fig. 1.9.1. What is (momentarily) missing is a recurrence for the elementary

numbers analogous to Pascal’s relation for binomial coefficients and/or to Theorem

1.8.7 for partition numbers.

1.9.8 Lemma. If n > t > 1, then

eðn; tÞ ¼ eðn� 1; tÞ þ neðn� 1; t � 1Þ:

Proof: Etð1; 2; . . . ; nÞ ¼ eðn; tÞ is the sum of all Cðn; tÞ products of the numbers

1; 2; . . . ; n taken t at a time. Some of these products involve n, and some do not. The

sum of the products that do not involve n is Etð1; 2; . . . ; n� 1Þ ¼ eðn� 1; tÞ. When

n is factored out of the remaining terms, the other factor is Et�1ð1; 2; . . . ;
n� 1Þ ¼ eðn� 1; t � 1Þ. &

From Fig. 1.9.1 and Lemma 1.9.8 we see, e.g., that

eð3; 2Þ ¼ eð2; 2Þ þ 3eð2; 1Þ
¼ 2þ 3� 3

¼ 11:

Similarly,

eð5; 2Þ ¼ eð4; 2Þ þ 5eð4; 1Þ
¼ 35þ 5� 10

¼ 85;

and

eð5; 3Þ ¼ eð4; 3Þ þ 5� eð4; 2Þ
¼ 50þ 5� 35

¼ 225:

Continuing in this way, a row at a time, one obtains Fig. 1.9.2.

t 0 1 2 3 4 5 6 7

n
1
2
3
4
5
6
7

1
1
1
1
1
1
1

1
3
6

10
15
21
28

2
e(3,2) 6

35 50 24
e(5,2) e(5,3) e(5,4) 120
e(6,2) e(6,3) e(6,4) e(6,5) 720
e(7,2) e(7,3) e(7,4) e(7,5) e(7,6) 5040

. . .

Figure 1.9.1. Elementary triangle.
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As their name implies, elementary symmetric functions are symmetric. Because

multiplication is commutative, the coefficients of

pðxÞ ¼ ðx� 1Þðx� 2Þðx� 3Þðx� 4Þ

are identical to the coefficients of

pðxÞ ¼ ðx� 3Þðx� 1Þðx� 4Þðx� 2Þ;

the sum of the products of x1; x2; . . . ; xn taken t at a time is equal to the sum of the

products of any rearrangement of the x’s, taken t at a time. In fact, elementary sym-

metric functions are minimal symmetric polynomials!

1.9.9 Theorem. The tth elementary symmetric function is identical to the mini-

mal symmetric polynomial corresponding to the partition ½1t�, i.e.,

M½1t �ðx1; x2; . . . ; xnÞ ¼ Etðx1; x2; . . . ; xnÞ:

Proof. If ðr1; r2; . . . ; rnÞ is some rearrangement of the sequene ð1; 1; . . . ; 1; 0;
0; . . . ; 0Þ consisting of t 1’s followed by n� t 0’s, then

xr1

1 xr2

2 � � � xrn
n ¼ xi1 xi2 � � � xit ;

where 1 � i1 < i2 < � � � < it � n, ri1 ¼ ri2 ¼ � � � ¼ rit ¼ 1, and the rest of the r’s

are zero. Adding the monomials corresponding to all possible rearrangements of

ð1; 1; . . . ; 1; 0; 0; . . . ; 0Þ yields

M½1t �ðx1; x2; . . . ; xnÞ ¼
X

xi1 xi2 � � � xit ; ð1:33Þ

t 0 1 2 3 4 5 6 7

n
1
2
3
4
5
6
7

1
1
1
1
1
1
1

1
3
6

10
15
21
28

2
11
35
85

175
322

6
50

225
735

1960

24
274

1624
6769

120
1764

13132

720
13068 5040

. . .

Figure 1.9.2. The elementary numbers eðn; tÞ.
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where the sum is over 1 � i1 < i2 < � � � < it � n. In other words, the right-hand

side of Equation (1.33) is the sum of all Cðn; tÞ products of the x’s taken t and a

time, which is the definition of Etðx1; x2; . . . ; xnÞ. &

Conjugate to ½1t� is the partition ½t�.

1.9.10 Definition. The minimal symmetric polynomial corresponding to ½t� is

the tth power sum, abbreviated

Mtðx1; x2; . . . ; xnÞ ¼ M½t�ðx1; x2; . . . ; xnÞ
¼ xt

1 þ xt
2 þ � � � þ xt

n:

If t ¼ 1, then

M1ðx1; x2; . . . ; xnÞ ¼ x1 þ x2 þ � � � þ xn

¼ E1ðx1; x2; . . . ; xnÞ: ð1:34Þ

Our interest in power sums goes back to Section 1.5, where it was discovered,

e.g., that

M1ð1; 2; . . . ; nÞ ¼ 1þ 2þ � � � þ n

¼ 1
2

nðnþ 1Þ;

M2ð1; 2; . . . ; nÞ ¼ 12 þ 22 þ � � � þ n2

¼ 1
6

nðnþ 1Þð2nþ 1Þ; ð1:35Þ

M3ð1; 2; . . . ; nÞ ¼ 13 þ 23 þ � � � þ n3

¼ 1
4

n2ðnþ 1Þ2; ð1:36Þ

and so on.

Recall (Theorem 1.8.15) that a polynomial in n variables is symmetric if and

only if it is a linear combination of minimal symmetric polynomials. In this sense,

the minimal symmetric polynomials are building blocks from which all symmetric

polynomials can be constructed. The power sums are also building blocks, but in a

different sense. The following result is proved in Appendix A1.

1.9.11 Theorem.* Any polynomial symmetric in the variables x1; x2; . . . ; xn is a

polynomial in the power sums Mt ¼ Mtðx1; x2; . . . ; xnÞ, 1 � t � n.

*To be encountered in Section 3.6, the symmetric ‘‘pattern inventory’’ is a polynomial in the power sums.

A description of that polynomial is the substance of Pólya’s theorem.
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1.9.12 Example. We do not need Theorem 1.9.11 to tell us that pðx; y; zÞ ¼
ðxþ yþ zÞ3 as a polynomial in the power sums. By definition, pðx; y; zÞ ¼
M1ðx; y; zÞ3. What about something more interesting, like M½2;1�ðx; y; zÞ ¼ x2yþ
x2zþ xy2 þ xz2 þ y2zþ yz2? Observe that the product

M2ðx; y; zÞM1ðx; y; zÞ ¼ ðx2 þ y2 þ z2Þðxþ yþ zÞ
¼ x3 þ y3 þ z3 þ x2yþ x2zþ xy2 þ xz2 þ y2zþ yz2

¼ M3ðx; y; zÞ þM½2;1�ðx; y; zÞ:

So, M½2;1�ðx; y; zÞ ¼ M2ðx; y; zÞM1ðx; y; zÞ �M3ðx; y; zÞ. Similarly,

M2ðx; y; zÞ2 ¼ ðx2 þ y2 þ z2Þ2

¼ x4 þ y4 þ z4 þ 2x2y2 þ 2x2z2 þ 2y2z2

¼ M4ðx; y; zÞ þ 2M½2;2�ðx; y; zÞ;

so that M½2;2�ðx; y; zÞ ¼ 1
2
½M2ðx; y; zÞ2 �M4ðx; y; zÞ�. &

1.9.13 Example. Let’s see how to express elementary symmetric functions as

polynomials in the power sums. Already having observed that E1ðx; y; zÞ ¼
M1ðx; y; zÞ, consider E2ðx; y; zÞ ¼ xyþ xzþ yz. Rearranging terms in

M1ðx; y; zÞ2 ¼ ðxþ yþ zÞ2

¼ ðx2 þ y2 þ z2Þ þ ð2xyþ 2xzþ 2yzÞ
¼ M2ðx; y; zÞ þ 2E2ðx; y; zÞ

yields

E2ðx; y; zÞ ¼ 1
2
½M1ðx; y; zÞ2 �M2ðx; y; zÞ�: ð1:37Þ

Similar computations starting from M1ðx; y; zÞ3 ¼ ðxþ yþ zÞ3 lead to the identity

E3ðx; y; zÞ ¼ 1
6
½M1ðx; y; zÞ3 � 3M1ðx; y; zÞM2ðx; y; zÞ þ 2M3ðx; y; zÞ�: ð1:38Þ

(Confirm it.) &
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Surely, Equations (1.37) and (1.38) are examples of some more general relation-

ship between power sums and elementary symmetric functions. To discover what

that pattern is, let’s return to the source. Suppose, e.g., that

pðxÞ ¼ ðx� a1Þðx� a2Þ � � � ðx� anÞ
¼ xn � E1xn�1 þ E2xn�2 � � � � þ ð�1ÞnEn;

where Er ¼ Erða1; a2; . . . ; anÞ. Substituting x ¼ ai in this equation yields

0 ¼ pðaiÞ
¼ an

i � E1an�1
i þ E2an�2

i � � � � þ ð�1ÞnEn:

Summing on i and setting Mt ¼ Mtða1; a2; . . . ; anÞ ¼ at
1 þ at

2 þ � � � þ at
n, we obtain

0 ¼ Mn � E1Mn�1 þ E2Mn�2 � � � � þ ð�1ÞnnEn;

the t ¼ n case of the following.

1.9.14 Newton’s Identities.* For a fixed but arbitrary positive integer n, let

Mr ¼ Mrðx1; x2; . . . ; xnÞ and Er ¼ Erðx1; x2; . . . ; xnÞ. Then, for all t � 1,

Mt �Mt�1E1 þMt�2E2 � � � � þ ð�1Þt�1
M1Et�1 þ ð�1ÞttEt ¼ 0: ð1:39Þ

1.9.15 Example. The first four of Newton’s identities are equivalent to

M1 ¼ E1;

M2 �M1E1 ¼ �2E2;

M3 �M2E1 þM1E2 ¼ 3E3;

M4 �M3E1 þM2E2 �M1E3 ¼ �4E4:

The first identity, M1 ¼ E1, is the same as Equation (1.34). Substituting M1 for E1 in

the second identity yields

E2 ¼
1

2
½M2

1 �M2�; ð1:40Þ

extending to n variables and confirming Equation (1.37). Eliminating E1 and E2

from the third identity recaptures the following extension of Equation (1.38):

E3 ¼
1

6
½M3

1 � 3M1M2 þ 2M3�: ð1:41Þ

*Named for Isaac Newton (1642–1727).
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Eliminating E1, E2, and E3 from the fourth identity produces something new,

namely,

E4 ¼
1

24
½M4

1 � 6M2
1M2 þ 8M1M3 þ 3M2

2 � 6M4�: ð1:42Þ

Evidently, Newton’s identities can be used to express any elementary symmetric

function as a polynomial in the power sums. &

Because E3ðx1; x2Þ ¼ 0, the right-hand side of Equation (1.41) had better be zero

when n ¼ 2. Let’s confirm that it is:

M3
1 þ 2M3 ¼ ðx1 þ x2Þ3 þ 2ðx3

1 þ x3
2Þ

¼ 3x3
1 þ 3x2

1x2 þ 3x1x2
2 þ 3x3

2

¼ 3ðx1 þ x2Þðx2
1 þ x2

2Þ
¼ 3M1M2:

So, as predicted, M3
1 � 3M1M2 þ 2M3 ¼ 0. More generally, because Enþrðx1;

x2; . . . ; xnÞ ¼ 0, r � 1, Equation (1.39) has a simpler form when t > n, namely,

Mt �Mt�1E1 þMt�2E2 � � � � þ ð�1ÞnMt�nEn ¼ 0: ð1:43Þ

A proof of Newton’s identities for all t � 1 can be found in Appendix A1.

1.9. EXERCISES

1 Without computing the roots of f ðxÞ ¼ x4 � x2 þ 2xþ 2, it was argued in

Example 1.9.3 that their elementary symmetric functions are E1 ¼ 0,

E2 ¼ �1, E3 ¼ �2, and E4 ¼ 2. Confirm this result by finding the four roots

and then computing their elementary symmetric functions directly from the

definition.

2 Show that ða2 þ b2Þ � ðaþ bÞðaþ bÞ þ 2ab ¼ 0 (thus confirming the n ¼ t ¼
2 case of Newton’s identities).

3 Find the elementary symmetric functions of the roots of

(a) x4 � 5x3 þ 6x2 � 2xþ 1. (b) x4 þ 5x3 þ 6x2 þ 2xþ 1.

(c) x4 þ 5x3 � 6x2 þ 2x� 1. (d) 2x4 þ 10x3 � 12x2 þ 4x� 2.

(e) x5 � x3 þ 3x2 þ 4x� 8. (f) x5 þ x4 � 2x.

4 Compute

(a) Etð1; 2; 3; 4; 5Þ, 1 � t � 5, directly from Definition 1.9.1 (Hint: Use row 5

of Fig. 1.9.2 to check your answers.)
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(b) E5ð1; 2; 3; 4; 5; 6; 7Þ.

5 Find the missing coefficients in

(a) xð5Þ ¼ x5 � 10x4 þ 35x3 � x2 þ x� .

(b) xð6Þ ¼ x6 � x5 þ x4 � 225x3 þ x2 � x.

6 Compute

(a) E3ð1; 2; 3; 4; 5; 6; 7; 8Þ. (b) E4ð1; 2; 3; 4; 5; 6; 7; 8Þ.
(c) E6ð1; 2; 3; 4; 5; 6; 7; 8Þ. (d) E7ð1; 2; 3; 4; 5; 6; 7; 8Þ.

7 Let f ðxÞ ¼ b0xn þ b1xn�1 þ � � � þ bn�1xþ bn be a polynomial of degree n

whose roots are a1; a2; . . . ; an. Prove that Etða1; a2; . . . ; anÞ ¼ ð�1Þtbt=b0.

8 Confirm that 6ðabcþ abd þ acd þ bcdÞ ¼ M3
1 � 3M1M2 þ 2M3, where

Mt ¼ at þ bt þ ct þ dt, 1 � t � 3.

9 Newton’s identities were used in Equations (1.40)–(1.42) to express

Et ¼ Etðx1; x2; . . . ; xnÞ as a polynomial in the power sums Mt ¼ Mtðx1;
x2; . . . ; xnÞ, 2 � t � 4.

(a) Confirm by a direct computation that

a2 þ b2 þ c2 þ d2 ¼ E1ða; b; c; dÞ2 � 2E2ða; b; c; dÞ:

(b) Show that M2 ¼ E2
1 � 2E2 for arbitrary n.

(c) Express M3 as a polynomial in elementary symmetric functions.

(d) Show that M4 ¼ E4
1 � 4E2

1E2 þ 4E1E3 þ 2E2
2 � 4E4.

(e) Prove that any polynomial symmetric in the variables x1; x2; . . . ; xn is a

polynomial in the elementary symmetric functions Etðx1; x2; . . . ; xnÞ,
1 � t � n.*

10 Express the symmetric function f ða; b; c; dÞ from Example 1.8.16 as a

polynomial in power sums.

11 Express x3yþ xy3 as a polynomial in

(a) M1ðx; yÞ and M2ðx; yÞ. (b) E1ðx; yÞ and E2ðx; yÞ.

12 Because equations like those in Exercises 9(b)–(d) are polynomial identities,

any numbers can be substituted for the variables x1; x2; . . . ; xn.

(a) Use this idea to show that 12 þ 22 þ � � � þ n2 ¼ eðn; 1Þ2 � 2eðn; 2Þ.
(b) Use Fig. 1.9.2 and the result of part (a) to evaluate 12 þ 22 þ 32 þ 42 þ 52.

(Confirm that your answer is consistent with Equation (1.35).)

(c) Find a formula for 13 þ 23 þ � � � þ n3 in terms of eðn; tÞ, t � n. (Hint: Use

your solution to Exercise 9(c).)

*This is the so-called Fundamental Theorem of Symmetric Polynomials.
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(d) Use Fig. 1.9.2 and the result of part (c) to evaluate 13 þ 23 þ 33 þ 43 þ 53.

(Confirm that your answer is consistent with Equation (1.36).)

13 Let Et ¼ Etða1; a2; . . . ; anÞ, 0 � t � n. Show that

(a) ða1 � 1Þða2 � 1Þ � � � ðan � 1Þ ¼ En � En�1 þ En�2 � � � � þ ð�1ÞnE0.

(b) ð1� a1xÞð1� a2xÞ � � � ð1� anxÞ ¼ E0 � E1xþ E2x2 � � � � þ ð�1ÞnEnxn.

14 If n � t � 2, prove that

Etða1; a2; . . . ; anÞ ¼ Etða1; a2; . . . ; an�1Þ þ anEt�1ða1; a2; . . . ; an�1Þ:

(Hint: See the proof of Lemma 1.9.8.)

15 Give the inductive proof that

Yn

i¼1

ðx� aiÞ ¼
Xn

t¼0

ð�1ÞtEtða1; a2; . . . ; anÞxn�t:

16 If f ðxÞ ¼ xðnþ1Þ, show that f 0ð0Þ ¼  n!.

17 Show that

(a) xðmþnÞ ¼ xðmÞðx� mÞðnÞ.
(b) ðxþ yÞðnÞ ¼

Pn
r¼0 Cðn; rÞxðrÞyðn�rÞ.

18 Recall (Section 1.8, Exercise 15) that if a ¼ ½a1; a2; . . . ; am� and

b ¼ ½b1; b2; . . . ; bk� are two partitions of n, then a majorizes b if m � k, and

Xr

i¼1

ai �
Xr

i¼1

bi; 1 � r � m:

(a) Show that majorization imposes a linear order on the p3ð8Þ ¼ 5 partitions

of 8 having three parts.

(b) Among the many properties of elementary symmetric functions is Schur

concavity, meaning that EtðaÞ � EtðbÞ whenever a majorizes b. Confirm

this property for 2 � t � 3 using the three-part partitions of 8.

(c) If you were to compute E3ðaÞ for each four-part partition a of 24, which

partition would produce the maximum? (The minimum?)

19 Let Ht ¼ Htðx1; x2; . . . ; xnÞ be the homogeneous symmetric function of

Section 1.8, Exercise 25. Then Ht is Schur convex, meaning that

HtðaÞ � HtðbÞ, whenever a majorizes b.

(a) Confirm this result for H2 and the three-part partitions of 8.

(b) If you were to compute H4ðaÞ for each three-part partition a of 24, which

partition would produce the maximum? (The minimum?)
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20 Show that the general formula for Et as a polynomial in the power sums Mt is

t!Et ¼ detðLtÞ, where

Lt ¼

M1 1 0 0 � � � 0 0

M2 M1 2 0 � � � 0 0

M3 M2 M1 3 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
.

Mt�1 Mt�2 Mt�3 Mt�4 � � � M1 t � 1

Mt Mt�1 Mt�2 Mt�3 � � � M2 M1

0
BBBBBBB@

1
CCCCCCCA
:

(Hint: Use Cramer’s rule on the following matrix version of Newton’s

identities:

1 0 0 0 � � �
M1 �2 0 0 � � �
M2 �M1 3 0 � � �
M3 �M2 M1 �4 � � �
..
. ..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA

E1

E2

E3

E4

..

.

0
BBBBB@

1
CCCCCA ¼

M1

M2

M3

M4

..

.

0
BBBBB@

1
CCCCCA:

21 Confirm that the result in Exercise 20, i.e., t!Et ¼ detðLtÞ, agrees with

(a) Equation (1.40) when t ¼ 2.

(b) Equation (1.41) when t ¼ 3.

(c) Equation (1.42) when t ¼ 4.

22 Bertrand Russell* once wrote, ‘‘I used, when excited, to calm myself by

reciting the three factors of a3 þ b3 þ c3 � 3abc.’’

(a) Express a3 þ b3 þ c3 � 3abc as a product of two nontrivial polynomials

that are symmetric in a, b, and c. (Hint: Example 1.9.15 and M1ða; b; cÞ ¼
E1ða; b; cÞ.)

(b) Show that ðaþ bþ cÞðaþ ybþ y2cÞðaþ y2bþ ycÞ ¼ a3 þ b3 þ c3�
3abc, where y ¼ 1

2
ð�1þ i

ffiffiffi
3
p
Þ is a primitive cube root of unity.

(c) Show that if a3 þ b3 þ c3 � 3abc is a product of three polynomials, each

of which is symmetric in a, b, and c, then one (at least) of them is a

constant polynomial.

23 Prove that

(a) eðn; 2Þ ¼ Cðnþ 1; 2Þ.
(b) eðn; 3Þ ¼ 1

48
ðn� 2Þðn� 1Þn2ðnþ 1Þ2.

*In 1914, having completed Principia Mathematica with Alfred North Whitehead, Bertrand Russell

(1872–1970), Third Earl Russell, abandoned mathematics in favor of philosophy, social activism, and

writing. He was awarded the Nobel Prize for Literature in 1950.
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24 Show that xðnÞ : 0 � n � m
� �

¼ 1; x; xð2Þ; xð3Þ; . . . ; xðmÞ
� �

is a basis for the

vector space of polynomials of degree at most m. (Hint: Show that any

polynomial f ðxÞ ¼ bmxm þ bm�1xm�1 þ � � � þ b0 of degree at most m can be

expressed (uniquely) as a linear combination of 1; x; xð2Þ; xð3Þ; . . . ; xðmÞ.)

25 Let A be a real, symmetric, n� n matrix with characteristic polynomial

detðxIn � AÞ ¼ xn � c1xn�1 þ c2xn�2 � � � � þ ð�1Þncn:

Show that

(a) c1 ¼
Pn

i¼1 aii ¼ trðAÞ, the trace of A.

(b) c2 ¼ 1
2
½trðAÞ2 � trðA2Þ�

(c) c3 ¼ 1
6
½trðAÞ3 � 3 trðAÞ trðA2Þ þ 2 trðA3Þ�

(d) trðAtÞ � c1 trðAt�1Þ þ c2 trðAt�2Þ � � � � þ ð�1Þttct ¼ 0, t � 1.

26 Recall that ½k; 1m� is shorthand for the partition of mþ k consisting of a single

k followed by m 1’s.

(a) Show that Msðx1; x2; . . . ; xnÞEtðx1; x2; . . . ; xnÞ ¼ M½sþ1;1t�1�ðx1; x2; . . . ; xnÞþ
M½s;1t �ðx1; x2; . . . ; xnÞ, s > 1.

(b) Show that M1ðx1; x2; . . . ; xnÞEtðx1; x2; . . . ; xnÞ ¼ M½2;1t �ðx1; x2; . . . ; xnÞþ
ðt þ 1ÞEtþ1ðx1; x2; . . . ; xnÞ.

(c) Base a proof of Newton’s identities on parts (a) and (b).

*1.10. COMBINATORIAL ALGORITHMS

In a few generations you can bread a racehorse. The recipe for making a man like

Delacroix is less well known.

— Jean Renoir

Algos is the Greek word for ‘‘pain’’; algor is Latin for ‘‘to be cold’’; and Al Gore is

a former Vice President of the United States. Having no relation to any of these,

algorithm derives from the ninth-century Arab mathematician Mohammed ben

Musa al-Khowârizmi.* Translated into Latin in the twelfth century, his book

Algorithmi de numero Indorum consists of step-by-step procedures, or recipes,

for solving arithmetic problems.

As an illustration of the role of algorithms in mathematics, consider the follow-

ing example: one version of the well-ordering principle is that any nonempty set of

*Mohammed, son of Moses, of Khowârizm. Al-Khowârizmi also wrote Hisâb al-jabr wa’1 muqâbalah;

from which the word algebra is derived. It was largely through the influence of his books that the Hindu-

Arabic numeration system reached medieval Europe.

100 The Mathematics of Choice



positive intergers contains a least element. Given two positive integers a and b, well

ordering implies the existence of a least element d of the set

saþ tb : s and t are integers and saþ tb > 0f g:

This least element has a name; it is the greatest common divisor (GCD) of a and b.

Well ordering establishes the existence of d but furnishes little information about its

value. For that we must look elsewhere.

Among the algorithms for computing GCDs is one attributed to Euclid, based on

the fact that if r is the remainder when a is divided by b, then the GCD of a and b is

equal to the GCD of b and r. A different algorithm is based on the unique prime

factorizations of a and b. Either algorithm works just fine for small numbers, where

the second approach may even have a conceptual advantage. For actual computa-

tions with large numbers, however, the Euclidean algorithm is much easier and

much much faster.

Not until digital computers began to implement algorithms in calculations invol-

ving astronomically large numbers did the mathematical community, as a whole,

pay much attention to these kinds of computational considerations. Courses in

the analysis of algorithms are relatively new to the undergraduate curriculum.

This section is devoted to a naive introduction to a few of the ideas associated

with combinatorial algorithms. Let’s begin with the multinomial coefficient

M ¼
n

r1; r2; . . . ; rk

� �

¼ n!

r1!r2! � � � rk!
;

where, e.g.,

n! ¼ 1� 2� � � � � n:

Observe that n! is not so much a number as an algorithm for computing a num-

ber. To compute n!, multiply 1 by 2, multiply their product by 3, multiply that pro-

duct by 4, and so on, stopping only when the previous product has been multiplied

by n.

The following is a subalgorithm, or subroutine, to compute the factorial F of an

arbitrary integer X:

1. Input X.
2. F¼1 and I¼0.
3. I¼Iþ1.
4. F¼F � I.
5. If I < X, then go to step 3.
6. Return F.
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These lines should be interpreted as a step-by-step recipe that, absent directions

to the contrary (like ‘‘go to step 3’’), is to be executed in numerical order. In step 6,

the value returned is F ¼ X!.

This subroutine is written in the form of a primitive computer program. To a

hypothetical computer, symbols like X, F, and I are names for memory locations.

Step 1 should be interpreted as an instruction to wait for a number to be entered,

then to store the number in some (‘‘random’’*) memory location and, so as not to

forget the location, flag it with the symbol X. In step 2, the numbers 1 and 0 are

stored in memory locations labeled F and I, respectively. In step 3, the number

in memory location I is replaced with the next larger integer.{ In step 4, the number

in memory location F is replaced with the product of the number found there, and

the number currently residing in memory location I. If, in step 5, memory location I

contains X, operation moves on to step 6, where the subroutine terminates by

returning F ¼ X!. Otherwise, the action loops back to step 3 for another iteration.

The loop in steps 3–5 can be expressed more compactly using the equivalent

‘‘For . . . Next’’ construction foud in steps 3–5 of the following:

1.10.1 (Factorial Subroutine) Algorithm

1. Input X.
2. F¼1.
3. For I¼1 to X.
4. F¼F � I.
5. Next I.
6. Return F. &

The factorial subroutine affords the means to compute n!, r1!, r2!, and so on,

from which the multinomial coefficient M ¼
�

n
r1;r2;...;rk

�
can be obtained, either as

the quotient of n! and the product of the factorials of the r’s or, upon dividing n! by

r1!, dividing the quotient by r2!, dividing that quotient by r3!, and so on. While these

two approaches may be arithmetically equivalent, they represent different algorithms.

1.10.2 (Multinomial Coefficient) Algorithm

1. Input n, k, r1 , r2, . . ., rk.
2. X¼n.
3. Call Algorithm 1.10.1.
4. M¼F.
5. For j¼1 to k.
6. X¼rj

*Hence the name random-access memory, or RAM.
{Notations such as ‘‘I  I þ 1’’ or ‘‘I :¼ I þ 1’’ are sometimes used in place of ‘‘I ¼ I þ 1’’.
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7. Call Algorithm 1.10.1.
8. M¼M/F.
9. Next j.

10. Return M. &

Having let X ¼ n in step 2, the factorial subroutine is called upon in step 3 to

return F ¼ n!. Thus, in step 4, the number entered into memory location M is n!. On

the first trip through the loop in steps 5–9, j ¼ 1 and X ¼ r1. When the factorial

subroutine is called in step 7, the number it returns is F ¼ r1! so, in step 8, the num-

ber in memory location M is replaced by n!=r1!. Assuming j < k in step 9, action is

directed back to step 5, and the value of j is increased by 1. The second time step 8

is encountered, the number currently being stored in memory location M, namely,

n!=r1!, is replaced with ðn!=r1!Þ=r2! ¼ n!=ðr1!r2!Þ. And so on. Finally, the kth and

last time step 8 is encountered, the number in memory location M is replaced with�
n

r1;r2;...;rk

�
.

It might be valuable to pause here and give this algorithm a try, either by writing

a computer program to implement it or by following the steps of Algorithm 1.10.2

yourself as if you were a (virtual) computer. Test some small problem, the answer

to which you already know, e.g.,
�

11
4;4;2;1

�
¼ 34; 650 from the original MISSISSIPPI

problem. After convincing yourself that the algorithm works properly, try it on

Cð100; 2Þ.
Whether your computer is virtual or real, using Algorithm 1.10.2 to compute

Cð100; 2Þ may cause it to choke. If this happens, the problem most likely involves

the magnitude of 100!. The size of this number can be estimated by means of an

approximation known as Stirling’s formula*:

n! _¼
ffiffiffiffiffiffiffiffi
2pn
p n

e

� �n

: ð1:44Þ

Using common logarithms, 100=e ¼ 36:8 _¼ 101:57, so ð100=eÞ100 _¼ 10157. Sinceffiffiffiffiffiffi
2p
p

� 10 _¼ 25, Equation (1.44) yields 100! _¼ 2:5� 10158. (Current estimates

put the age of the universe at something less than 5� 1026 nanoseconds.)

Without a calculator or computer, one would not be likely even to consider eval-

uating Cð100; 2Þ by first computing 100!, because something along the following

lines is so much easier:

Cð100; 2Þ ¼ 98!� 99� 100

98!� 1� 2

¼ 99� 50

¼ ð100� 1Þ � 50

¼ 4950:

*Stirling’s formula should not be confused with Stirling’s identity, soon to be encountered in Chapter 2.
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The key to converting this easier approach into an algorithm is best illustrated with

a slightly less trivial example, e.g., (see Theorem 1.5.1)

n

r; s; t

� �
¼ Pðn; rÞ

r!
� Pðn� r; sÞ

s!
� Pðn� r � s; tÞ

t!
: ð1:45Þ

Viewing Pðn; rÞ=r! as

n� ðn� 1Þ � � � � � ðn� r þ 1Þ
1� 2� � � � � r

¼ n

1
� n� 1

2
� � � � � n� r þ 1

r
;

Pðn� r; sÞ=s! as

n� r

1
� n� r � 1

2
� � � � � n� r � sþ 1

s
;

and so on, suggests another subroutine:

1. M¼1:
2. For J¼1 to r.
3. M¼M � N/J:
4. N¼N-1.
5. Next J.

Setting N ¼ n and r ¼ rI and nesting this subroutine inside a ‘‘For I ¼ 1 to k’’ loop

yields another algorithm.

Can we do better? Almost surely. Because n ¼ r þ sþ t, the last factor in Equa-

tion (1.45) is Pðt; tÞ=t! ¼ t!=t! ¼ 1. Evidently, ‘‘For I ¼ 1 to k � 1’’ suffices in the

‘‘outside loop’’. On the other hand, since
�

n
r1;r2;...;rk

�
¼
�

n
r2;...;rk ;r1

�
, the outside loop

could just as well be ‘‘For I ¼ 2 to k’’.

1.10.3 (Improved Multinomial Coefficient) Algorithm

1. Input n, k, r1, r2, . . ., rk.
2. M¼1 and N¼n.
3. For I¼2 to k.
4. For J¼1 to rI.
5. M¼M � N/J.
6. N¼N-1.
7. Next J.
8. Next I.
9. Return M. &
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It is clear from our experience so far that different algorithms can achieve the

same outcome, some better than others! Algorithm 1.10.3 is superior to Algorithm

1.10.2 because it is more widely applicable. (Check to see that calculating

Cð100; 2Þ is no trouble for Algorithm 1.10.3.) In general, however, it is not always

clear which of two (or more) algorithms is best. It may not even be clear how to

interpret ‘‘best’’!

This book began with a discussion of the four-letter words that can be produced

by rearranging the letters in LUCK. An initial (brute-force) approach resulted in a

systematic list, reproduced in Fig. 1.10.1 for easy reference. In subsequent discus-

sions, it was often useful to imagine constructing a list, with the implied under-

standing that list making is mildly distasteful. And, so it is, as long as the only

reason to make a list is to count the words on it! Such peremptory judgments do

not apply when the list serves other purposes. There are, in fact, many good reasons

to make a list.

Suppose one had a reason for wanting a list of the 4! ¼ 24 rearrangements of

LUCK, e.g., to use in constructing a master list of encryption keys upon which

to base monthly corporate passwords for the next two years. In order to be most

useful, such a list should be organized so that specific words are easy to locate. Fig-

ure 1.10.1 gives one possibility, based on the order in which the letters appear in

LUCK. A more common approach is based on the order in which letters appear in

the alphabet.

1.10.4 Definition. Let X ¼ x1x2 . . . xp and Y ¼ y1y2 . . . yq be words containing p

and q letters, respectively. Then X comes before Y , in dictionary order,* if x1 comes

before y1 in alphabetical order; or if there is a positive integer r � p such that

xi ¼ yi, 1 � i < r, and xr precedes yr in alphabetical order; or if p < q and

xi ¼ yi, 1 � i � p.

A list of words in dictionary order is often called an alphabetized list, and dic-

tionary order is sometimes referred to as ‘‘alphabetical order.’’ Whatever such lists

are called, algorithms to generate them are surprisingly difficult to design. Our

approach takes advantage of the numerical order that is already hard-wired into

computers.

LUCK LUKC LCUK LCKU LKUC LKCU

ULCK ULKC UCLK UCKL UKLC UKCL

CLUK CLKU CULK CUKL CKLU CKUL

KLUC KLCU KULC KUCL KCLU KCUL

Figure 1.10.1. Rearrangements of LUCK.

* Dictionary order is also known as lexicographic order, lexicon being another word for ‘‘dictionary’’.
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1.10.5 Example. Consider ‘‘words’’ assembled from the alphabet 0; 1; 2; . . . ; 9f g.
Suppose alphabetical order for these ten ‘‘letters’’ is interpreted as numerical order.

Would it surprise you to learn that, in this context, dictionary order does not coin-

cide with the usual extension of numerical order? While 9 comes before 10 in

numerical order, 9 comes after 10 in dictionary order! (Confirm that, upon restric-

tion to number/words of the same length, the two orderings do coincide.) &

1.10.6 Example. In the spirit of Example 1.10.5, consider the 4! ¼ 24 four-

letter words that can be assembled by rearranging the letters/digits in 3142. Among

the challenges that stand between us and an algorithm to generate and list these

words in dictionary order is familiarity! We do chores like this all the time without

thinking about how we do them.

Let’s start at the beginning, focusing on process: Since 1 comes first in alphabe-

tical order, any word that begins with 1 will precede, in dictionary order, all words

that begin with something else. Similarly, among the words whose first letter is 1,

any whose second letter is 2 will precede all those whose second letter is not. Con-

tinuing in this way, it is easy to see that the list must begin with 1234, the unique

rearrangement of 3142 in which the letters occur in increasing alphabetical order.

Reversing the argument shows that the last word on the list is 4321, the unique word

in which the letters decrease, in alphabetical order (when read from left to right).

Because only two rearrangements of 3142 have initial fragment 12, the word fol-

lowing 1234 on the list can only be 1243. Indeed, any two words with the same

initial fragment have tailing fragments consisting of the same (complementary) let-

ters. Moreover, all words with the same initial fragment must appear consecutively

on the list, starting with the word in which the tailing letters are arranged in increas-

ing order and ending with the word in which the tailing letters are in decreasing

order.

After 1243 come the words with initial fragment 13. In the first of these, the tail

is 24, and in the second it is 42. The observation that 42 is the reverse of 24 suggests

a two-step procedure for finding the next word after 1342 on the list.

In the first step, 1342 is transformed into the intermediate word 1432 by switch-

ing the positions of 3 and 4. Observe that, while the switch changes the tail from 42

to 32, the new tail is (still) in decreasing order. In the second step, this intermediate

word is transformed from last to first among the words with initial fragment 14 by

reversing its tail. The result, 1423, is the next rearrangement of 3142 after 1342.

What comes after 1423? Well, 1432, of course! But, how does 1432 emerge from

the two-step process outlined in the previous paragraph? Because 1423 is the only

word on the list that begins with 142, it is the last word on the list with initial frag-

ment 142. (This time, the tail is 3.) Switching 2 and 3 results in the intermediate

word 1432 (whose tail is 2). Because a tail of length one reverses to itself, the

output of the two-step process is 1432.

What comes after 1432? Because 432 is in decreasing order, 1432 is the last

word on the list with initial fragment 1. Switching 1 with 2 produces the intermedi-

ate word 2431. Reversing the tail, 431, yields the next word on the list, namely,

2134.
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Imagine yourself somewhere in the middle of the list, having just written the

word d1d2d3d4. Using the two-step process to find the next word depends on being

able to recognize the letter to be switched. The key to doing that is the tail. Assum-

ing d1d2d3d4 6¼ 4321, the only way it can be the last word on the list with initial

fragment d1 . . . dj is if letters djþ1; . . . ; d4 are in decreasing order. For dj to be the

letter that gets switched, there must be some letter in the tail with which to switch it,

i.e., some dk 2 djþ1; . . . ; d4

� �
that comes after dj in alphabetical (numerical) order.

If dj; djþ1; . . . ; d4 were in decreasing order, there could be no such dk.

In the two-step process, the tail is the longest fragment (starting from the right-

hand end of d1d2d3d4) whose letters decrease (when read from left to right). Put

another way, the letter to be switched is dj, where j is the largest value of i such

that di < diþ1. Once j has been identified, step 1 is accomplished by switching dj

with dk, where dk is the smallest letter in the tail that is larger than dj, i.e.,

dk ¼ min di : i > j and di > dj

� �
: ð1:46Þ

(Because djþ1 > dj and because djþ1 belongs to the tail, dk always exists.)

When dj and dk are switched, a new tail is produced in which dk (from the old

tail) has been replaced by dj. Because of the way j and dk have been chosen, the

letters in the new tail are (still) decreasing. Reversing the new tail in step 2 is

equivalent to rearranging its letters into increasing order. &

The discussion in Example 1.10.6 leads to an algorithm for listing, in dictionary

order, all rearrangements of 3142.

1.10.7 Algorithm

1. Set di¼i, 1� i � 4.
2. Write d1 d2 d3 d4.
3. If di > diþ1, 1 � i � 3, then stop.
4. Let j be the largest i such that di < diþ1.
5. Let k be chosen to satisfy Equation (1.46).
6. Switch dj and dk.*

7. Reverse djþ1, . . ., d4.
8. Go to step 2. &

It would not be a bad idea to pause and implement Algorithm 1.10.7 on a

computer (real or virtual) and check to see that the output is something closely

resembling Fig. 1.10.2.

What about the master list of encryption keys upon which to base monthly

corporate passwords for the next two years? An algorithm to generate a list, in

*So that the new dj is the old dk , and vice versa.
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dictionary order, of all 24 rearrangements of LUCK, is only a step or two from

Algorithm 1.10.7. The missing steps involve explaining to a computer that C, K,

L, U is an alphabetical listing of the letters in LUCK.* This is most easily accom-

plished using ‘‘string variables’’.

Like a word, a text string is a sequence (ordered concatenation) of symbols. Like

numbers, strings of text can be stored in memory locations and labeled with sym-

bols. But, it is often necessary to choose labels that distinguish string memory loca-

tions from those used to store numbers. We will use a dollar sign to indicate a string

variable. The notation A$ (4)¼ ‘‘FOOD’’, e.g., indicates that the string FOOD

should be stored in the fourth cell of an array of string variable memory locations

labeled A$.

1.10.8 Example. To convert Algorithm 1.10.7 to an algorithm for generating, in

dictionary order, the rearrangements of LUCK, add step

0. L$(1)¼ ‘‘C’’, L$(2)¼ ‘‘K’’, L$(3)¼ ‘‘L’’, L$ (4)¼ ‘‘U’’

and modify step 2 so that it reads

2. Write L$(d1)L$(d2)L$(d3) L$(d4). &

Why not pause, modify Algorithm 1.10.7 now, and confirm that its output resem-

bles Fig. 1.10.3. (Compare with Fig. 1.10.1.)

1.10.9 Example. The conversion of Algorithm 1.10.7 in Example 1.10.8 was

relatively easy because the letters L, U, C, and K are all different. How much harder

would it be to design an algorithm to generate, in dictionary order, all 4!=2 ¼ 12

four-letter rearrangements of LOOK?

*As the name digital computer suggests, these machines were conceived and designed to crunch numbers.

Numerical order is programmed into their genes, so to speak. Tasks related to word processing, on the

other hand, have to be ‘‘learned’’, or ‘‘memorized’’ (which is why word processing software takes up so

much space on a hard drive).

1234 1243 1324 1342 1423 1432

2134 2143 2314 2341 2413 2431

3124 3142 3214 3241 3412 3421

4123 4132 4213 4231 4312 4321

Figure 1.10.2. The 24 rearrangements of 1234.

CKLU CKUL CLKU CLUK CUKL CULK

KCLU KCUL KLCU KLUC KUCL KULC

LCKU LCUK LKCU LKUC LUCK LUKC

UCKL UCLK UKCL UKLC ULCK ULKC

Figure 1.10.3. Rearrangements of LUCK in dictionary order.

108 The Mathematics of Choice



Let’s begin with an algorithm to produce, in dictionary order, all twelve rearran-

gements of 1233. This is surprisingly easy! It can be done by replacing step 1 in

Algorithm 1.10.7 with

1. Set d1¼1, d2¼2, d3¼3, and d4¼3

and replacing ‘‘<’’ in step 4 with ‘‘�’’.

To generate an ordered list of the rearrangements of LOOK, it suffices to modify

this modified algorithm in the same way that Algorithm 1.10.7 was modified to

obtain Example 1.10.8, namely, by adding step

0. L$(1)¼ ‘‘K’’, L$(2)¼ ‘‘L’’, L$(3)¼ ‘‘O’’

and changing step 2 to

2. Write L$ (d1) L$ (d2) L$ (d3) L$ (d4).

At this point, how hard can it be to write an algorithm for listing, in dictionary

order, all 11-letter words that can be produced by rearranging the letters in

MISSISSIPPI? &

It is one thing to generate and list, in dictionary order, all possible rearrange-

ments of the letters in some arbitrary word. It is something else to rearrange

some arbitrary list of words into dictionary order. The latter is a so-called sorting

problem. The comparison of various sorting algorithms affords a natural introduc-

tion to some applications of combinatorics in the analysis of algorithms. Those

interested in pursuing such a discussion are referred to Appendix A2.

1.10.10 Example. A systematic listing of the seven partitions of 5 might be

expected to look like this:

½5�; ½4; 1�; ½3; 2�; ½3; 1; 1�; ½2; 2; 1�; ½2; 1; 1; 1�; ½1; 1; 1; 1; 1�:

In reverse dictionary order, a ¼ ½a1; a2; . . . ; a‘� ‘ n comes before b ¼ ½b1; b2;
. . . ; bs� ‘ n if (and only if) a1 > b1 or there is an integer t < ‘ such that ai ¼ bi,

1 � i � t, and atþ1 > btþ1. Let’s see if we can devise an algorithm to generate and

list, in reverse dictionary order, all pðnÞ partitions of n.

Because the list begins with ½n�, all that’s required is a step-by-step procedure

to find the next partition, in reverse dictionary order, after a fixed but

arbitrary a ¼ ½a1; a2; . . . ; a‘� 6¼ ½1n� (the last partition on the list). There are two

cases.

Case 1: If a‘ ¼ 1, then a ¼ ½a1; a2; . . . ; ak; 1; . . . ; 1�, where 1 occurs with mul-

tiplicity m, ak > 1, and ‘ ¼ k þ m. If m is the next partition after a, then m is the first

partition, in reverse dictionary order, that satisfies the conditions mi ¼ ai, 1 � i < k,
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and mk ¼ ak � 1. To find m, let S ¼ ak þ m, the sum of the parts of a coming

after ak�1. If q is the quotient and r the remainder, when S is divided by

d ¼ ak � 1, then

m ¼ ½a1; a2; . . . ; ak�1; ak � 1; . . . ; ak � 1; r�;

where ak � 1 occurs with multiplicity q and it is understood that r does not appear if

it is zero.

Case 2: If a‘ > 1, the next partition after a is

m ¼ ½a1; a2; . . . ; a‘�1; a‘ � 1; 1�: &

Let’s design an algorithm to implement the ideas of Example 1.10.10.

Suppose

a ¼ ½nmðnÞ; . . . ; 2mð2Þ; 1mð1Þ�;

where imðiÞ is understood not to appear when mðiÞ ¼ 0. If mð1Þ ¼ n, then a ¼ ½1n�
and the list is complete. Otherwise, let j be the smallest integer larger than 1 such

that mðjÞ > 0. The steps used in Example 1.10.10 to produce m, the next partition

after a, are these. Replace mð jÞ with mð jÞ � 1. In case 1 (the case in which

mð1Þ > 0), let q and r be the quotient and remainder when S ¼ jþ mð1Þ is divided

by d ¼ j� 1. Set mð1Þ ¼ 0; then set mð j� 1Þ ¼ q and, if r > 0, set m(r)¼ 1.

In case 2; if j ¼ 2, set mð1Þ ¼ 2; otherwise, set mð j� 1Þ ¼ 1 and mð1Þ ¼ 1. A

formal algorithm might look like this:

1.10.11 (Partition Generating) Algorithm

1. Input n.
2. Set m (i)¼0, 1�i<n, and m (n)¼1.
3. Write [nm(n), . . . ,2m(2), 1m(1)].
4. If m(1)¼ n, then stop.
5. S¼m(1).
6. m (1)¼0.
7. j¼1.
8. j¼jþ1.
9. If m(j)¼0, then go to step 8.

10. D¼j�1.
11. m(j)¼m(j)�1.
12. If S¼0, then go to step 19.
13. S¼Sþj.
14. Q¼ bS/Dc.
15. R¼S�D � Q.
16. m(D)¼Q.
17. If R>0, then m(R)¼1.
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18. Go to step 3.
19. If j¼2, then go to step 23.
20. m(D)¼1.
21. m(1)¼1.
22. Go to step 3.
23. m(1)¼2.
24. Go to step 3. &

Note that case 1 is addressed in steps 13–18 of Algorithm 1.10.11, while case 2

is handled in steps 19–24.

Having endured the development of Algorithm 1.10.11, why not convert it to a

computer program and have the satisfaction of seeing the partitions of n appear on a

computer screen?

1.10. EXERCISES

1 Write an algorithm to list the integers 1–100 in numerical order.

2 Write an algorithm to input two numbers and output

(a) their product.

(b) their sum.

(c) their difference.

3 Assuming that r1; r2; . . . ; rk vary in size, which of them should be chosen to

play the role of r1 in Algorithm 1.10.3?

4 Without actually running any programs, describe the output that would be

produced if step 0 in Example 1.10.8 were replaced with

0. L$ (1)¼ ‘‘K’’, L$(2)¼ ‘‘L’’, L$(3)¼ ‘‘O’’,L$(4)¼ ‘‘O’’.

5 Write an algorithm to generate and list, in dictionary order,

(a) all 5! ¼ 120 rearrangements of LUCKY.

(b) all 4!=2 ¼ 12 rearrangements of COOL.

6 Write an algorithm to compute and output the first ten rows (as n goes from 0

to 9) of Pascal’s triangle. Base your algorithm on

(a) the algebraic formula Cðn; rÞ ¼ n!=½r!ðn� rÞ!�:
(b) Pascal’s relation.

7 Write an algorithm to generate and list, in dictionary order, all rearrangements

of

(a) BANANA. (b) MISSISSIPPI. (c) MATHEMATICS.
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8 Write an algorithm to generate and output the first ten rows of the partition

triangle (i.e., the array whose ðn;mÞ-entry is pmðnÞ, the number of m-part

partitions of n).

9 Write an algorithm to input n and output pðnÞ, the number of partitions of n.

Base your algorithm on

(a) your solution to Exercise 8.

(b) Algorithm 1.10.11.

10 Write an algorithm to input a0–a4 and b0–b3 and to output the coefficient of xk,

7 � k � 0, in the product

ða0x4 þ a1x3 þ � � � þ a4Þðb0x3 þ b1x2 þ � � � þ b3Þ:

11 Write an algorithm to input x1–x6 and to output

(a) the third elementary symmetric function, E3ðx1; x2; . . . ; x6Þ.
(b) all C(6,3) three-element subsets of 1; 2; 3; 4; 5; 6f g.
(c) all Cð6; 3Þ three-element subsets of x1; x2; . . . ; x6f g.

12 Write an algorithm to input x1–x6 and to output

(a) E2ðx1; x2; . . . ; x6Þ.
(b) all Cð6; 2Þ two-element subsets of x1; x2; . . . ; x6f g.
(c) the complements of the subsets in part (b).

(d) E4ðx1; x2; . . . ; x6Þ.

13 Write an algorithm to input six positive numbers x1–x6 and to output

E5ðx1; x2; . . . ; x6Þ.

14 Write an algorithm to input the parts of a partition and output the parts of its

conjugate.

15 Assuming 0 comes before 1 in alphabetical order, write an algorithm to

generate and output, in dictionary order,

(a) all binary words of length 4 (i.e., all four-letter words that can be

assembled using the alphabet 0; 1f g).
(b) all binary words of length 8 and weight 4, where the weight of a binary

word is the number of 1’s among its bits.

16 Write an algorithm to input n and output, in dictionary order, all binary words

of length n. (Hint: Exercise 15(a).)

17 The problem in Exercise 16 is to generate and list binary words in dictionary

order. Here, the problem is to generate and list binary words in a different
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order, one in which adjacent words differ in a single bit.* Because the kth word

differs from its immediate predecessor in a single bit, to solve this problem it

suffices to identify that bit. Here is a procedure for doing that: Every bit of the

first word is zero. For 1 < k � 2n, the kth word is obtained from its

predecessor by changing the dth bit, where d � 1 is the highest power of 2

that exactly divides k � 1.

(a) List the 16 binary words of length 4 in the order prescribed by this

procedure. (Hint: As you go along, check to be sure that each newly listed

word is different from all of its predecessors, and that it differs from its

immediate predecessor in a single bit.)

(b) Show that word k differs from word 2n � k þ 1 in a single bit, 1 � k � 2n.

(c) Show that the procedure described in this exercise generates 2n different

binary words of length n.

(d) Write an algorithm to implement the procedure described in the

introduction to this exercise.

(e) Write an algorithm to list the 2n subsets of 1; 2; . . . ; nf g in such a way that

any two adjacent subsets on the list differ by just one element.

18 Assuming the keyword RND returns a pseudorandom{ number from the

interval (0, 1), the following subroutine will generate 1000 pseudorandom

integers from the interval [0, 9]:

1. For I¼1 to 1000.
2. R(I)¼ b10�RNDc.
3. Next I.

To the extent that RND simulates a true random-number generator, each

integer in [0, 9] ought to occur with equal likelihood. Each time the subroutine

is implemented, one would expect the number 9, e.g., to occur about 100

times.

(a) Write a computer program based on (an appropriate modification of) the

subroutine to generate and output 50 pseudorandom integers between 0

and 9 (inclusive).

(b) Run your program from part (a) ten times (using ten different randomizing

‘‘seeds’’) and record the number of 9’s that are produced in each run.

(c) Modify your program from part (a) to generate and print out 500

pseudorandom integers between 0 and 9 (inclusive) and, at the end, to

output the number of 9’s that were printed.

*A list in which each entry differs as little as possible from its predecessor is commonly called a ‘‘Gray

code’’. Because such lists have nothing to do with binary codes, ‘‘Gray list’’ might be a better name for

them.
{An algorithm to generate random numbers is something of an oxymoron. Truly random numbers are

surprisingly difficult to obtain.
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19 Assuming keyword RND returns a pseudorandom number, here is an algo-

rithm to simulate the flipping of a single fair coin:

1. X¼RND.
2. If X<1/2, then write ‘‘H’’.
3. If X�1/2, then write ‘‘T’’.

(a) Write an algorithm to output 100 simulated flips of a fair coin.

(b) If you were to run a computer program that implements your algorithm

from part (a), how many H’s would you expect to see?

(c) Write a computer program to implement your algorithm from part (a), run

it ten times (with ten different randomizing ‘‘seeds’’), and record the total

number of H ’s produced on each run.

(d) Write an algorithm to output 100 simulated flips of a fair coin and, at the

end, output the total numbers of heads and tails.

(e) Write an algorithm to output 100 simulated flips of a fair coin and, at the

end, output the (empirical) probability of heads.

20 If a fair coin is flipped 100 times, it would not be unusual to see a string of four

or five heads in a row.

(a) Run your program from Exercise 19(c) ten times (using ten different

randomizing ‘‘seeds’’) and record the longest string of consecutive H’s

and the longest string of consecutive T’s for each run.

(b) Modify your algorithm/program from Exercise 19(a)/(c) so that it outputs

the length of a longest string of consecutive H’s and of a longest string of

consecutive T’s.

21 Suppose 12 fair coins are tossed into the air at once.

(a) Compute the probability of six heads and six tails.

(b) Write an algorithm to simulate 100 trials of tossing a dozen coins and to

output the empirical probability that half the coins come up heads and half

tails. (See the discussion of the keyword RND in the introduction to

Exercise 18.)

22 Write an algorithm to simulate 100 flips of a biased coin, one in which heads

occurs a third of the time. (Hint: See the introduction to Exercise 19.)

23 Write an algorithm to simulate 100 rolls of a fair die. (See the introduction to

Exercise 18 for an explanation of the keyword RND.)

24 Assuming keyword RND returns a pseudorandom number, write an algorithm

to simulate 1200 trials of rolling two (fair) dice

(a) and output the results.

(b) and output the empirical probability of rolling a (total of) 7.
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25 Assuming keyword RND returns a pseudorandom number, write an algorithm

to simulate 1200 trials of rolling a single (fair) dodecahedral die, and

to output the results and the empirical probability of rolling a 7. (Hint: A

dodecahedral die has twelve faces numbered 1–12.)

26 Assuming keyword RND returns a pseudorandom number, write an algorithm

to simulate 1200 trials of rolling five (fair) dodecahedral dice and output the

empirical probability of rolling a (sum of) 30.
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