
PART I

Understanding iOS and Enterprise
Networking

 � CHAPTER 1: Introducing iOS Networking Capabilities

 � CHAPTER 2: Designing Your Service Architecture

c01.indd 1c01.indd 1 12/09/12 8:19 PM12/09/12 8:19 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 12/09/12 8:19 PM12/09/12 8:19 PM

Introducing iOS Networking
Capabilities

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the iOS networking frameworks

 ➤ Key networking APIs available to developers

 ➤ Using your application’s run Loop eff ectively

Great iOS applications require a simple and intuitive user interface. Likewise, great applications
that communicate with a web service of any kind require a well-architected networking
layer. An application’s architecture must be designed with the fl exibility to adapt to changing
requirements and the capability to gracefully handle constantly changing network conditions,
all while maintaining core design principles that enable proper maintainability and scalability.

When designing a mobile application’s architecture you must have a fi rm grasp of key
concepts, such as the run loop, the various networking APIs available, and how those APIs
integrate with the run loop to create a responsive, networked application framework. This
chapter provides a detailed discussion of run loops and how to use them effectively within an
application. Also provided is an overview of the key APIs and when each should be used.

UNDERSTANDING THE NETWORKING FRAMEWORKS

Before you begin development of an iOS application that interacts with the network, you must
understand how the networking layers are organized in Objective-C, as shown in Figure 1-1.

1

c01.indd 3c01.indd 3 12/09/12 8:19 PM12/09/12 8:19 PM

4 ❘ CHAPTER 1 INTRODUCING iOS NETWORKING CAPABILITIES

Each iOS application sits on top of a networking framework stack composed of four levels. At the
top is the Cocoa level, which includes the Objective-C APIs for URL loading, Bonjour, and Game
Kit. Below Cocoa sits Core Foundation, a set of C APIs that includes CFNetwork, the foundation of
most application-level networking code. CFNetwork provides a simple networking interface that sits on
top of CFStream and CFSocket. Those two classes are lightweight wrappers around BSD sockets, which
form the lowest level and sit closest to the antenna hardware. BSD sockets are implemented strictly in
C and provide developers absolute control over any communication to a remote device or server.

As you move down each level in the framework stack, you tend to gain tighter control but give up
the ease of use and abstraction that the previous level provided. Although there are situations in
which this may be warranted, Apple recommends that you stay at the CFNetwork layer and above.
Raw sockets at the BSD level do not have access to the system wide VPN nor do they activate the
Wi-Fi or cellular radios, something CFNetwork handles for you.

Before you design your applications’ networking layer you must understand the various APIs avail-
able to you and how you can leverage them. The next section covers the key iOS networking frame-
works and provides a brief introduction explaining how you can use them. Each API covered is
discussed in detail in a future chapter.

iOS NETWORKING APIS

Each level of the framework stack has a set of key APIs that deliver a range of functionality and
control to developers. Each level offers more abstraction than the level below it (refer to Figure 1-1).
However, this abstraction comes at a cost of losing some control. This section provides an overview
of key APIs in iOS and the considerations when using each of them.

Wi-Fi Cellular Bluetooth

BSD

CFNetServices

CFNetwork

NSURL
Bonjour

(NSNetService)

Game KitWeb Kit

A
p

p
s

C
o

c
o

a
C

o
re

F
o

u
n

d
a

ti
o

n
O

S
H

a
rd

w
a

re

Core

Bluetooth

FIGURE 1-1

c01.indd 4c01.indd 4 12/09/12 8:19 PM12/09/12 8:19 PM

iOS Networking APIs ❘ 5

NSURLConnection

NSURLConnection is a Cocoa level API that provides a simple method to load URL requests, which
can interact with a web service, fetch an image or video, or simply retrieve a formatted HTML
document. It is built on top of NSStream and was designed with optimized support for the four most
common URI schemes: file, HTTP, HTTPS, and FTP. Although NSURLConnection restricts the
protocols over which you can communicate, it abstracts much of the lower-level work required to
read and write from buffers, includes built-in support for authentication challenges, and offers a
robust caching engine.

The NSURLConnection interface is sparse, relying heavily on the NSURLConnectionDelegate
protocol, which enables an application to intervene at many points in the connection life cycle.
NSURLConnection requests are asynchronous by default; however, there is a convenience method to
send synchronous requests. Synchronous requests do block the calling thread, so you must design
applications accordingly. Chapter 3, “Making Requests” covers NSURLConnection in detail and
provides a number of examples.

Game Kit

At its core, Game Kit provides another peer-to-peer networking option to iOS applications. In a
traditional network confi guration, Game Kit is built on top of Bonjour; however, Game Kit does
not require a network infrastructure to function. It can create ad-hoc Bluetooth Personal Area
Networks (PAN), which makes it a great candidate for networking in locations with little or no
established infrastructure.

Game Kit requires only a session identifi er, display name, and connection mode when setting up a
network. It does not require confi guring of a socket or any other low-level networking to
communicate with connected peers. Game Kit communicates via the GKSessionDelegate protocol.
Chapter 12, “Device-to-Device Communication with Game Kit” discusses integrating Game Kit into
your applications.

Bonjour

Bonjour is Apple’s implementation of zero confi guration networking (zeroconf). Bonjour provides a
mechanism to discover and connect with devices or services on the network, and alleviates the need
to know a device’s network address. Instead, Bonjour refers to services as a tuple of name, service
type, and domain. Bonjour abstracts the low-level networking requirements for multicast DNS
(mDNS) and DNS-based Service Discovery (DNS-SD).

At the Cocoa level, the NSNetService API provides an interface for publishing and resolving
address information for a Bonjour service. You can use the NSNetServiceBrowser API to
discover available services on the network. Publishing a Bonjour service, even with Cocoa level
APIs, requires an understanding of Core Foundation to confi gure sockets for communication.
Chapter 13, “Ad-Hoc Networking with Bonjour,” includes an in-depth overview of zero
confi guration networking, Bonjour, and an example of how to implement a Bonjour-based
service.

c01.indd 5c01.indd 5 12/09/12 8:19 PM12/09/12 8:19 PM

6 ❘ CHAPTER 1 INTRODUCING iOS NETWORKING CAPABILITIES

NSStream

NSStream is a Cocoa level API built on top of CFNetwork that serves as the foundation
for NSURLConnection and is intended for lower-level networking tasks. Much like
NSURLConnection, NSStream provides a mechanism to communicate with remote servers or local
fi les. However, you can use NSStream to communicate over protocols such as telnet or SMTP that
are not supported by NSURLConnection.

The additional control that NSStream provides does come at a cost. NSStream does not have built-in
support for handling HTTP/S response status codes or authentication challenges. It transmits and
receives data into C buffers, which may be unfamiliar to a strictly Objective-C developer. It also
can’t manage multiple outbound requests and may require subclassing to add that feature. NSStream
is asynchronous and communicates updates via the NSStreamDelegate. Chapter 8, “Low-Level
Networking,” and Chapter 13, “Ad-Hoc Networking with Bonjour” cover different implementa-
tions of NSStream.

CFNetwork

The CFNetwork API is layered on top of the fundamental BSD sockets and is used in the
implementations of NSStream, the URL loading system, Bonjour, and Game Kit APIs. It
provides native support for advanced protocols such as HTTP and FTP. The key difference between
CFNetwork and BSD sockets is run loop integration. If your application uses CFNetwork, input
and output events are scheduled on the thread’s run loop. If input and output events occur on a
secondary thread, it is your responsibility to start the run loop in the appropriate mode. The “Run
Loops” section later in this chapter provides additional details.

CFNetwork provides more confi guration options than the URL loading system, which can be both
benefi cial and frustrating. These confi guration options are visible when creating an HTTP request
with CFNetwork. When creating the request you must manually add any HTTP headers and cook-
ies that must be transmitted with the request. With NSURLConnection, though, standard headers
and any cookies in the cookie jar are automatically added for you.

The CFNetwork infrastructure is built on top of the CFSocket and CFStream APIs from the Core
Foundation layer. CFNetwork includes APIs for specifi c protocols such as CFFTP for
communicating with FTP servers, CFHTTP for sending and receiving HTTP messages, and
CFNetServices for publishing and browsing Bonjour services. Chapter 8 covers CFNetwork in
greater detail, and Chapter 13 provides an overview of Bonjour.

BSD Sockets

BSD sockets form the basis for most Internet activity and are the lowest level in the networking
framework hierarchy. BSD sockets are implemented in C but can be used within Objective-C code.
Use of the BSD socket API is not recommended because it does not have any hooks into the
operating system. For example, BSD sockets are not tunneled through the system wide VPN nor do
any of the API calls automatically activate the Wi-Fi or cellular radios if they are powered down.
Apple recommends that you work solely with at least CFNetwork or higher. Chapter 8 covers BSD
sockets and CFNetwork in greater detail and provides examples of how they can be integrated into
your application.

c01.indd 6c01.indd 6 12/09/12 8:19 PM12/09/12 8:19 PM

Run Loops ❘ 7

As you implement the various network APIs, you must understand how they integrate with your
application. The next section discusses the concept of run loops, which monitor for network events
(among other things) from the operating system and relay those events to your application.

RUN LOOPS

Run loops, represented by the class NSRunLoop, are a fundamental component of threads that enable
the operating system to wake sleeping threads to manage incoming events. A run loop is a loop
confi gured to schedule tasks and process incoming events for a period of time. Each thread in an
iOS application can have at most one run loop. For the main thread the run loop is started for you
and is accessible after the application delegate’s applicationDidFinishLaunchingWithOptions:
method is invoked.

Secondary threads, however, must run their run loop explicitly, if needed. Before starting a run
loop in a secondary thread, you must add at least one input source or timer; otherwise, the run loop
exits immediately. Run loops provide developers with the ability to interact with a thread, but are not
always necessary. Threads spawned to process a large data set without any other interaction, for
example, probably do not warrant starting the run loop. However, if the secondary thread interacts
with the network, you need to start the run loop.

There are two source types from which run loops receive events: input sources and timers. Input
sources, which are typically either port-based or custom, deliver events to the application
asynchronously. The primary difference between the two types of sources is that the kernel signals
port-based sources automatically, whereas custom sources must be signaled manually from a
different thread. You can create a custom input source by implementing several callback functions
associated with CFRunLoopSourceRef.

Timers generate time-based notifi cations that provide a mechanism for applications (threads
specifi cally) to perform a specifi c task at a future time. Timer events are delivered synchronously
and are associated with a specifi c mode, which is discussed later in this section. If that particular
mode is not currently monitored, events will be ignored, and the thread will not be notifi ed until the
run loop is “run” in the corresponding mode.

You can confi gure timers to fi re once or repeatedly. Rescheduling is based on the scheduled fi re time,
not the actual fi re time. If a timer fi res while the run loop is executing an application handler method,
it waits until the next pass through the run loop to call the timer handler, typically set via @selector().
If fi ring the handler is delayed to the point in which the next invocation occurs, the timer fi res only
one event with the delayed event being suppressed.

Run loops can also have observers, which are not monitored and provide a way for objects to
receive callbacks as certain activities in the run loop execution occur. These activities include
when the run loop is entered or exited, as the run loop goes to sleep or wakes up, and before the
run loop processes an input source or timer. They are documented in the CFRunLoopActivity
enumeration. Observers can be confi gured to fi re once, which removes the observer after it
has been fi red, or repeatedly. To add a run loop observer, use the Core Foundation function
CFRunLoopObserverRef().

c01.indd 7c01.indd 7 12/09/12 8:19 PM12/09/12 8:19 PM

8 ❘ CHAPTER 1 INTRODUCING iOS NETWORKING CAPABILITIES

Run Loop Modes

Each pass through the run loop is run in a specifi c mode specifi ed by you. Run loop modes are a
convention used by the operating system to fi lter the sources that are monitored and allowed to
deliver events, such as calling a delegate method. Modes include the input sources and timers that
should be monitored as well as any observers that should be notifi ed of run loop events.

There are two predefi ned run loop modes in iOS. NSDefaultRunLoopMode
(kCFRunLoopDefaultMode in Core Foundation) is the system default and should typically
be used when starting run loops and confi guring input sources. NSRunLoopCommonModes
(kCFRunLoopCommonModes in Core Foundation) is a collection of modes that is confi gurable.
Assigning NSRunLoopCommonModes to an input source by calling a method such as
scheduleInRunLoop:forMode: on an input source instance associates it with all modes currently
in the group.

NOTE OSX includes three additional predefi ned run loop modes that you
may see referenced in different documentation. NSConnectionReplyMode,
NSModalPanelRunLoopMode, and NSEventTrackingRunLoopMode provide
additional fi ltering options but are not available on iOS.

Although NSRunLoopCommonModes is confi gurable, it is a low-level process that requires calling the
Core Foundation function CFRunLoopAddCommonMode(). This automatically registers input sources,
timers, and observers with the new mode instead of manually adding them to each new mode. You
can defi ne custom run loop modes by specifying a custom string such as @"CustomRunLoopMode".
For your custom run loop to be effective, you must add at least one input source, timer, or observer.

Although this provides an overview of run loops, Apple provides several in-depth resources on
run loop management that you should review if you develop advanced, network-based, and multi-
threaded applications. The developer documentation is available at https://developer.apple
.com/library/mac/#documentation/Cocoa/Conceptual/Multithreading/RunLoopManagement/

RunLoopManagement.html. Networking techniques that benefi t from run loop integration are
discussed in their respective chapters such as Chapter 8, “Low-Level Networking” and Chapter 13,
“Ad-Hoc Networking with Bonjour.”

SUMMARY

Understanding the iOS networking stack and how applications interact with the run loop is an
important tool in the iOS developer’s belt. A well-architected networking layer provides incredible
fl exibility to an application. Likewise, a poorly designed networking layer can be detrimental to its
success and ability to scale.

The tools presented in this chapter provide an overview of the various networking APIs and how
they compare. How they are applied, although covered briefl y here, is discussed in detail in the
upcoming chapters.

c01.indd 8c01.indd 8 12/09/12 8:19 PM12/09/12 8:19 PM

