
1 Infinite Sequences and Series

In experimental science and engineering, as well as in everyday life, we deal with integers,
or at most rational numbers. Yet in theoretical analysis, we use real and complex numbers,
as well as far more abstract mathematical constructs, fully expecting that this analysis will
eventually provide useful models of natural phenomena. Hence we proceed through the con-
struction of the real and complex numbers starting from the positive integers1. Understanding
this construction will help the reader appreciate many basic ideas of analysis.

We start with the positive integers and zero, and introduce negative integers to allow sub-
traction of integers. Then we introduce rational numbers to permit division by integers. From
arithmetic we proceed to analysis, which begins with the concept of convergence of infinite
sequences of (rational) numbers, as defined here by the Cauchy criterion. Then we define
irrational numbers as limits of convergent (Cauchy) sequences of rational numbers.

In order to solve algebraic equations in general, we must introduce complex numbers and
the representation of complex numbers as points in the complex plane. The fundamental
theorem of algebra states that every polynomial has at least one root in the complex plane,
from which it follows that every polynomial of degree n has exactly n roots in the complex
plane when these roots are suitably counted. We leave the proof of this theorem until we study
functions of a complex variable at length in Chapter 4.

Once we understand convergence of infinite sequences, we can deal with infinite series of
the form

∞∑

n=1

xn

and the closely related infinite products of the form

∞∏

n=1

xn

Infinite series are central to the study of solutions, both exact and approximate, to the differ-
ential equations that arise in every branch of physics. Many functions that arise in physics
are defined only through infinite series, and it is important to understand the convergence
properties of these series, both for theoretical analysis and for approximate evaluation of the
functions.

1To paraphrase a remark attributed to Leopold Kronecker: “God created the positive integers; all the rest is human
invention.”
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2 1 Infinite Sequences and Series

We review some of the standard tests (comparison test, ratio test, root test, integral test)
for convergence of infinite series, and give some illustrative examples. We note that absolute
convergence of an infinite series is necessary and sufficient to allow the terms of a series to be
rearranged arbitrarily without changing the sum of the series.

Infinite sequences of functions have more subtle convergence properties. In addition to
pointwise convergence of the sequence of values of the functions taken at a single point,
there is a concept of uniform convergence on an interval of the real axis, or in a region of
the complex plane. Uniform convergence guarantees that properties such as continuity and
differentiability of the functions in the sequence are shared by the limit function. There is also
a concept of weak convergence, defined in terms of the sequences of numbers generated by
integrating each function of the sequence over a region with functions from a class of smooth
functions (test functions). For example, the Dirac δ-function and its derivatives are defined in
terms of weakly convergent sequences of well-behaved functions.

It is a short step from sequences of functions to consider infinite series of functions, espe-
cially power series of the form

∞∑

n=0

anzn

in which the an are real or complex numbers and z is a complex variable. These series are
central to the theory of functions of a complex variable. We show that a power series converges
absolutely and uniformly inside a circle in the complex plane (the circle of convergence), with
convergence on the circle of convergence an issue that must be decided separately for each
particular series.

Even divergent series can be useful. We show some examples that illustrate the idea of
a semiconvergent, or asymptotic, series. These can be used to determine the asymptotic be-
havior and approximate asymptotic values of a function, even though the series is actually di-
vergent. We give a general description of the properties of such series, and explain Laplace’s
method for finding an asymptotic expansion of a function defined by an integral representation
(Laplace integral) of the form

I(z) =
∫ a

0

f(t)ezh(t) dt

Beyond the sequences and series generated by the mathematical functions that occur in
solutions to differential equations of physics, there are sequences generated by dynamical
systems themselves through the equations of motion of the system. These sequences can
be viewed as iterated maps of the coordinate space of the system into itself; they arise in
classical mechanics, for example, as successive intersections of a particle orbit with a fixed
plane. They also arise naturally in population dynamics as a sequence of population counts at
periodic intervals.

The asymptotic behavior of these sequences exhibits new phenomena beyond the simple
convergence or divergence familiar from previous studies. In particular, there are sequences
that converge, not to a single limit, but to a periodic limit cycle, or that diverge in such a way
that the points in the sequence are dense in some region in a coordinate space.
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An elementary prototype of such a sequence is the logistic map defined by

Tλ : x → xλ = λx(1 − x)

This map generates a sequence of points {xn} with

xn+1 = λxn(1 − xn)

(0 < λ < 4) starting from a generic point x0 in the interval 0 < x0 < 1. The behavior of
this sequence as a function of the parameter λ as λ increases from 0 to 4 provides a simple
illustration of the phenomena of period doubling and transition to chaos that have been an
important focus of research in the past 30 years or so.

1.1 Real and Complex Numbers

1.1.1 Arithmetic

The construction of the real and complex number systems starting from the positive integers
illustrates several of the structures studied extensively by mathematicians. The positive inte-
gers have the property that we can add, or we can multiply, two of them together and get a
third. Each of these operations is commutative:

x ◦ y = y ◦ x (1.1)

and associative:

x ◦ (y ◦ z) = (x ◦ y) ◦ z (1.2)

(here ◦ denotes either addition or multiplication), but only for multiplication is there an identity
element e, with the property that

e ◦ x = x = x ◦ e (1.3)

Of course the identity element for addition is the number zero, but zero is not a positive integer.
Properties (1.2) and (1.3) are enough to characterize the positive integers as a semigroup under
multiplication, denoted by Z∗ or, with the inclusion of zero, a semigroup under addition,
denoted by Z+.

Neither addition nor multiplication has an inverse defined within the positive integers. In
order to define an inverse for addition, it is necessary to include zero and the negative integers.
Zero is defined as the identity for addition, so that

x + 0 = x = 0 + x (1.4)

and the negative integer −x is defined as the inverse of x under addition,

x + (−x) = 0 = (−x) + x (1.5)
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With the inclusion of the negative integers, the equation

p + x = q (1.6)

has a unique integer solution x (≡ q − p) for every pair of integers p, q. Properties (1.2)–(1.5)
characterize the integers as a group Z under addition, with 0 as an identity element. The fact
that addition is commutative makes Z a commutative, or Abelian, group. The combined
operations of addition with zero as identity, and multiplication satisfying Eqs. (1.2) and (1.3)
with 1 as identity, characterize Z as a ring, a commutative ring since multiplication is also
commutative. To proceed further, we need an inverse for multiplication, which leads to the
introduction of fractions of the form p/q (with integers p, q). One important property of frac-
tions is that they can always be reduced to a form in which the integers p, q have no common
factors2. Numbers of this form are rational. With both addition and multiplication having
well-defined inverses (except for division by zero, which is undefined), and the distributive
law

a ∗ (x + y) = a ∗ x + a ∗ c = y (1.7)

satisfied, the rational numbers form a field, denoted by Q.

Exercise 1.1. Let p be a prime number. Then
√

p is not rational. �

Note. Here and throughout the book we use the convention that when a proposition is simply
stated, the problem is to prove it, or to give a counterexample that shows it is false.

1.1.2 Algebraic Equations

The rational numbers are adequate for the usual operations of arithmetic, but to solve algebraic
(polynomial) equations, or to carry out the limiting operations of calculus, we need more. For
example, the quadratic equation

x2 − 2 = 0 (1.8)

has no rational solution, yet it makes sense to enlarge the rational number system to include
the roots of this equation. The real algebraic numbers are introduced as the real roots of
polynomials of any degree with integer coefficients. The algebraic numbers also form a field.

Exercise 1.2. Show that the roots of a polynomial with rational coefficients can be ex-
pressed as roots of a polynomial with integer coefficients. �

Complex numbers are introduced in order to solve algebraic equations that would other-
wise have no real roots. For example, the equation

x2 + 1 = 0 (1.9)

has no real solutions; it is “solved” by introducing the imaginary unit i ≡ √−1 so that the
roots are given by x = ±i. Complex numbers are then introduced as ordered pairs (x, y) ∼

2The study of properties of the positive integers, and their factorization into products of prime numbers, belongs
to a fascinating branch of pure mathematics known as number theory, in which the reducibility of fractions is one of
the elementary results.
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x + iy, of real numbers; x, y can be restricted to be rational (algebraic) to define the complex
rational (algebraic) numbers.

Complex numbers can be represented as points (x, y) in a plane (the complex plane) in a
natural way, and the magnitude of the complex number x + iy is defined by

|x + iy| ≡
√

x2 + y2 (1.10)

In view of the identity

eiθ = cos θ + i sin θ (1.11)

we can also write

x + iy = reiθ (1.12)

with r = |x + iy| and tan θ = y/x. These relations have an obvious interpretation in terms
of the polar coordinates of the point (x, y). We also define

arg z ≡ θ (1.13)

for z �= 0. The angle arg z is the phase of z. Evidently it can only be defined as mod 2π;
adding any integer multiple of 2π to arg z does not change the complex number z, since

e2πi = 1 (1.14)

Equation (1.14) is one of the most remarkable equations of mathematics.

1.1.3 Infinite Sequences; Irrational Numbers

To complete the construction of the real and complex numbers, we need to look at some
elementary properties of sequences, starting with the formal definitions:

Definition 1.1. A sequence of numbers (real or complex) is an ordered set of numbers in
one-to-one correspondence with the positive integers; write {zn} ≡ {z1, z2, . . .}.

Definition 1.2. The sequence {zn} is bounded if there is some positive number M such that
|zn| < M for all positive integers n.

Definition 1.3. The sequence {xn} of real numbers is increasing (decreasing) if xn+1 > xn

(xn+1 < xn) for every n. The sequence is nondecreasing (nonincreasing) if xn+1 ≥ xn

(xn+1 ≤ xn) for every n. A sequence belonging to one of these classes is monotone (or
monotonic).

Remark. The preceding definition is restricted to real numbers because it is only for real
numbers that we can define a “natural” ordering that is compatible with the standard measure
of the distance between the numbers. �

Definition 1.4. The sequence {zn} is a Cauchy sequence if for every ε > 0 there is a positive
integer N such that |zp − zq| < ε whenever p, q > N .



6 1 Infinite Sequences and Series

Definition 1.5. The sequence {zn} is convergent to the limit z (write {zn} → z) if for every
ε > 0 there is a positive integer N such that |zn − z| < ε whenever n > N .

There is no guarantee that a Cauchy sequence of rational numbers converges to a rational,
or even algebraic, limit. For example, the sequence {xn} defined by

xn ≡
(

1 +
1
n

)n

(1.15)

converges to the limit e = 2.71828 . . ., the base of natural logarithms. It is true, though
nontrivial to prove, that e is not an algebraic number. A real number that is not algebraic is
transcendental. Another famous transcendental number is π, which is related to e through
Eq. (1.14).

If we want to insure that every Cauchy sequence of rational numbers converges to a limit,
we must include the irrational numbers, which can be defined as limits of Cauchy sequences
of rational numbers. As examples of such sequences, imagine the infinite, nonterminating,
nonperiodic decimal expansions of transcendental numbers such as e or π, or algebraic num-
bers such as

√
2. Countless computer cycles have been used in calculating the digits in these

expansions.
The set of real numbers, denoted by R, can now be defined as the set containing rational

numbers together with the limits of Cauchy sequences of rational numbers. The set of complex
numbers, denoted by C, is then introduced as the set of all ordered pairs (x, y) ∼ x+iy of real
numbers. Once we know that every Cauchy sequence of real (or rational) numbers converges
to a real number, it is a simple exercise to show that every Cauchy sequence of complex
numbers converges to a complex number.

Monotonic sequences are especially important, since they appear as partial sums of infinite
series of positive terms. The key property is contained in the

Theorem 1.1. A monotonic sequence {xn} is convergent if and only if it is bounded.

Proof. If the sequence is unbounded, it will diverge to ±∞, which simply means that for
any positive number M , no matter how large, there is an integer N such that xn > M (or
xn < −M if the sequence is monotonic nonincreasing) for any n ≥ N . This is true, since
for any positive number M , there is at least one member xN of the sequence with xN > M
(or xN < −M )—otherwise M would be a bound for the sequence—and hence xn > M (or
xn < −M ) for any n ≥ N in view of the monotonic nature of the sequence.

If the monotonic nondecreasing sequence {xn} is bounded from above, then in order to
have a limit, there must be a bound that is smaller than any other bound (such a bound is the
least upper bound of the sequence). If the sequence has a limit X , then X is certainly the least
upper bound of the sequence, while if a least upper bound X exists, then it must be the limit
of the sequence. For if there is some ε > 0 such that X − xn > ε for all n, then X − ε will
be an upper bound to the sequence smaller than X .

The existence of a least upper bound is intuitively plausible, but its existence cannot be
proven from the concepts we have introduced so far. There are alternative axiomatic formu-
lations of the real number system that guarantee the existence of the least upper bound; the
convergence of any bounded monotonic nondecreasing sequence is then a consequence as just
explained. The same argument applies to bounded monotonic nonincreasing sequences, which
must then have a greatest lower bound to which the sequence converges.
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1.1.4 Sets of Real and Complex Numbers

We also need some elementary definitions and results about sets of real and complex numbers
that are generalized later to other structures.

Definition 1.6. For real numbers, we can define an open interval:

(a, b) ≡ {x| a < x < b}

or a closed interval:

[a, b] ≡ {x| a ≤ x ≤ b}

as well as semiopen (or semiclosed) intervals:

(a, b] ≡ {x| a < x ≤ b} and [a, b) ≡ {x| a ≤ x < b}

A neighborhood of the real number x0 is any open interval containing x0. An ε-neighborhood
of x0 is the set of all points x such that

|x − x0| < ε (1.16)

This concept has an obvious extension to complex numbers: An (ε)-neighborhood of the
complex number z0, denoted by Nε(z0), is the set of all points z such that

0 < |z − z0| < ε (1.17)

Note that for complex numbers, we exclude the point z0 from the neighborhood Nε(z0).

Definition 1.7. The set S of real or complex numbers is open if for every x in S, there is a
neighborhood of x lying entirely in S. S is closed if its complement is open. S is bounded if
there is some positive M such that x < M for every x in S (M is then a bound of S).

Definition 1.8. x is a limit point of the set S if every neighborhood of x contains at least one
point of S.

While x itself need not be a member of the set S, this definition implies that every neigh-
borhood of x in fact contains an infinite number of points of S. An alternative definition of a
closed set can be given in terms of limit points, and one of the important results of analysis is
that every bounded infinite set contains at least one limit point.

Exercise 1.3. Show that the set S of real or complex numbers is closed if and only if every
limit point of S is an element of S. �

Exercise 1.4. (Bolzano–Weierstrass theorem) Every bounded infinite set of real or com-
plex numbers contains at least one limit point. �

Definition 1.9. The set S is everywhere dense, or simply dense, in a region R if there is at
least one point of S in any neighborhood of every point in R.

Example 1.1. The set of rational numbers is everywhere dense on the real axis.
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1.2 Convergence of Infinite Series and Products

1.2.1 Convergence and Divergence; Absolute Convergence

If {zk} is a sequence of numbers (real or complex), the formal sum

S ≡
∞∑

k=1

zk (1.18)

is an infinite series, whose partial sums are defined by

sn ≡
n∑

k=1

zk (1.19)

The series
∑

zk is convergent (to the value s) if the sequence {sn} of partial sums converges
to s, otherwise divergent. The series is absolutely convergent if the series

∑ |zk| is con-
vergent; a series that is convergent but not absolutely convergent is conditionally convergent.
Absolute convergence is an important property of a series, since it allows us to rearrange terms
of the series without altering its value, while the sum of a conditionally convergent series can
be changed by reordering it (this is proved later on).

Exercise 1.5. If the series
∑

zk is convergent, then the sequence {zk} → 0. �

Exercise 1.6. If the series
∑

zk is absolutely convergent, then it is convergent. �

To study absolute convergence, we need only consider a series
∑

xk of positive real num-
bers (

∑ |zk| is such a series). The sequence of partial sums of a series of positive real num-
bers is obviously nondecreasing. From the theorem on monotonic sequences in the previous
section then follows

Theorem 1.2. The series
∑

xk of positive real numbers is convergent if and only if the
sequence of its partial sums is bounded.

Example 1.2. Consider the geometric series

S(x) ≡
∞∑

k=0

xk (1.20)

for which the partial sums are given by

sn =
n∑

k=0

xk =
1 − x

1 − xn+1
(1.21)

These partial sums are bounded if 0 ≤ x < 1, in which case

{sn} → 1
1 − x

(1.22)
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The series diverges for x ≥ 1. The corresponding series

S(z) ≡
∞∑

k=0

zk (1.23)

for complex z is then absolutely convergent for |z| < 1, divergent for |z| > 1. The
behavior on the unit circle |z| = 1 in the complex plane must be determined separately
(the series actually diverges everywhere on the circle since the sequence {zk} �→ 0; see
Exercise 1.5).

Remark. We will see that the function S(z) defined by the series (1.23) for |z| < 1 can
be defined to be 1/(1 − z) for complex z �= 1, even outside the region of convergence of the
series, using the properties of S(z) as a function of the complex variable z. This is an example
of a procedure known as analytic continuation, to be explained in Chapter 4. �

Example 1.3. The Riemann ζ-function is defined by

ζ(s) ≡
∞∑

n=1

1
ns

(1.24)

The series for ζ(s) with s = σ + iτ is absolutely convergent if and only if the series for
ζ(σ) is convergent. Denote the partial sums of the latter series by

sN (σ) =
N∑

n=1

1
nσ

(1.25)

Then for σ ≤ 1 and N ≥ 2m (m integer), we have

sN (σ) ≥ sN (1) ≥ s2m(1) > s2m−1 (1) +
1
2

> · · · >
m

2
(1.26)

Hence the sequence {sN (σ)} is unbounded and the series diverges. Note that for s = 1,
Eq. (1.24) is the harmonic series, which is shown to diverge in elementary calculus
courses. On the other hand, for σ > 1 and N ≤ 2m with m integer, we have

sN (σ) < s2m(σ) < s2m−1 (σ) +
(

1
2

)(m−1) (σ−1)

< · · ·
(1.27)

<
m−1∑

k=0

(
1
2

)k(σ−1)

<
1

1 − 2(1−σ)

Thus the sequence {sN (σ)} is bounded and hence converges, so that the series (1.24) for
ζ(s) is absolutely convergent for σ = Re s > 1. Again, we will see in Chapter 4 that
ζ(s) can be defined for complex s beyond the range of convergence of the series (1.24) by
analytic continuation.
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1.2.2 Tests for Convergence of an Infinite Series of Positive Terms

There are several standard tests for convergence of a series of positive terms:
Comparison test. Let

∑
xk and

∑
yk be two series of positive numbers, and suppose that

for some integer N > 0 we have yk ≤ xk for all k > N . Then
(i) if

∑
xk is convergent,

∑
yk is also convergent, and

(ii) if
∑

yk is divergent,
∑

xk is also divergent.
This is fairly obvious, but to give a formal proof, let {sn} and {tn} denote the sequences of
partial sums of

∑
xk and

∑
yk, respectively. If yk ≤ xk for all k > N , then

tn − tN ≤ sn − sN

for all n > N . Thus if {sn} is bounded, then {tn} is bounded, and if {tn} is unbounded, then
{sn} is unbounded.

Remark. The comparison test has been used implicitly in the discussion of the ζ-function to
show the absolute convergence of the series 1.24 for σ = Re s > 1. �

Ratio test. Let
∑

xk be a series of positive numbers, and let rk ≡ xk+1/xk be the ratios
of successive terms. Then

(i) if only a finite number of rk > a for some a with 0 < a < 1, then the series converges,
and

(ii) if only a finite number of rk < 1, then the series diverges.
In case (i), only a finite number of the rk are larger than a, so there is some positive M such
that xk < Mak for all k, and the series converges by comparison with the geometric series.
In case (ii), the series diverges since the individual terms of the series do not tend to zero.

Remark. The ratio test works if the largest limit point of the sequence {rk} is either greater
than 1 or smaller than 1. If the largest limit point is exactly equal to 1, then the ratio test
does not answer the question of convergence, as seen by the example of the ζ-function series
(1.24). �

Root test. Let
∑

xk be a series of positive numbers, and let 	k ≡ k
√

xk. Then
(i) if only a finite number of 	k > a for some positive a < 1, then the series converges,

and
(ii) if infinitely many 	k > 1, the series diverges.

As with the ratio test, we can construct a comparison with the geometric series. In case (i),
only a finite number of roots 	k are bigger than a, so there is some positive M such that
xk < Mak for all k, and the series converges by comparison with the geometric series. In
case (ii), the series diverges since the individual terms of the series do not tend to zero.

Remark. The root test, like the ratio test, works if the largest limit point of the sequence
{	k} is either greater than 1 or smaller than 1, but fails to decide convergence if the largest
limit point is exactly equal to 1. �

Integral test. Let f(t) be a continuous, positive, and nonincreasing function for t ≥ 1, and
let xk ≡ f(k) (k = 1, 2, . . .). Then

∑
xk converges if and only if the integral

I ≡
∫ ∞

1

f(t) dt < ∞ (1.28)
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also converges. To show this, note that

∫ k+1

k

f(t) dt ≤ xk ≤
∫ k

k−1

f(t) dt (1.29)

which is easy to see by drawing a graph. The partial sums sn of the series then satisfy

∫ n+1

1

f(t) dt ≤ sn =
n∑

k=1

xk ≤ x1 +
∫ n

1

f(t) dt (1.30)

and are bounded if and only if the integral (1.28) converges.

Remark. If the integral (1.28) converges, it provides a (very) rough estimate of the value of
the infinite series, since

∫ ∞

N+1

f(t) dt ≤ s − sN =
∞∑

k=N+1

xk ≤
∫ ∞

N

f(t) dt (1.31)

1.2.3 Alternating Series and Rearrangements

In addition to a series of positive terms, we consider an alternating series of the form

S ≡
∞∑

k=0

(−1)kxk (1.32)

with xk > 0 for all k. Here there is a simple criterion (due to Leibnitz) for convergence: if
the sequence {xk} is nonincreasing, then the series S converges if and only if {xk} → 0, and
if S converges, its value lies between any two successive partial sums. This follows from the
observation that for any n the partial sums sn of the series (1.32) satisfy

s2n+1 < s2n+3 < · · · < s2n+2 < s2n (1.33)

Example 1.4. The alternating harmonic series

A ≡ 1 − 1
2

+
1
3
− 1

4
+ · · · =

∞∑

k=0

(−1)k

k + 1
(1.34)

is convergent according to this criterion, even though it is not absolutely convergent (the
series of absolute values is the harmonic series we have just seen to be divergent). In fact,
evaluating the logarithmic series (Eq. (1.69) below) for z = 1 shows that A = ln 2.

Is there any significance of the ordering of terms in an infinite series? The short answer
is that terms can be rearranged at will in an absolutely convergent series without changing the
value of the sum, while changing the order of terms in a conditionally convergent series can
change its value, or even make it diverge.
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Definition 1.10. If {n1, n2, . . .} is a permutation of {1, 2, . . .}, then the sequence {ζk} is a
rearrangement of {zk} if

ζk = znk
(1.35)

for every k. Then also the series
∑

ζk is a rearrangement of
∑

zk.

Example 1.5. The alternating harmonic series (1.34) can be rearranged in the form

A′ =
(

1 +
1
3
− 1

2

)
+
(

1
5

+
1
7
− 1

4

)
+ · · · (1.36)

which is still a convergent series, but its value is not the same as that of A (see below).

Theorem 1.3. If the series
∑

zk is absolutely convergent, and
∑

ζk is a rearrangement of∑
zk, then

∑
ζk is absolutely convergent.

Proof. Let {sn} and {σn} denote the sequences of partial sums of
∑

zk and
∑

ζk, re-
spectively. If ε > 0, choose N such that |sn − sm| < ε for all n, m > N , and let
Q ≡ max{n1, . . . , nN}. Then |σn − σm| < ε for all n, m > Q.

On the other hand, if a series in not absolutely convergent, then its value can be changed
(almost at will) by rearrangement of its terms. For example, the alternating series in its original
form (1.34) can be expressed as

A =
∞∑

n=0

(
1

2n + 1
− 1

2n + 2

)
=

∞∑

n=0

1
(2n + 1)(2n + 2)

(1.37)

This is an absolutely convergent series of positive terms whose value is ln 2 = 0.693 . . ., as
already noted. On the other hand, the rearranged series (1.36) can be expressed as

A′ =
∞∑

n=0

(
1

4n + 1
+

1
4n + 3

− 1
2n + 2

)
=

∞∑

n=0

8n + 5
2(n + 1)(4n + 1)(4n + 3)

(1.38)

which is another absolutely convergent series of positive terms. Including just the first term of
this series shows that

A′ >
5
6

> ln 2 = A (1.39)

In fact, any series that is not absolutely convergent can be rearranged into a divergent series.

Theorem 1.4. If the series
∑

xk of real terms is conditionally convergent, then there is a
divergent rearrangement of

∑
xk.

Proof. Let {ξ1, ξ2, . . .} be the sequence of positive terms in {xk}, and {−η1,−η2, . . .} be the
sequence of negative terms. Then at least one of the series

∑
ξk ,

∑
ηk is divergent (otherwise

the series would be absolutely convergent). Suppose
∑

ξk is divergent. Then we can choose
a sequence n1, n2, . . . such that

nm+1−1∑

k=nm

ξk > 1 + ηm (1.40)
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(m = 1, 2, . . .), and the rearranged series

S′ ≡
n2−1∑

k=n1

ξk − η1 +
n3−1∑

k=n2

ξk − η2 + · · · (1.41)

is divergent.

Remark. It follows as well that a conditionally convergent series
∑

zk of complex terms
must have a divergent rearrangement. For if zk = xk + iyk, then either

∑
xk or

∑
yk is

conditionally convergent, and hence has a divergent rearrangement. �

1.2.4 Infinite Products

Closely related to infinite series are infinite products of the form
∞∏

m=1

(1 + zm) (1.42)

({zm} is a sequence of complex numbers), with partial products

pn ≡
n∏

m=1

(1 + zk) (1.43)

The product
∏

(1+zm) is convergent (to the value p) if the sequence {pn} of partial products
converges to p �= 0, convergent to zero if a finite number of factors are 0, divergent to zero if
{pn} → 0 with no vanishing pn, and divergent if {pn} is divergent. The product is absolutely
convergent if

∏
(1 + |zm|) is convergent; a product that is convergent but not absolutely

convergent is conditionally convergent.
The absolute convergence of a product is simply related to the absolute convergence of a

related series: if {xm} is a sequence of positive real numbers, then the product
∏

(1 + xm)
is convergent if and only if the series

∑
xm is convergent. This follows directly from the

observation
n∑

m=1

xm <

n∏

m=1

(1 + xm) < exp

(
n∑

m=1

xm

)
(1.44)

Also, the product
∏

(1−xm) is convergent if and only if the series
∑

xm is convergent (show
this).

Example 1.6. Consider the infinite product

P ≡
∞∏

m=2

(
m3 − 1
m3 + 1

)
<

∞∏

m=2

(
1 − 1

m3

)
(1.45)

The product is (absolutely) convergent, since the series
∞∑

m=1

1
m3

= ζ(3)

is convergent. Evaluation of the product is left as a problem.
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1.3 Sequences and Series of Functions

1.3.1 Pointwise Convergence and Uniform Convergence of Sequences of
Functions

Questions of convergence of sequences and series of functions in some domain of variables
can be answered at each point by the methods of the preceding section. However, the issues of
continuity and differentiability of the limit function require more care, since the limiting pro-
cedures involved approaching a point in the domain need not be interchangeable with passing
to the limit of the sequence or series (convergence of an infinite series of functions is defined
in the usual way in terms of the convergence of the sequence of partial sums of the series).
Thus we introduce

Definition 1.11. The sequence {fn(z)} of functions of the variable z (real or complex) is
(pointwise) convergent to the function f(z) in the region R:

{fn(z)} → f(z) in S
if the sequence {fn(z0)} → f(z0) at every point z0 in R.

Definition 1.12. {fn(z)} is uniformly convergent to f(z) in the closed, bounded R:

{fn(z)} ⇒ f(z) in S
if for every ε > 0 there is a positive integer N such that |fn(z) − f(z)| < ε for every n > N
and every point z in R.

Remark. Note the use of different arrow symbols (→ and ⇒) to denote strong and uniform
convergence, as well as the symbol (⇀) introduced below to denote weak convergence. �

Example 1.7. Consider the sequence {xn}. Evidently {xn} → 0 for 0 ≤ x < 1. Also,
the sequence {xn} ⇒ 0 on any closed interval 0 ≤ x ≤ 1 − δ (0 < δ < 1), since for any
such x, we have |xn| < ε for all n > N if N is chosen so that |1 − δ|N < ε. However,
we cannot say that the sequence is uniformly convergent on the open interval 0 < x < 1,
since if 0 < ε < 1 and n is any positive integer, we can find some x in (0, 1) such that
xn > ε. The point here is that to discuss uniform convergence, we need to consider a
region that is closed and bounded, with no limit point at which the series is divergent.

It is one of the standard theorems of advanced calculus that properties of continuity of the
elements of a uniformly convergent sequence are shared by the limit of the sequence. Thus if
{fn(z)} ⇒ f(z) in the region R, and if each of the fn(z) is continuous in the closed bounded
region R, then the limit function f(z) is also continuous in R. Differentiability requires a
separate check that the sequence of derivative functions {f ′

n(z)} is convergent, since it may
not be. If the sequence of derivatives actually is uniformly convergent, then it converges to the
derivative of the limit function f(z).

Example 1.8. Consider the function f(z) defined by the series

f(z) ≡
∞∑

n=1

1
n2

sin n2πz (1.46)
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This series is absolutely and uniformly convergent on the entire real axis, since it is
bounded by the convergent series

ζ(2) =
∞∑

n=1

1
n2

(1.47)

However, the formal series

f ′(z) ≡ π

∞∑

n=1

cos n2πz (1.48)

converges nowhere, since the terms in the series do not tend to zero for large n. A similar
example is the series

g(z) ≡
∞∑

n=1

an sin 2nπz (1.49)

for which the convergence properties of the derivative can be worked out as an exercise.
Functions of this type were introduced as illustrative examples by Weierstrass.

1.3.2 Weak Convergence; Generalized Functions

There is another type of convergent sequence, whose limit is not a function in the classical
sense, but which defines a kind of generalized function widely used in physics. Suppose C is
a class of well-behaved functions (test functions) on a region R–typically functions that are
continuous with continuous derivatives of suitably high order. Then the sequence of functions
{fn(z)} (that need not themselves be in C) is weakly convergent (relative to C) if the sequence

{∫

R
fn(z) g(z) dτ

}
(1.50)

is convergent for every function g(z) in the class C. The limit of a weakly convergent sequence
is a generalized function, or distribution. It need not have a value at every point of R. If

{∫

R
fn(z) g(z) dτ

}
→
∫

R
f(z) g(z) dτ (1.51)

for every g(z) in C, then {fn(z)} ⇀ f(z) (the symbol ⇀ denotes weak convergence), but the
weak convergence need not define the value of the limit f(z) at discrete points.

Example 1.9. Consider the sequence {fn(x)} defined by

fn(x) =






n

2
− 1

n
≤ x ≤ 1

n

0 , otherwise
(1.52)
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Then {fn(x)} → 0 for every x �= 0, but
∫ ∞

−∞
fn(x) dx = 1 (1.53)

for n = 1, 2, . . ., and, if g(x) is continuous at x = 0,
{∫ ∞

−∞
fn(x) g(x) dx

}
→ g(0) (1.54)

The weak limit of the sequence {fn(x)} thus has the properties attributed to the Dirac δ-
function δ(x), defined here as a distribution on the class of functions continuous at x = 0.
The derivative of the δ-function can be defined as a generalized function on the class of
functions with continuous derivative at x = 0 using integration by parts to write
∫ ∞

−∞
δ′(x) g(x) dx = −

∫ ∞

−∞
δ(x) g′(x) dx = −g′(0) (1.55)

Similarly, the nth derivative of the δ-function is defined as a generalized function on the
class of functions with the continuous nth derivative at x = 0 by
∫ ∞

−∞
δ(n)(x) g(x) dx = −

∫ ∞

−∞
δ(n−1)(x) g′(x) dx

(1.56)
= · · · = (−1)n g(n)(0)

using repeated integration by parts.

1.3.3 Infinite Series of Functions; Power Series

Convergence properties of infinite series

∞∑

k=0

fk(z)

of functions are identified with those of the corresponding sequence

sn(z) ≡
n∑

k=0

fk(z) (1.57)

of partial sums. The series
∑

k fk(z) is (pointwise, uniformly, weakly) convergent on R
if the sequence {sn(z)} is (pointwise, uniformly, weakly) convergent on R, and absolutely
convergent if the sum of absolute values,

∑

k

|fk(z)|

is convergent.
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An important class of infinite series of functions is the power series

S(z) ≡
∞∑

n=0

anzn (1.58)

in which {an} is a sequence of complex numbers and z a complex variable. The basic con-
vergence properties of power series are contained in

Theorem 1.5. Let S(z) ≡ ∑∞
n=0 anzn be a power series, αn ≡ n

√|an|, and let α be the
largest limit point of the sequence {αn}. Then

(i) If α = 0, then the series S(z) is absolutely convergent for all z, and uniformly on any
bounded region of the complex plane,

(ii) If α does not exist (α = ∞), then S(z) is divergent for any z �= 0,

(iii) If 0 < α < ∞, then S(z) is absolutely convergent for |z| < r ≡ 1/α, uniformly within
any circle |z| ≤ ρ < r, and S(z) is divergent for |z| > r.

Proof. Since n
√|anzn| = αn|z|, results (i)–(iii) follow directly from the root test.

Thus the region of convergence of a power series is at least the interior of a circle in the
complex plane, the circle of convergence, and r is the radius of convergence. Note that con-
vergence tests other than the root test can be used to determine the radius of convergence of a
given power series. The behavior of the series on the circle of convergence must be determined
separately for each series; various possibilities are illustrated in the examples and problems.

Now suppose we have a function f(z) defined by a power series

f(z) =
∞∑

n=0

anzn (1.59)

with the radius of convergence r > 0. Then f(z) is differentiable for |z| < r, and its derivative
is given by the series

f ′(z) =
∞∑

n=0

(n + 1)an+1 zn (1.60)

which is absolutely convergent for |z| < r (show this). Thus a power series can be differenti-
ated term by term inside its circle of convergence. Furthermore, f(z) is differentiable to any
order for |z| < r, and the kth derivative is given by the series

f (k)(z) =
∞∑

n=0

(n + k)!
n!

an+k zn (1.61)

since this series is also absolutely convergent for |z| < r. It follows that

ak = f (k) (0)/k! (1.62)
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Thus every power series with positive radius of convergence is a Taylor series defining a
function with derivatives of any order. Such functions are analytic functions, which we study
more deeply in Chapter 4.

Example 1.10. Following are some standard power series; it is a useful exercise to verify
the radius of convergence for each of these power series using the tests given here.

(i) The binomial series is

(1 + z)α ≡
∞∑

n=0

(
α

n

)
zn (1.63)

where
(

α

n

)
≡ α(α − 1) · · · (α − n + 1)

n!
=

Γ(α + 1)
n! Γ(α − n + 1)

(1.64)

is the generalized binomial coefficient. Here Γ(z) is the Γ-function that generalizes the ele-
mentary factorial function; it is discussed at length in Appendix A. For α = m = 0, 1, 2, . . .,
the series terminates after m + 1 terms and thus converges for all z; otherwise, note that

(
α

n + 1

)/(
α

n

)
=

α − n

n + 1
−→ −1 (1.65)

whence the series (1.63) has the radius of convergence r = 1.
(ii) The exponential series

ez ≡
∞∑

n=0

zn

n!
(1.66)

has infinite radius of convergence.
(iii) The trigonometric functions are given by the power series

sin z ≡
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
(1.67)

cos z ≡
∞∑

n=0

(−1)n z2n

(2n)!
(1.68)

with infinite radius of convergence.
(iv) The logarithmic series

ln(1 + z) ≡
∞∑

n=0

(−1)n zn+1

n + 1
(1.69)

has the radius of convergence r = 1.
(v) The arctangent series

tan−1 z ≡
∞∑

n=0

(−1)n z2n+1

2n + 1
(1.70)

has the radius of convergence r = 1.
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1.4 Asymptotic Series

1.4.1 The Exponential Integral

Consider the function E1(z) defined by

E1(z) ≡
∫ ∞

z

e−t

t
dt = e−z

∫ ∞

0

e−u

u + z
du ≡ e−z I(z) (1.71)

E1(z) is the exponential integral, a tabulated function. An expansion of E1(z) about z = 0 is
given by

E1(z) =
∫ ∞

1

e−t

t
dt −

∫ z

1

e−t

t
dt = − ln z +

∫ z

1

1 − e−t

t
dt +

∫ ∞

1

e−t

t
dt

(1.72)

= − ln z −
[∫ 1

0

1 − e−t

t
dt −

∫ ∞

1

e−t

t
dt

]
−

∞∑

n=1

(−1)n

n

zn

n!

Here the term in the square brackets is the Euler–Mascheroni constant γ = 0.5772 . . ., and
the power series has infinite radius of convergence.

Suppose now |z| is large. Then the series (1.72) converges slowly, and a better estimate of
the integral I(z) can be obtained by introducing the expansion

1
u + z

=
1
z

∞∑

n=0

(−1)n
(u

z

)n

(1.73)

into the integral (1.71). Then term-by-term integration leads to the series expansion

I(z) =
∞∑

n=0

(−1)n n!
zn+1

(1.74)

Unfortunately, the formal power series (1.74) diverges for all finite z. This is due to the
fact that the series expansion (1.73) of 1/(u + z) is not convergent over the entire range of
integration 0 ≤ u < ∞. However, the main contribution to the integral comes from the region
of small u, where the expansion does converge, and, in fact, the successive terms of the series
for I(z) decrease in magnitude for n + 1 ≤ |z|; only for n + 1 > |z| do they begin to diverge.
This suggests that the series (1.74) might provide a useful approximation to the integral I(z)
if appropriately truncated.

To obtain an estimate of the error in truncating the series, note that repeated integration by
parts in Eq. (1.71) gives

I(z) =
N∑

n=0

(−1)n n!
zn+1

+ (−1)N+1(N + 1) !
∫ ∞

0

e−u

(u + z)N+2
du

(1.75)
≡ SN (z) + RN (z)
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If Re z > 0, then we can bound the remainder term RN (z) by

|RN (z)| ≤ (N + 1)!
|z|N+2

(1.76)

since |u + z| ≥ |z| for all u ≥ 0 when Re z ≥ 0. Hence the remainder term RN (z) → 0 as
z → ∞ in the right half of the complex plane, so that I(z) can be approximated by SN (z)
with a relative error that vanishes as z → ∞ in the right half-plane. In fact, when Re z < 0
we have

|RN (z)| ≤ (N + 1)!

|Im z|N+2
(1.77)

so that the series (1.74) is valid in any sector −δ ≤ arg z ≤ δ with 0 < δ < π.Note also that
for fixed z, |RN (z)| has a minimum for N + 1 ∼= |z|, so that we can obtain a “best” estimate
of I(z) by truncating the expansion after about N + 1 terms.

The series (1.74) is an asymptotic (or semiconvergent) series for the function I(z) de-
fined by Eq. (1.71). Asymptotic series are useful, often more useful than convergent series,
in exhibiting the behavior of functions such as solutions to differential equations, for limiting
values of their arguments. An asymptotic series can also provide a practical method for eval-
uating a function, even though it can never give the “exact” value of the function because it is
divergent. The device of integration by parts, for which the illegal power series expansion of
the integrand is a shortcut, is one method of generating an asymptotic series. Watson’s lemma,
introduced below, provides another.

1.4.2 Asymptotic Expansions; Asymptotic Series

Before looking at more examples, we introduce some standard terminology associated with
asymptotic expansions.

Definition 1.13. f(z) is of order g(z) as z → z0, or f(z) = O[g(z)] as z → z0, if there
is some positive M such that |f(z)| ≤ M |g(z)| in some neighborhood of z0. Also, f(z) =
o[g(z)] (read “f(z) is little o g(z)”) as z → z0 if

lim
z→z0

f(z)/g(z) = 0 (1.78)

Example 1.11. We have

(i) zn+1 = o(zn) as z → 0 for any n.

(ii) e−z = o(zn) for any n as z → ∞ in the right half of the complex plane.

(iii) E1(z) = O(e−z/z), or E1(z) = o(e−z), as z → ∞ in any sector −δ ≤ arg z ≤ δ
with 0 < δ < π. Also, E1(z) = O(ln z) as z → 0.

Definition 1.14. The sequence {fn(z)} is an asymptotic sequence for z → z0, if for each
n = 1, 2, . . ., we have fn+1(z) = o[fn(z)] as z → z0.
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Example 1.12. We have

(i) {(z − z0)n} is an asymptotic sequence for z → z0.

(ii) If {λn} is a sequence of complex numbers such that Re λn+1 < Re λn for all n, then
{zλn} is an asymptotic sequence for z → ∞.

(iii) If {λn} is any sequence of complex numbers, then {zλn e−nz} is an asymptotic se-
quence for z → ∞ in any sector −δ ≤ arg z ≤ δ with 0 < δ < π

2 .

Definition 1.15. If {fn(z)} is an asymptotic sequence for z → z0, then

f(z) ∼
N∑

n=1

anfn(z) (1.79)

is an asymptotic expansion (to N terms) of f(z) as z → z0 if

f(z) −
N∑

n=1

anfn(z) = o[fN (z)] (1.80)

as z → z0. The formal series

f(z) ∼
∞∑

n=1

anfn(z) (1.81)

is an asymptotic series for f(z) as z → z0 if

f(z) −
N∑

n=1

anfn(z) = O[fN+1(z)] (1.82)

as z → z0 (N = 1, 2, . . .). The series (1.82) may converge or diverge, but even if it converges,
it need not actually converge to the function, since we say f(z) is asymptotically equal to
g(z), or f(z) ∼ g(z), as z → z0 with respect to the asymptotic sequence {fn(z)} if

f(z) − g(z) = o[fn(z)] (1.83)

as z → z0 for n = 1, 2, . . .. For example, we have

f(z) ∼ f(z) + e−z (1.84)

with respect to the sequence {z−n} as z → ∞ in any sector with Re z > 0. Thus a function
need not be uniquely determined by its asymptotic series.

Of special interest are asymptotic power series

f(z) ∼
∞∑

n=0

an

zn
(1.85)
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for z → ∞ (generally restricted to some sector in the complex plane). Such a series can be
integrated term by term, so that if F ′(z) = f(z), then

F (z) ∼ a0z + a1 ln z + c −
∞∑

n=1

an+1

nzn
(1.86)

for z → ∞. On the other hand, the derivative

f ′(z) ∼ −
∞∑

n=1

nan

zn+1
(1.87)

only if it is known that f ′(z) has an asymptotic power series expansion.

1.4.3 Laplace Integral; Watson’s Lemma

Now consider the problem of finding an asymptotic expansion of the integral

J(x) =
∫ a

0

F (t)e−xt dt (1.88)

for x large and positive (the variable is called x here to emphasize that it is real, although the
series derived can often be extended into a sector of the complex plane). It should be clear
that such an asymptotic expansion will depend on the behavior of F (t) near t = 0, since that
is where the exponential factor is the largest, especially in the limit of large positive x. The
important result is contained in

Theorem 1.6. (Watson’s lemma). Suppose that the function F (t) in Eq. (1.88) is integrable
on 0 ≤ x ≤ a, with an asymptotic expansion for t → 0+ of the form

F (t) ∼ tb
∞∑

n=0

cntn (1.89)

with b > −1. Then an asymptotic expansion for J(x) as x → ∞ is

J(x) ∼
∞∑

n=0

cn
Γ(n + b + 1)

xn+b+1
(1.90)

Here

Γ(ξ + 1) ≡
∫ ∞

0

tξe−t dt (1.91)

is the Γ-function, which will be discussed at length in Chapter 4. Note that for integer values
of the argument, we have Γ(n + 1) = n!.
Proof. To derive the series (1.90), let 0 < ε < a, and consider the integral

Jε(x) ≡
∫ ε

0

F (t)e−xt dt ∼
∞∑

n=0

cn

∫ ε

0

tn+b e−xt dt (1.92)
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Note that

J(x) − Jε(x) =
∫ a

ε

F (t)e−xt dt = e−ε x

∫ a−ε

0

F (τ + ε)e−xτ dτ (1.93)

is exponentially small compared to J(x) for x → ∞, since F (t) is assumed to be integrable
on 0 ≤ t ≤ a. Hence J(x) and Jε(x) are approximated by the same asymptotic power series.

The asymptotic character of the series (1.89) implies that for any N , we can choose ε
small enough that the error term

∆N
ε (x) ≡

∣∣∣∣Jε(x) −
N−1∑

n=0

cn

∫ ε

0

tn+be−xt dt

∣∣∣∣ < C

∫ ε

0

tN+be−xt dt (1.94)

for some constant C. But we also know that

Γ(N + b + 1)
xN+b+1

−
∫ ε

0

tn+be−xt dt =
∫ ∞

ε

tn+be−xt dt

(1.95)

= e−εx

∫ ∞

0

(τ + ε)n+be−xτ dτ

The right-hand side is exponentially small for x → ∞; hence the error term is bounded by

∣∣∆N
ε (x)

∣∣ < C
Γ(N + b + 1)

xN+b+1
(1.96)

Thus the series on the right-hand side of Eq. (1.90) is an asymptotic power series for Jε(x)
and thus also for J(x).

We can use Watson’s lemma to derive an asymptotic expansion for z → ∞ of a function
I(z) defined by the integral representation (Laplace integral)

I(z) =
∫ a

0

f(t)ezh(t) dt (1.97)

with f(t) and h(t) continuous real functions3 on the interval 0 ≤ t ≤ a. For z large and
positive, we can expect that the most important contribution to the integral will be from the
region in t near the maximum of h(t), with contributions from outside this region being expo-
nentially small in the limit Re z → +∞. There is actually no loss of generality in assuming
that the maximum of h(t) occurs at t = 0.4

The integral (1.97) can be converted to the form (1.88) by introducing a new variable
u ≡ h(0) − h(t), and approximating I(z) by

I(z) ∼ Iε(z) ≡ −ezh(0)

∫ ε

0

f(t)
h′(t)

e−zu du (1.98)

3It is enough that f(t) is integrable, but we will rarely be concerned about making the most general technical
assumptions.

4Suppose h(t) has a maximum at an interior point (t = b, say) of the interval of integration. Then we can split
the integral (1.97) into two parts, the first an integral from 0 to b, the second an integral from b to a, and apply the
present method to each part.
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The asymptotic expansion of Iε(z) is then obtained from the expansion of f(t)/h′(t) for
t → 0+, as just illustrated, provided that such an expansion in the form (1.89) exists. Note
that the upper limit ε (> 0) in this integral can be chosen at will. This method of generating
asymptotic series is due to Laplace.

Example 1.13. Consider the integral

I(z) =
∫ ∞

0

e−z sinh t dt (1.99)

Changing the variable of integration to u = sinh t gives

I(z) =
∫ ∞

0

(1 + u2)−1/2 e−zu du (1.100)

Expanding

(1 + u2)−1/2 =
∞∑

n=0

(−1)n Γ(n + 1
2 )

n! Γ( 1
2 )

u2n (1.101)

then gives the asymptotic series

I(z) ∼ e−z
∞∑

n=0

(−1)n Γ(n + 1
2 )

Γ( 1
2 )

(2n)!
n!

1
z2n+1

(1.102)

for z → ∞ with |arg z| ≤ π
2 − δ and fixed 0 ≤ δ < π

2 .

Now suppose the function h(t) in Eq. (1.97) has a maximum at t = 0, with the expansion

h(t) ∼ h(0) − Atp + · · · (1.103)

for t ∼= 0, with A > 0 and p > 0. Then we can introduce a new variable u = tp into
Eq. (1.97), which gives

I(z) ∼ 1
p

ezh(0) f(0)
∫ ∞

0

u
1
p e−Auz du

u
= ezh(0) f(0)

Γ( 1
p )

p (Az)
1
p

(1.104)

Note that Γ( 1
p ) = Γ( 1

2 ) =
√

π in the important case p = 2 that corresponds to the usual
quadratic behavior of a function near a maximum. In any case, the leading behavior of I(z)
for z → ∞ (with Re z > 0) follows directly from the leading behavior of h(t) near t = 0.

Example 1.14. Consider the integral

K0(z) =
∫ ∞

0

e−z cosh t dt (1.105)
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which is a known representation for the modified Bessel function K0(z). Since cosh t ∼=
1 + t2/2 near t = 0, the leading term in the asymptotic expansion of K0(z) for z → ∞ is
given by

K0(z) ∼ e−z

√
π

2z
(1.106)

Here the complete asymptotic expansion of K0(z) can be derived by changing the variable
of integration to u ≡ cosh t. This gives

K0(z) =
∫ ∞

1

(u2 − 1)−1/2e−zu du

=
√

1
2 e−z

∫ ∞

0

v−1/2(1 + 1
2v)−1/2e−zv dv (1.107)

(v = u − 1). Expanding (1 + 1
2v)−1/2 then provides the asymptotic series

K0(z) ∼ e−z
∞∑

n=0

(−1)n [Γ(n + 1
2 )]2

n! Γ( 1
2 )

(
1
2z

)n+
1
2

(1.108)

again for z → ∞ with |arg z| ≤ π
2 − δ and fixed 0 ≤ δ < π

2 .

The method introduced here must be further modified if either of the functions f(t) or h(t)
in Eq. (1.97) does not have an asymptotic power series expansion for t → 0. Consider, for
example, the Γ-function introduced above in Eq. (1.91), which we can write in the form

Γ(ξ + 1) =
∫ ∞

0

eξ ln t e−t dt (1.109)

The standard method to find an asymptotic expansion for ξ → +∞ does not work here, since
ln t has no power series expansion for t → 0. However, we can note that the argument
(−t+ξ ln t) of the exponential has a maximum for t = ξ. Since the location of the maximum
depends on ξ (it is a moving maximum), we change variables and let t ≡ ξu, so that Eq. (1.109)
becomes

Γ(ξ + 1) = ξξ+1

∫ ∞

0

eξ ln u e−ξu du (1.110)

Now the argument in the exponent can be expanded about the maximum at u = 1 to give

Γ(ξ + 1) ∼= ξξ+1e−ξ

∫ ∞

0

e−
1
2 ξ(u−1)2 du ∼=

√
2πξ

(
ξ

e

)ξ

(1.111)

This is the first term in Stirling’s expansion of the Γ-function; the remaining terms will be
derived in Chapter 4.
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A Iterated Maps, Period Doubling, and Chaos

We have been concerned in this chapter with the properties of infinite sequences and series
from the point of view of classical mathematics, in which the important question is whether
or not the sequence or series converges, with asymptotic series recognized as useful for char-
acterizing the limiting behavior of functions, and for approximate evaluation of the functions.

Sequences generated by dynamical systems can have a richer structure. For example, the
successive intersections of a particle trajectory with a fixed plane through which the trajectory
passes more or less periodically, or the population counts of various species in an ecosystem
at definite time intervals, can be treated as sequences generated by a map T that takes each of
the possible initial states of the system into its successor. The qualitative properties of such
maps are interesting and varied.

As a simple prototype of such a map, consider the logistic map

Tλ : x �→ fλ(x) ≡ λx(1 − x) (1.A1)

that maps the unit interval 0 < x < 1 into itself for 0 < λ < 4 (the maximum value of
x(1 − x) in the unit interval is 1/4). Starting from a generic point x0 in the unit interval, Tλ

generates a sequence {xn} defined by

xn+1 = λ xn (1 − xn) (1.A2)

If λ < 1, we have

xn+1 < λ xn < · · · < λn+1x0 < λn+1 (1.A3)

and the sequence converges to 0. But the sequence does not converge to 0 if λ > 1, and the
behavior of the sequence as λ increases is quite interesting.

Remark. A generic map of the type (1.A1) that maps a coordinate space (or manifold, to
be introduced in Chapter 3) into itself, defines a discrete-time dynamical system generated by
iterations of the map. The bibliography at the end of the chapter has some suggestions for
further reading. �

To analyze the behavior of the sequence in general, note that the map (1.A1) has fixed
points x∗ (points for which x∗ = fλ (x∗)) at

x∗ = 0, 1 − 1
λ (1.A4)

If the sequence (1.A2) starts at one of these points, it will remain there, but it is important to
know how the sequence develops from an initial value of x near one of the fixed points. If an
initial point close to the fixed point is driven toward the fixed point by successive iterations of
the map, then the fixed point is stable; if it is driven away from the fixed point, then the fixed
point is unstable. The sequence can only converge, if it converges at all, to one of its fixed
points, and indeed only to a stable fixed point.

To determine the stability of the fixed points in Eq. (1.A4), note that

xn+1 = fλ (xn) ∼= x∗ + f ′
λ (x∗) (xn − x∗) (1.A5)



A Iterated Maps, Period Doubling, and Chaos 27

for xn
∼= x∗, so that

	n ≡ xn+1 − x∗
xn − x∗

∼= f ′
λ (x∗) (1.A6)

Stability of the fixed point x∗ requires {xn} → x∗ from a starting point sufficiently close
to x∗. Hence it is necessary that |	n| < 1 for large n, which requires

−1 < f ′
λ (x∗) < 1 (1.A7)

This criterion for the stability of the fixed point is quite general. Note that if

f ′
λ (x∗) = 0 (1.A8)

the convergence of the sequence will be especially rapid. With εn = xn − x∗, we have

εn+1
∼= 1

2f ′′(x∗)ε2
n (1.A9)

and the convergence to the fixed point is exponential; the fixed point is superstable.

Exercise 1.A1. Find the values of λ for which each of the fixed points in (1.A4) is
superstable. �

Remark. The case |f ′
λ (x∗)| = 1 requires special attention, since the ratio test fails. The

fixed point may be stable in this case as well. �

For the map defined by Eq. (1.A2), we have

f ′
λ (x∗) = λ (1 − 2x∗) (1.A10)

so the fixed point x∗ = 0 is stable only for λ ≤ 1, while the fixed point x∗ = 1−1/λ is stable
for 1 ≤ λ ≤ 3. Hence for 1 ≤ λ ≤ 3, the sequence {xn} converges,

{xn} → 1 − 1
λ ≡ xλ (1.A11)

It requires proof that this is true for any initial value x0 in the interval (0, 1), but a numerical
experiment starting from a few randomly chosen points may be convincing.

What happens for λ > 3? For λ slightly above 3 (λ = 3.1, say), a numerical study shows
that the sequence begins to oscillate between two fixed numbers that vary continuously from
x∗ = 2

3 as λ is increased above 3, and bracket the now unstable fixed point x∗ = xλ. To study
this behavior analytically, consider the iterated sequence

xn+2 = λ2 xn(1 − xn) [1 − λ xn(1 − xn)] = f(f(xn)) ≡ f [2] (xn) (1.A12)

This sequence still has the fixed points given by Eq. (1.A4), but two new fixed points

x±
∗ ≡ 1

2λ
{λ + 1 ±

√
(λ + 1)(λ − 3) } (1.A13)

appear. These new fixed points are real for λ > 3, and the original sequence (1.A2) eventually
appears to oscillate between them (with period 2) for λ > 3.
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Exercise 1.A2. Derive the result (1.A13) for the fixed points of the second iterate f [2]

of the map (1.A1) as defined in Eq. (1.A12). Sketch on a graph the behavior of these fixed
points, as well as the fixed points (1.A4) of the original map, as a function of λ for 3 ≤ λ < 4.
Then derive the result (1.A16) for the value of λ at which these fixed points become unstable,
leading to a bifurcation of the sequence into a limit cycle of period 4. �

The derivative of the iterated map f [2] is given by

f [2]′ (x) = f ′(f(x)) f ′ (x) (1.A14)

which at the fixed points (1.A13) becomes

f [2]′ (x±
∗ ) = f ′(x+

∗ ) f ′(x−
∗ ) = 4 + 2λ − λ2 (1.A15)

Thus f [2]′(x±
∗ ) = 1 at λ = 3, and decreases to −1 as λ increases from λ = 3 to

λ = 1 +
√

6 ∼= 3.4495 . . . (1.A16)

when the sequence undergoes a second bifurcation into a stable cycle of length 4. Successive
period doublings continue after shorter and shorter intervals of λ, until at

λ ∼= 3.56994 . . . ≡ λc (1.A17)

the sequence becomes chaotic. Iterations of the sequence starting from nearby points become
widely separated, and the sequence does not approach any limiting cycle.

This is not quite the whole story, however. In the interval λc < λ < 4, there are islands of
periodicity, in which the sequence converges to a cycle of period p for a range of λ, followed
(as λ increases) by a series of period doublings to cycles of periods 2p, 4p, 8p, . . . and even-
tual reversion to chaos. There is one island associated with period 3 and its doublings, which
for the sequence (1.A2) begins at

λ = 1 +
√

8 ∼= 3.828 . . . (1.A18)

and one or more islands with each integer as fundamental period together with the sequence
of period doublings. In Fig. 1.1, the behavior of the iterates of the map is shown as a function
of λ; the first three period doublings, as well as the interval with stable period 3, are clearly
visible. For further details, see the book by Devaney cited in the bibliography at the end of the
chapter.

The behavior of the iterates of the map (1.A2) as the parameter λ varies is not restricted
to the logistic map, but is shared by a wide class of maps of the unit interval I ≡ (0, 1) into
itself. Let

Tλ : x �→ λ f(x) (1.A19)

be a map I → I such that f(x) is continuously differentiable and f ′(x) is nonincreasing
on I , with f(0) = 0 = f(1), f ′(0) > 0, f ′(1) < 0. These conditions mean that f(x) is
concave downward in the interval I , increasing monotonically from 0 to a single maximum in
the interval, and then decreasing monotonically to 0 at the end of the interval.
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1.0

0.0

2.8 4.0

Figure 1.1: Iterates of the map (1.A2) for λ between 2.8 and 4.0. Shown are 100 iterates of the
map after first iterating 200 times to let the dependence on the initial point die down.

If f(x) satisfies these conditions, then Tλ shows the same qualitative behavior of period
doubling, followed by a chaotic region with islands of periodicity, as a function of λ. Further-
more, if λn denotes the value of λ at which the nth period doubling occurs, then

lim
n→∞

λn+1 − λn

λn+2 − λn+1
≡ δ = 4.6692 . . . (1.A20)

is a universal constant, discovered by Feigenbaum in the late 1970s, independent of the further
details of the map.

A simple context in which the sequence (1.A2) arises is the model of a biological species
whose population in generation n + 1 is related to the population in generation n by

pn+1 = r pn − a p2
n (1.A21)

Here r > 0 corresponds to the natural growth rate (r > 1 if the species is not to become
extinct), and a > 0 corresponds to a natural limitation on the growth of the population (due to
finite food supply, for example). Equation (1.A21) implies that the population is limited to

p < pmax ≡ r/a (1.A22)

and rescaling Eq. (1.A21) by defining xn ≡ pn/pmax leads precisely to Eq. (1.A2) with λ = r.
While this model, as well as some related models given in the problems, is oversimplified,
period doubling has actually been observed in biological systems. For examples, see Chapter 2
of the book by May cited in the bibliography.
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Bibliography and Notes

The first three sections of this chapter are intended mainly as a review of topics that will
be familiar to students who have taken a standard advanced calculus course, and no special
references are given to textbooks at that level. A classic reference dealing with advanced
methods of analysis is

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (4th edition), Cam-
bridge University Press (1958).

The first edition of this work was published in 1902 but it is valuable even today. In addition
to its excellent and thorough treatment of the classical aspects of complex analysis and the
theory of special functions, it contains many of the notorious Cambridge Tripos problems,
which the modern reader may find even more challenging than the students of the time!

A basic reference on theory of convergence of sequences and series is

Konrad Knopp, Infinite Sequences and Series, Dover (1956).

This compact monograph summarizes the useful tests for convergence of series, and gives a
collection of elementary examples.

Two books that specialize in the study of asymptotic expansions are

A. Erdélyi, Asymptotic Expansions, Dover (1955), and
N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover
(1986).

The first of these is a concise survey of methods of generating asymptotic expansions, both
from integral representations and from differential equations. The second is a more compre-
hensive survey of the various methods used to generate asymptotic expansions of functions
defined by integral representations. It also has many examples of the physical and mathemat-
ical contexts in which such integrals may occur. The book by Whittaker and Watson noted
above, the book on functions of a complex variable by Carrier, Krook, and Pierson in Chap-
ter 4 and the book on advanced differential equations by Bender and Orszag cited in Chapter 5
also deal with asymptotic expansions.

A readable introduction to the theory of bifurcation and chaos is

R. L. Devaney, An Introduction to Chaotic Dynamical Systems (2nd edition), West-
view Press (2003).

Starting at the level of a student who has studied ordinary differential equations, this book
clearly explains the mathematical foundations of the phenomena that occur in the study of
iterated maps. A comprehensive introduction to chaos in discrete and continuous dynamical
systems is

Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke, Chaos: An Introduction
to Dynamical Systems, Springer (1997).

Each chapter has a serious computer project at the end, as well as simpler exercises. A more
advanced book is

Edward Ott, Chaos in Dynamical Systems, Cambridge University Press (1993).
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Two early collections of reprints and review articles on the relevance of these phenomena
to physical and biological systems are

R. M. May (ed.), Theoretical Ecology (2nd edition), Blackwell Scientific Publishers,
Oxford (1981), and
P. Cvitanoviç (ed.), Universality in Chaos (2nd edition), Adam Hilger Ltd., Bristol
(1989).

The first of these is a collection of specially written articles by May and others on various
aspects of theoretical ecology. Of special interest here is the observation of the phenomenon
of period doubling in ecosystems. The second book contains a collection of reprints of classic
articles by Lorenz, May, Hénon, Feigenbaum, and others, leading to the modern studies of
chaos and related behavior of dynamical systems, with some useful introductory notes by
Cvitanoviç.

The reader should be aware that the behavior of complex dynamical systems is an impor-
tant area of ongoing research, so that it is important to look at the current literature to get an
up-to-date view of the subject. Nevertheless, the concepts presented here and in later chapters
are fundamental to the field. Further readings with greater emphasis on differential equations
and partial differential equations are found at the end of Chapters 2 and 8.

Problems5

1. Show that

lim
n→∞

(
1 +

z

n

)n

=
∞∑

k=0

zk

k!
(= ez)

2. Show that

ζ(s) =
∏

p

(
1 − 1

ps

)−1

where
∏

p denotes a product over all primes p.

3. Investigate the convergence of the following series:

(i)
∞∑

n=1

{
1
n
− ln

(
1 +

1
n

)}

(ii)
∞∑

n=1

{
1 − n ln

(
2n + 1
2n − 1

)}

(iii)
∞∑

n=2

1
na (lnn)b

Explain how convergence depends on the complex numbers a, b in (iii).

5When a proposition is simply stated, the problem is to prove it, or to give a counterexample that shows it is false.
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4. Investigate the convergence of the following series:

(i)
∞∑

n=0

(n + 1)a zn

(ii)
∞∑

n=0

(n + n1)! (n + n2)!
n! (n + n3)!

zn

(iii)
∞∑

n=0

e−na cos(bn2z)

where a, b are real numbers, n1, n2, n3 are positive integers, and z is a (variable) complex
number. How do the convergence properties depend on a, b, z ?

5. Find the sums of the following series:

(i) S = 1 +
1
4
− 1

16
− 1

64
+

1
256

+ · · ·

(ii) S =
1

1 · 3 +
1

2 · 4 +
1

3 · 5 +
1

4 · 6 + · · ·

(iii) S =
1
0!

+
2
1!

+
3
2!

+
4
3!

+ · · ·

(iv) f(z) =
∞∑

n=0

(−1)n (n + 1)2

(2n + 1)!
z2n+1

6. Find a closed form expression for the sums of the series

Sp ≡
∞∑

n=1

1
n(n + 1) · · · (n + p)

(p = 0, 1, 2, . . .).

Remark. The result obtained here can be used to improve the rate of convergence of
a series whose terms tend to zero like 1/np+1 for large n; subtracting a suitably chosen
multiple of Sp from the series will leave a series whose terms tend to zero at least as
fast as 1/np+2 for large n. As a further exercise, apply this method to accelerate the
convergence of the series for the ζ-function ζ(p) with p integer. �

7. The quantum states of a simple harmonic oscillator with frequency ν are the states |n〉
with energies

En = (n + 1
2 )hν
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(n = 0, 1, 2, . . .) where h is Planck’s constant. For an ensemble of such oscillators in
thermal equilibrium at temperature T , the probability of finding an oscillator in the state
|n〉 is given by

Pn = A exp
(
− En

kT

)

where A is a constant to be determined, and the exponential factor is the standard Boltz-
mann factor.

(i) Evaluate the constant A by requiring

∞∑

0

Pn = 1

(ii) Find the average energy 〈E(T )〉 of a single oscillator of the ensemble.

Remark. These results are used in the study of blackbody radiation in Problem 4.9. �

8. Investigate the convergence of the following products:

(i)
∞∏

m=1

m(m + a + b)
(m + a)(m + b)

(ii)
∞∏

m=1

(
1 − z2

m2

)

where a, b are the real numbers and z is a (variable) complex number.

9. Evaluate the infinite product

∞∏

m=1

{
1 + exp(iω/2m)

2

}

Hint. Note that 1 + e
1
2 iω = (1 − eiω)/(1 − e

1
2 iω).

10. Evaluate the infinite products

(i)
∞∏

n=1

{
1 − 1

(n + 1)2

}

(ii)
∞∏

n=2

(
n3 − 1
n3 + 1

)

11. Show that
∞∏

m=0

(
1 + z2m

)
=

1
1 − z
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12. The Euler–Mascheroni constant γ is defined by

γ ≡ lim
N→∞

{
N∑

n=1

1
n
− ln(N + 1)

}

(i) Show that γ is finite (i.e., the limit exists). Hint. Show that

γ = lim
N→∞

N∑

n=1

{
1
n
− ln

(
1 +

1
n

)}

(ii) Show that

N∑

n=1

1
n

=
∫ 1

0

1 − (1 − t)N

t
dt

(iii) Show that
∫ 1

0

(
1 − e−t

t

)
dt −

∫ ∞

1

e−t

t
dt = γ

13. The error function erf(z) is defined by

erf(z) ≡ 2√
π

∫ z

0

e−t2 dt

(i) Find the power series expansion of erf(z) about z = 0.

(ii) Find an asymptotic expansion of erf(z) valid for z large and positive. For what range
of arg z is this asymptotic series valid?

(iii) Find an asymptotic expansion of erf(z) valid for z large and negative. For what
range of arg z is this asymptotic series valid?

14. Find an asymptotic power series expansion of

f(z) ≡
∫ ∞

0

e−zt

1 + t2
dt

valid for z large and positive. For what range of arg z is this expansion valid? Give an
estimate of the error in truncating the series after N terms.

15. Find an asymptotic power series expansion of

f(z) ≡
∫ ∞

0

(
1 +

t

z

)α

e−zt dt

valid for z large and positive (here α is a complex constant). For what range of arg z is
this expansion valid? Give an estimate of the error in truncating the series after N terms.
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16. The modified Bessel function Kλ(z) of order λ is defined by the integral representation

Kλ(z) =
∫ ∞

0

e−z cosh t cosh λt dt

(i) Find an asymptotic expansion of Kλ(z) valid for z → ∞ in the right half-plane with
λ fixed.

(ii) Find an asymptotic expansion of Kλ(z) for λ → ∞ with z fixed in the right half of
the complex plane (Re z > 0).

17. Find an asymptotic expansion of

f(z) ≡
∫ ∞

0

e−zt−1/t dt

valid for z large and positive.

18. The reaction rate for the fusion of nuclei A and B in a hot gas (in the center of a star, for
example) at temperature T can be expressed as

R(T ) =
C

(kT )
3
2

∫ ∞

0

S(E) exp
(
− b√

E
− E

kT

)
dE (*)

where S(E) is often a smoothly varying function of the relative energy E. The ex-
ponential factor exp(−E/kT ) in (∗) is the usual Boltzmann factor, while the factor
exp(−b/

√
E) is the probability of tunneling through the energy barrier created by the

Coulomb repulsion between the two nuclei. The constant b is given by

b =
ZAZBe2

�

√
2mAmB

mA + mB

where mA, mB are the masses, ZAe, ZBe the charges of the two nuclei, and � is Planck’s
constant.

(i) Find the energy E∗ = E∗(T ) at which the integrand in (∗) is a maximum, neglecting
the energy dependence of S(E).

(ii) Find the width ∆ = ∆(T ) of the peak of the integrand near E∗, again neglecting the
energy dependence of S(E).

(iii) Find an approximate value for R(T ), assuming ∆ � E∗.

Remark. A detailed discussion of nuclear reaction rates in stars can be found in

C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos: Nuclear Astrophysics,
University of Chicago Press (1988).

among many other books on the physics of stars. �

19. Find the value(s) of λ for which the fixed points of the iterated logistic map (Eq. (1.A12))
are superstable.
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20. Consider the sequence {xn} defined by

xn+1 = αxn(1 − x2
n)

Find the fixed points of this sequence, and the ranges of α for which each fixed point is
stable. Also find the values of α for which there is a superstable fixed point.

21. Consider the sequence {xn} defined by

xn+1 = xn eλ(1−xn)

with λ > 0 real, and x0 > 0.

(i) For what range of λ is {xn} bounded?

(ii) For what range of λ is {xn} convergent? Find the limit of the sequence, as a function
of λ.

(iii) What can you say about the behavior of the sequence for λ > λ0, where λ0 is the
largest value of λ for which the sequence converges?

(iv) Does the map

Tλ : x �→ x eλ(1−x)

have any fixed point(s)? What can you say about the stability of the fixed point(s) for
various values of λ?

22. Consider the sequence {xn} defined by

xn+1 =
r xn

(1 + xn)b

with b, r > 0 real, and x0 > 0.

(i) For what range of b, r is {xn} bounded for all x > 0?

(ii) For what range of b, r is {xn} convergent? Find the limit of the sequence (as a
function of b, r).

(iii) What can you say about the behavior of the sequence outside the region in the b–r
plane for which the sequence converges?

(iv) Does the map

Tr,b : x �→ r x

(1 + x)b

have any fixed point(s)? What can you say about the stability of the fixed point(s) for
various values of b, r?


