

1. Design of Intelligent System Using PEAS

1.1 Automated Taxi Driver

1.2 Vacuum Cleaner Agent

1.3 A Music Composer

1.4 An Aircraft Autolander

1.5 An Essay Evaluator

1.6 A Robotic Sentry Gun for the Keck Lab

1.7 Medical Diagnosis System

2. Problem Definition with State Space Representation

2.1 Implement Water Jug Problem Using Problem Formulation

2.2 Implement Wumpus World Problem Using Problem Formulation

3. Uniformed Search Techniques

3.1 Implement Path Finding in Maze Using Depth-First Search (DFS)

3.2 Implement Water Jug Problem Using Breadth-First Search (BFS)

4. Informed Search Technique

4.1 Implement 8-Puzzle Problem Using Hill Climbing

4.2 Implement 8-Puzzle Problem Using Best-First Search

4.3 Implement Tic-Tac-Toe Using A* Algorithm

4.4 Implement 8-Puzzle Problem Using A* Algorithm

4.5 Implement Travelling Salesman Problem (TSP) Using A* Algorithm

4.6 Implement 8-Queen Problem with Heuristic Function (Informed Search)

5. Adversarial Search

5.1 Implement Minimax Algorithm

6. Constraint Satisfaction Problem

6.1 Implement 8-Queen Problem

6.2 Implement Map Colouring Problem

6.3 Implement Crypt Arithmetic Problem

7. Design of a Planning System Using STRIPS (Block World Problem)

8. Implementation of Bayes' Belief Network (Probabilistic Reasoning in an Uncertain

Domain)

9. Implement Resolution Inference Rule Using Prolog

10. Ontology Creating, Editing and Authoring Using Protégé Tool.

11. Inductive Learning Using Weka Tool

11.1 Implement Decision Tree Learning

12. Study of Seiko DTRANS RT 3200 Robot

13. Mini Expert System Using PROLOG.

14. Programming Using Python

14.1 Water Jug Problem Using Python

14.2 Wumpus World Problem Using Python

14.3 Eight Puzzle Problem Using Python

14.4 Tic-Tak-Toe Game Using Python

14.5 Eight/N- Queen Problem Using Python

14.6 Minimax &Alpha Beta Pruning AI Algorithm in Tic-Tac-Toe Using Python

14.7 Constraint Satisfaction Problem Using Python

15. Construction of a Domain-Specific Chatbot Using Natural Language Processing Techniques

Design of Intelligent System Using PEAS

1.1 Automated Taxi Driver

1.2 Vacuum Cleaner Agent

1.3 A Music Composer

1.4 An Aircraft Autolander

1.5 An Essay Evaluator

1.6 A Robotic Sentry Gun for the Keck Lab

1.7 Medical Diagnosis System

Aim: To understand the concept of PEAS.

PEAS: PEASstands for performance environment actuators sensors.

a. Automated Taxi Driver

In designing an agent, the first step must always be to specify the task environment as fully

observable.

To understand PEAS in a better way, let us try to analyse the complex problem of automatic taxi

driver which is currently beyond the capabilities of existing technology. We would consider

characteristics of PEAS for description of taxi's task environment.

Performance measure is the first to which we would like an automatic driver to Aspire.

Desirable measures include getting correct destination, minimising fuel consumption, no wear and

tear, minimising trip time and cost, minimising violation of traffic laws and disturbance to other

drivers, minimising safety and passenger comfort and maximizing profit. But in this scenario,

some of the goals may conflict, so there will be some trade off involved.

Environment: The basic question that comes in the mind is what is the driving environment that

a taxi will face? A taxi driver will face with a variety of roads, ruler lines and urban Valley to 12

Lane Freeway. The roads contain other traffic, pedestrians, stray animal, roads work, police

potholes and cars. A taxi must also interact with potential and actual passengers. There might be

some restriction on driving, such as left-hand side driving as in India, Japan, etc., or right-hand

side driving. Otherwise the roads may be soaring temperature, desert areas and all snowfall regions

like Kashmir. Thus, more restricted the environment, easier the design problem.

Actuators: The actuators available to an automated taxi will be more or less same as those

available to human driver(i.e., control over engine through the accelerator and control over steering

and breaking). In addition, it will output to a display screen or voice synthesizer talk back to

passengers and perhaps some way to communicate with other drivers or vehicle politely or

otherwise.

Sensors: The sensors will play a crucial role in determining where the taxi actually is, what else

is on the road and how fast it is going. The basic sensors should therefore include one or more TV

cameras, the tachometer and the odometer. To control the vehicle properly, especially on curves,

it will also need to know the mechanical state of vehicle so it will need the usual array of engine

and electrical system sensors. It might have instruments that are not available to average human

driver, a satellite global positioning system (GPS) to give accurate position information with

respect to an electronic map and infrared solar sensors to detect distance to other cars and obstacles.

Finally, it will require keyboard or microphone for passenger to request a destination.

• Performance measure safe fast legal comfortable trip maximize profit

• Environment roads are the traffic pedestrian customers

• Activators steering accelerator break horn display

• Sensors, camera, sonar speedometer, odometer, GPS, etc.

b. Vacuum Cleaner Agent

Figure 1 iRobot Roomba series.

Performance: Cleanness, efficiency: distance travelled to clean, battery life, security.

Environment: Room, table, wood floor, carpet, different obstacles.

Actuators: Wheels, different brushes, vacuum extractor.

Sensors: Camera, dirt detection sensor, cliff sensor, bump sensors, infrared wall sensors.

c. Music Composer

• Performance Measures - number of measures composed per unit time, number of

instruments considered, ease of play by a human, range of frequencies within human

audible zone, melodic, harmonic and rhythmic criteria, ...

• Environment Software

• Actuator None required, this can be a pure softbot

• Sensors Code that reads in basic parameters

d. Aircraft Autolander

• Performance Measure: Lack of damage to plane, other aircraft or ground structures, lack

of injuries to passengers or ground crew or other innocent observers, cargo remains intact,

fuel economy, lands at correct airport on correct runway, doesn't take too long

• Environment: Lower atmosphere and surface of planet Earth.

• Actuators: Throttle, landing gear, rudders, ailerons, flaps ...

• Sensors: Cameras, Altimeter, Speedometer, other meters, ...

e. Essay Evaluator

• Performance Measures : awards scores for quality, penalizes crap, detection of plagiarism,

impartiality, usefulness of explanation of grading, ...

• Environment: Software

• Actuator: None, this can be a pure softbot

• Sensors: File reading software, (perhaps even OCR)

f. Robotic Sentry Gun for the Keck Lab

• Performance Measures Percentage of correct targets hit, lack of hitting friends, minimal

energy consumption, ...

• Environment: The Keck Lab

• Actuator: Gun, trigger, motors, camera, ...

• Sensors: Camera, sonar, bump sensors, ...

g. Medical diagnosis system

• Performance measure: Healthy patient, minimize costs, lawsuits

• Environment: Patient, hospital, staff

• Actuators: Screen display (questions, tests, diagnoses, treatments, referrals)

• Sensors: Keyboard (entry of symptoms, findings, patient's answers)

Problem Definition with State Space Representation

2.1 Implement Water Jug Problem Using Problem Formulation

Aim: Implement water jug problem using BFS or DFS (Un-Informed Search).

Theory:

Problem Statement

For further explanation read Section 3.5 of Chapter 3.

In the water jug problem in Artificial Intelligence, we are provided with two jugs: one having

the capacity to hold 3 gallons of water and the other has the capacity to hold 4 gallons of water.

There is no other measuring equipment available and the jugs also do not have any kind of marking

on them. So, the agent’s task here is to fill the 4-gallon jug with 2 gallons of water by using only

these two jugs and no other material. Initially, both our jugs are empty.

So, to solve this problem, following set of rules were proposed:

Production rules for solving the water jug problem

Here, let x denote the 4-gallon jug and y denote the 3-gallon jug.

S.No. Initial State Condition Final state Description of action taken

1. (x,y) If x<4 (4,y) Fill the 4 gallon jug completely

2. (x,y) if y<3 (x,3) Fill the 3 gallon jug completely

3. (x,y) If x>0 (x-d,y) Pour some part from the 4 gallon jug

4. (x,y) If y>0 (x,y-d) Pour some part from the 3 gallon jug

5. (x,y) If x>0 (0,y) Empty the 4 gallon jug

6. (x,y) If y>0 (x,0) Empty the 3 gallon jug

7. (x,y) If (x+y)<7 (4, y-[4-x]) Pour some water from the 3 gallon jug to fill the four gallon jug

8. (x,y) If (x+y)<7 (x-[3-y],y) Pour some water from the 4 gallon jug to fill the 3 gallon jug.

9. (x,y) If (x+y)<4 (x+y,0) Pour all water from 3 gallon jug to the 4 gallon jug

10. (x,y) if (x+y)<3 (0, x+y) Pour all water from the 4 gallon jug to the 3 gallon jug

The listed production rules contain all the actions that could be performed by the agent in

transferring the contents of jugs. But, to solve the water jug problem in a minimum number of

moves, following set of rules in the given sequence should be performed:

Solution of water jug problem according to the production rules:

S.No. 4 gallon jug contents 3 gallon jug contents Rule followed

1. 0 gallon 0 gallon Initial state

2. 0 gallon 3 gallons Rule no.2

3. 3 gallons 0 gallon Rule no. 9

4. 3 gallons 3 gallons Rule no. 2

5. 4 gallons 2 gallons Rule no. 7

6. 0 gallon 2 gallons Rule no. 5

7. 2 gallons 0 gallon Rule no. 9

On reaching the 7th attempt, we reach a state which is our goal state. Therefore, at this state, our

problem is solved.

Conclusion: Thus, we have successfully implemented water jug problem.

Program:

Problem Statement: There are two jugs (suppose capacity of 3 and 5) and we need to fill the jug in

such a way that 5 liters capacity jug should contain 4 liters of water.

import java.util.*;

class WaterJug{

 public static void main(String sap[]){

 Scanner sc = new Scanner(System.in);

 // j1 is capacity of small tank

 System.out.print("\nEnter odd capacity of small tank: ");

 int j1 = sc.nextInt();

 // j2 is capacity of large tank

 System.out.print("\nEnter odd capacity of large tank: ");

 int j2 = sc.nextInt();

 // count takes care of number of iterations

 int count = j1 + j2;

 /* jug1 array would hold the values for smaller tank and jug2 array would hold the values for

larger tank */

 int jug1[] = new int[count];

 int jug2[] = new int[count];

 int i=0;

 // initialzing jug1 and jug2 array

 jug1[i] = j1;

 jug2[i] = 0;

 i++;

 jug1[i] = 0;

 jug2[i] = j1;

 i++;

 while(i < count){

 if(jug1[i-1] > 0){

 // if jug1 has any amount of water i.e. it is not empty

 jug1[i] = jug1[i-1];

 jug2[i] = 0;

 }

 else{

 // jug1 is fully empty

 jug1[i] = j1;

 jug2[i] = jug2[i-1];

 }

 i++;

 if(jug2[i-1] > 0){

 // if jug2 has any amount of water i.e. it is not empty

 if(jug1[i-1] + jug2[i-1] < j2){

 // final result obtained

 jug2[i] = jug1[i-1] + jug2[i-1];

 jug1[i] = 0;

 }

 else{

 int temp = jug2[i-1];

 temp = j2 - temp;

 jug2[i] = temp + jug2[i-1];

 jug1[i] = jug1[i-1] - temp;

 }

 }

 else{

 // jug2 is fully empty

 jug2[i] = jug1[i-1];

 jug1[i] = 0;

 }

 i++;

 }

 // display final result

 for(i=0; i<count; i++){

 System.out.print("\nJUG1: "+jug1[i]+"\tJUG2: "+jug2[i]);

 }

 System.out.println();

 }

}

Output:

Enter odd capacity of small tank: 3

Enter odd capacity of large tank: 5

JUG1: 3 JUG2: 0

JUG1: 0 JUG2: 3

JUG1: 3 JUG2: 3

JUG1: 1 JUG2: 5

JUG1: 1 JUG2: 0

JUG1: 0 JUG2: 1

JUG1: 3 JUG2: 1

JUG1: 0 JUG2: 4

2.1 Implement Wumpus World Problem Using Problem Formulation

Aim: Implement Wumpus world problem (knowledge and reasoning).

For further explanation read Section 3.7 of Chapter 3.

Theory: A variety of ‘worlds’ are getting used as examples for knowledge representation,

reasoning, and planning. Among them are the Vacuum World, the Block World, and also

the Wumpus world. We'll examine the Wumpus world and during this context introduce the

situation Calculus, the Frame drawback, and a range of axioms. The Wumpus world was

introduced by Genesereth and is mentioned in Russell-Norvig. The Wumpus world could be

an easy world (as is that the Block World) to represent knowledge and to reason.

It is a cave with a number of rooms, represented as a 4x4 square.

Rules of the Wumpus

World: The neighbourhood of a node consists of the four squares north, south, east and west of

the given square.

In a square, the agent gets a vector of percepts, with components Stench, Breeze, Glitter,

Bump, Scream.

For example [Stench,None,Glitter,None,None]

1. Stench is perceived at a square if the Wumpus is at this square or in its neighbourhood.

2. Breeze is perceived at a square if a pit is in the neighbourhood of this square.

3. Glitter is perceived at a square if gold is in this square

4. Bump is perceived at a square if the agent goes Forward into a wall

5. Scream is perceived at a square if the Wumpus is killed anywhere in the cave

An agent can do the following actions (one at a time):

Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

1. The agent can go Forward in the direction it is currently facing, or Turn Right, or Turn

Left. Going Forward into a wall will generate a Bump percept.

2. The agent has a single arrow that it can Shoot. It will go straight in the direction faced by

the agent until it hits (and kills) the Wumpus, or hits (and is absorbed by) a wall.

3. The agent can Grab a portable object at the current square or it can Release an object that

it is holding.

4. The agent can Climb out of the cave if at the Start square.

The Start square is (1,1) and initially the agent is facing east. The agent dies if it is in the same

square as the Wumpus.

The objective of the game is to kill the Wumpus, to pick up the gold, and to climb out with it.

Stench Breeze Pit

Wumpus Stench

breeze

gold

Pit Breeze

Stench Breeze

Start Breeze Pit Breeze

The Situation Calculus: With the name situation, we have a tendency to mean a state of the

world. The Situation Calculus is employed to reason concerning actions and their impact on

the possible states of the world. We'll limit our discussion of the Situation Calculus to the

case of the Wumpus world.

The Frame Problem: We are reasoning about possible states of the world, wherever the

states are known by the actions by which we got to that state from the initial state. The

Frame problem worries with the question of what happens to the truth-value of the statements

that describe the world as we have a tendency to go from one world to the world resulting by

application of an action. We have a tendency to contend with the frame problem by

introducing a certain variety of axioms that go by names like effect Axioms, Frame Axioms,

and Successor-State Axioms.

Representing our Knowledge about the Wumpus World

Percept (x, y)

Where x must be a percept vector and y must be a situation. It means that at situation y the agent

perceives x.

For convenience we introduce the following definitions:

1. Percept ([Stench, y, z, w, v], t) ≥ Stench(t)

2. Percept ([x, Breeze, z, w, v], t) ≥ Breeze(t)

3. Percept ([x, y, Glitter, w, v], t) ≥AtGold(t)

Holding (x, y)

Where x is an object and y is a situation. It means that the agent is holding the object x in situation

y.

Action (x,y)

Where x must be an action (i.e., Turn(Right), Turn(Left), Forward) and y must be a situation. It

means that at situation y the agent takes action x.

At(x,y,z)

Where x is an object, y is a Location, i.e. a pair [u,v] with u and v in {1,2,3,4}, and z is a situation.

It means that the agent x in situation z is at location y.

Present(x,s)

Means that object x is in the current room in the situation s.

Result(x,y)

It means that the result of applying action x to the situation y is the situation Result(x,y). Note that

Result(x,y) is a term, not a statement.

For example, we can say

1. Result(Forward, S0) = S1

2. Result(Turn(Right),S1) = S2

These definitions could be created more general. Since within the Wumpus

world there is one agent, there is no reason for us to form predicates and functions relative

to a selected agent. In alternative ‘worlds’, we must always change things appropriately.

Another generalisation is feasible, to put in writing all assertions regarding the world as

terms, and then add the predicates.

T(situation assertion-term)

To mean that in the specified situation the specified assertion is true.

Belief(agent situation assertion-term)

To mean that the specified agent in the specified situation believes the specified assertion to be

true. Here are a series of statements about the Wumpus world.

Effect Axioms: Effect axioms characterize what is changed because of an action. For example:

1. Present(x,s) & Portable(x) ≥ Holding(x, Result(Grab,s))

2. Not Holding(x, Result(Release,s))

Frame Axioms: Frame axioms characterize what has remained the same because of an action. For

example:

1. Holding(x,s) & (a/=Release) ≥ Holding(x,Result(a,s))

2. NOT Holding(x,s) & ((a/=Grab)) | NOT(Present(x,s) & Portable(x)) = > NOT

Holding(x,Result(a,s))

Successor–State Axioms: For each predicate that can change over time they characterize the

actions under which it changes and the actions under which it remains the same. For example:

Holding(x,Result(a,s)) IFF [(a=Grab & Present(x,s) & Portable(x)) OR (Holding(x,s) &

(a/=Release))

More Definitions and Axioms

1. Orientation(Agent,s0) = 0

2. At(Agent,[1,1],s0)

3. Portable(Gold)

4. AtGold(s) ≥ Present(Gold, s)

5. LocationToward([x,y],0) = [x+1,y]

6. LocationToward([x,y],90) = [x,y+1]

7. LocationToward([x,y],180) = [x-1,y]

8. LocationToward([x,y],270) = [x,y-1]

9. At(p,l,s) ≥ LocationAhead(p,s) = LocationToward(l, Orientation(p,s))

10. Adjacent(l1,l2) IFF EXISTS d (l1 = LocationToward(l2,d))

11. Wall([x,y]) IFF (x=0 OR x=5 OR y=0 OR y=5)

12. At(p,l,Result(a,s)) IFF [(a=Forward & l=LocationAhead(p,s) & NOT Wall(l)) OR

(At(p,l,s) & a/=Forward)]

13. Orientation(p,Result(a,s))=d IFF [(a=Turn(Right) & d=Mod(Orientation(p,s)-90,360)) OR

(a=Turn(Left) & d=Mod(Orientation(p,s)+90,360)) OR (Orientation(p,s)=d &

NOT(a=Turn(Right) & a=Turn(Left)))]

14. At(Wumpus.l1,s) & Adjacent(l1,l2) ≥ Smelly(l2)

15. At(Pit,l1,s) & Adjacent(l1,l2) ≥ Breezy(l2)

Model-Based and Diagnostic Reasoning: Causal Rules specify how aspects of the state of the

world determine our percepts. Model-Based Reasoning is what we do when we use causal rules.

Here are some causal rules:

1. At(Wumpus,l1,s) & Adjacent(l1,l2) ≥ Smelly(

2. l2)

3. At(Pit,l1,s) & Adjacent(l1,l2) ≥ Breezy(l2)

Diagnostic rules specify how to go from percepts to assertions about the state of the world.

Diagnostic reasoning is what we do when we use diagnostic rules. Here are some diagnostic rules:

1. At(Agent,l,s) & Breeze(s) ≥ Breezy(l)

2. At(Agent,l,s) & Stench(s) ≥ Smelly(l)

3. Smelly(l1) ≥ (EXISTS l2 At(Wumpus,l2,s) & (l2=l1 OR Adjacent(l1,l2)))

4. At(Wumpus,x,t) & NOT Pit(x) IFF OK(x)

PEAS Description:

1. Performance measure:

(a) +1000 points for picking up the gold — this is the goal of the agent

(b) −1000 points for dying = entering a square containing a pit or a live Wumpus Monster

(c) −1 point for each action taken, and

(d) −10 points for using the arrow trying to kill the Wumpus -- so that the agent should

avoid performing unnecessary actions.

2. Environment: A 4 × 4 grid of squares with. . .

(a) the agent starting from square [1, 1] facing right

(b) the gold in one square

(c) the initially live Wumpus in one square, from which it never moves

(d) maybe pits in some squares.

The starting square [1, 1] has no Wumpus, no pit, and no gold – so the agent neither dies

nor succeeds straight away.

3. Actuators:The agent can turn 90 left or right walk one square forward in the current

direction, grab an object in this square, shoot the single arrow in the current direction,

which flies in a straight line until it hits a wall or the Wumpus.

4. Sensors:The agent has 5 true/false sensors which report a stench when the Wumpus is in

an adjacent square — directly, not diagonally breeze when an adjacent square has a pit

glitter, when the agent perceives the glitter of the gold in the current square bump, when

the agent walks into an enclosing wall (and then the action had no effect) scream, when the

arrow hits the Wumpus, killing it.

Program:

import java.util.*;

class Environment

{Scanner scr=new Scanner(System.in);

int np; //number of pits

int wp,gp; // wumpus position gold position

int pos[]; // position of pits

int b_pos[]=new int[20];

int s_pos[]=new int[20];

void accept(String w[][])

{for(int i=0;i<20;++i)

{b_pos[i]=-1;

s_pos[i]=-1;}

for(int i=0;i<5;++i)

for(int j=0;j<5;++j)

w[i][j]="";

int count=1;

System.out.println("\n\n********* Wumpus World Problem *********\n");

System.out.println("The positions are as follows.");

for(int i=1;i<=4;++i) {System.out.println("\n---

---"); System.out.print("|\t");

for(int j=1;j<=4;++j)

System.out.print((count++)+"\t|\t");}

System.out.println("\n--");

System.out.println("\nAgent start position: 13");

w[4][1]="A";

System.out.println("\nEnter the number of pits.");

np=scr.nextInt();

pos=new int[np];

System.out.println("Positions of pit, gold and wumpus should not overlap.");

System.out.println("Enter the position of pits.");

for(int i=0;i<np;++i)

{pos[i]=scr.nextInt();

show_sense(pos[i],1,w);}

System.out.println("Enter the position of wumpus.");

wp=scr.nextInt();

show_sense(wp,2,w);

System.out.println("Enter the position of gold.");

gp=scr.nextInt();

insert(w);}

void insert(String w[][])

{int temp=0;

int count=0;

int flag1=0,flag2=0;

for(int i=0;i<np;++i)

{temp=pos[i];

count=0;

for(int j=1;j<=4;++j)

{for(int k=1;k<=4;++k)

{++count;

if(count==temp)

w[j][k]+="P";

else if(count==gp&& flag1==0)

{w[j][k]+="G";

flag1=1;}

Else if(count==wp&& flag2==0)

{w[j][k]+="W"; flag2=1;}}}}

display(w);}

void show_sense(int a,intb,String w[][])

{int t1,t2,t3,t4;

t1=a-1;

t2=a+1;

t3=a+4;

t4=a-4;

if(a==5 || a==9)

t1=0;

if(a==8 || a==12)

t2=0;

if(a==4)

t2=0;

if(a==13)

t1=0;

if(t3>16)

t3=0;

if(t4<0)

t4=0;

if(b==1)

{b_pos[0]=t1;

b_pos[1]=t2;

b_pos[2]=t3;

b_pos[3]=t4; }

else if(b==2)

{s_pos[0]=t1;

s_pos[1]=t2;

s_pos[2]=t3;

s_pos[3]=t4;}

int temp1,count;

for(int i=0;i<4;++i)

{if(b==1)

temp1=b_pos[i];

else

temp1=s_pos[i];

count=0;

for(int j=1;j<=4;++j)

{for(int k=1;k<=4;++k)

{++count;

if(count==temp1 && b==1 && !w[j][k].contains("B"))

{w[j][k]+="B";}

Else

if(count==temp1 && b==2 && !w[j][k].contains("S"))

w[j][k]+="S";}}}}

void display(String w[][])

{System.out.println("\nThe environment for problem is as follows.\n");

for(int i=1;i<=4;++i)

{System.out.println("\n--");

System.out.print("|\t");

for(int j=1;j<=4;++j)

System.out.print(w[i][j]+"\t|\t");

}

System.out.println("\n--");

}}

class tiles

{int safe=0;int unsafe=0;int wump=0;int pit=0;int gold=0;int doubt_pit=0;int

doubt_wump=0;String env;

int num=0;int br=0;int bl=0;int bu=0;int bd=0;

int visited=0;int l,r,u,d;

String back="";

tiles(String s,int n)

{env=s;

num=n;

l=r=u=d=0;

if(n==9 || n==5) bl=1;

if(n==8 || n==12)

br=1;

if(n==1)

{bu=1;bl=1;}

if(n==13)

{bd=1;bl=1;}

if(n==4)

{bu=1;br=1;}

if(n==16)

{bd=1;br=1;}}

int sense()

{if(env.contains("B"))

return 1;

else if

(env.contains("S"))

return 2;

else if(env.contains("G"))

return 3;

if(env.contains("W"))

return 4;

else

return 0;}}

class wumpus

{static int scream=0;static int score=0;static int complete=0;

static boolean check(tiles t)

{int temp=t.sense();

if(temp==1 || temp==2)

return false;

return true;}

public static void main(String args[])

{Scanner scr=new Scanner(System.in);

Environment e=new Environment();

String w[][]=new String[5][5];

e.accept(w);

System.out.println("\n\nFinding the solution...");

tiles t[]=new tiles[17];

int c=1;

out:for(int i=1;i<5;++i)

{for(int j=1;j<5;++j)

{if(c>16)

break out;

t[c]=new tiles(w[i][j],c);

++c;}}

t[13].safe=1;

t[13].visited=1;

int pos=13;

int condition;

int limit=0;

String temp1,temp2;

do

{++limit; condition=-1;

if(t[pos].env.contains("G"))

{complete=1;

System.out.println("Gold Found!!");

break;}

if(t[pos].br!=1 && t[pos].r!=1 &&

t[pos+1].doubt_pit<1

&& t[pos+1].doubt_wump<1 && t[pos+1].pit!=1 && t[pos+1].wump!=1 &&

!(t[pos].back.contains("r") && (t[pos].l!=1 || t[pos].u!=1 || t[pos].d!=1) && check(t[pos])))

{temp1="l";

t[pos].r=1;

++pos;

System.out.println("\nfrontpos="+pos);

++score;

t[pos].back+=temp1;

condition=t[pos].sense();

if(condition==3)

{complete=1;break;}

else

if(condition==1 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_pit+=1;

if(t[pos].bu!=1 && (pos-4)>=1 && t[pos-4].safe!=1)

t[pos-4].doubt_pit+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_pit+=1;

if(t[pos].bd!=1 && (pos+4)<=16 && t[pos+4].safe!=1)

t[pos+4].doubt_pit+=1;

t[pos].safe=1;}

else if(condition==2 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_wump+=1;

if(t[pos].bu!=1 && (pos-4)>=1 && t[pos-4].safe!=1)

t[pos-4].doubt_wump+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_wump+=1;

if(t[pos].bd!=1 && (pos+4)<=16 && t[pos+4].safe!=1)

t[pos+4].doubt_wump+=1;

t[pos].safe=1;}

else

if(condition==0)

t[pos].safe=1; t[pos].visited=1;}

else

1].doubt_pit<1 && t[pos-1].doubt_wump<1 &&

t[pos-1].pit!=1 && t[pos-1].wump!=1 &&

!(t[pos].back.contains("l") && (t[pos].r!=1 || t[pos].u!=1 || t[pos].d!=1)

&& check(t[pos])))

{temp1="r";

t[pos].l=1;

pos=pos-1;

System.out.println("\nbackpos= "+pos);

++score;

t[pos].back+=temp1;

condition=t[pos].sense();

if(condition==3)

{complete=1;break;}

else

if(condition==1 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_pit+=1;

if(t[pos].bu!=1 && (pos-4)>=1 && t[pos-4].safe!=1)

t[pos-4].doubt_pit+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_pit+=1;

if(t[pos].bd!=1 && (pos+4)<=16 && t[pos+4].safe!=1)

t[pos+4].doubt_pit+=1; t[pos].safe=1;}

else

if(condition==2 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_wump+=1;

if(t[pos].bu!=1 && (pos-4)>=1 && t[pos-4].safe!=1)

t[pos-4].doubt_wump+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_wump+=1;

if(t[pos].bd!=1 && (pos+4)<=16 && t[pos+4].safe!=1)

t[pos+4].doubt_wump+=1;

t[pos].safe=1;}

else

if(condition==0)

t[pos].safe=1;

t[pos].visited=1;}

else

if(t[pos].bu!=1 && t[pos].u!=1 && (pos-4)>=1 &&

t[pos-4].doubt_pit<1 && t[pos-4].doubt_wump<1

&& t[pos-4].pit!=1 && t[pos-1].wump!=1 &&

!(t[pos].back.contains("u") && (t[pos].l!=1 || t[pos].r!=1 || t[pos].d!=1)

&& check(t[pos])))

{temp1="d"; t[pos].u=1; pos=pos-4;

System.out.println("\nUppos= "+pos);

++score;

t[pos].back+=temp1;

condition=t[pos].sense();

if(condition==3)

{complete=1;break;}

else

if(condition==1 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_pit+=1;

if(t[pos].bu!=1 && (pos-4)>=1 && t[pos-4].safe!=1)

t[pos-4].doubt_pit+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_pit+=1;

if(t[pos].bd!=1 && (pos+4)<=16 && t[pos+4].safe!=1)

t[pos+4].doubt_pit+=1;t[pos].safe=1;}

else

if(condition==2 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_wump+=1;

if(t[pos].bu!=1 && (pos-4)>=1 && t[pos-4].safe!=1)

t[pos-4].doubt_wump+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_wump+=1;

if(t[pos].bd!=1 && (pos+4)<=16 && t[pos+4].safe!=1)

t[pos+4].doubt_wump+=1;

t[pos].safe=1;}

else

if(condition==0)

t[pos].safe=1; t[pos].visited=1;}

else

if(t[pos].bd!=1 && t[pos].d!=1 && (pos+4)<=16 &&

t[pos+4].doubt_pit<1 && t[pos+4].doubt_wump<1 &&

t[pos+4].pit!=1 && t[pos+4].wump!=1)

{temp1="u";

t[pos].d=1;

pos=pos+4;

System.out.println("\ndownpos= "+pos);

++score;

t[pos].back+=temp1;

condition=t[pos].sense();

if(condition==3)

{complete=1;break;}

else

if(condition==1 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_pit+=1;

if(t[pos].bu!=1 && (pos-4)>=1 && t[pos-4].safe!=1)

t[pos-4].doubt_pit+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_pit+=1;

if(t[pos].bd!=1 && (pos+4)<=16 &&

t[pos+4].safe!=1) t[pos+4].doubt_pit+=1; t[pos].safe=1;}

else

if(condition==2 && t[pos].visited==0)

{if(t[pos].br!=1 && t[pos+1].safe!=1)

t[pos+1].doubt_wump+=1;

if(t[pos].bu!=1 && (pos-4)>=1 &&

t[pos-4].safe!=1) \t[pos-4].doubt_wump+=1;

if(t[pos].bl!=1 && t[pos-1].safe!=1)

t[pos-1].doubt_wump+=1;

if(t[pos].bd!=1 && (pos+4)<=16 && t[pos+4].safe!=1)

t[pos+4].doubt_wump+=1;

t[pos].safe=1;}

else

if(condition==0)

t[pos].safe=1; t[pos].visited=1;}

else

if(limit>50)

{int temp3=pos; int flag_1=0,flag2=0,flag3=0,flag4=0;

System.out.println("\nCurrently at position "+temp3+".\nThinking....");

while(t[pos].visited==1 && t[pos].br!=1)

{++pos;++score;}

if(t[pos].pit==1 || t[pos].wump==1 ||

(t[pos].br==1 && t[pos].visited==1 && t[pos].safe!=1))

{pos=temp3;flag_1=1;}

if(flag_1==0)

t[pos].back+="l";

while(pos+4>=1 && t[pos].bu!=1

&& t[pos].visited==1)

{pos-=4;++score;}

if(t[pos].pit==1 || t[pos].wump==1 ||

(t[pos].bu==1 && t[pos].visited==1

&& t[pos].safe!=1)) {pos=temp3;flag3=1;}

if(flag3==0)

t[pos].back+="d";

while(t[pos].visited==1 && t[pos].bl!=1)

{--pos;++score;}

if(t[pos].pit==1 || t[pos].wump==1 ||

(t[pos].bl==1 && t[pos].visited==1

&& t[pos].safe!=1))

{pos=temp3;flag2=1;}

if(flag2==0) t[pos].back+="r";

while(pos+4<=16 && t[pos].bd!=1 &&

t[pos].visited==1)

{pos+=4;++score;}

if(t[pos].pit==1 ||

t[pos].wump==1 || (t[pos].bd==1 &&

t[pos].visited==1 &&

t[pos].safe!=1))

{pos=temp3;flag4=1;}

if(flag4==0) t[pos].back+="u";t[pos].safe=1;t[pos].visited=1;

System.out.println("reached at position "+pos);

limit=0;}

if(t[pos].env.contains("W") &&

scream!=1) {score+=100; scream=1;

t[pos].safe=1;

System.out.println("\n\nWumpus killed >--0-->");

t[pos].env.replace("W"," ");

for(int l=1;l<=16;++l)

{t[l].doubt_wump=0;t[l].env.replace("S"," ");}}

if(t[pos].env.contains("P"))

{score+=50;t[pos].pit=1;

System.out.println("\n\nFallen in pit of position "+pos+".");}

for(int k=1;k<=16;++k)

{if(t[k].doubt_pit==1 &&

t[k].doubt_wump==1)

{t[k].doubt_pit=0;

t[k].doubt_wump=0;

t[k].safe=1;}}

for(int y=1;y<=16;++y)

{if(t[y].doubt_wump>1)

{t[y].wump=1;

for(int h=1;h<=16;++h)

{if(h!=y)

{t[h].doubt_wump=0;

t[h].env.replace("S"," ");}}}}

for(int y=1;y<=16;++y)

{if(t[y].doubt_pit>1)

{t[y].pit=1;}}

try{Thread.sleep(200);}catch(Exception p){}}

while(complete==0);

if(complete==1)

{score*=-1;score+=1000;}

System.out.println("The score of the agent till he

reaches gold is "+score+".\nNow he will return

back following the best explored path.");}}

Output

********* Wumpus World Problem ********* The positions are as follows.

| 1 | 2 | 3 | 4 |

| 5 | 6 | 7 | 8 |

| 9 | 10 | 11 | 12 |

| 13 | 14 | 15 | 16 |

Agent start position: 13

Enter the number of pits. 3

Positions of pit, gold and wumpus

should not overlap.

Enter the position of pits. 4 7 15

Enter the position of wumpus. 5

Enter the position of gold. 6

The environment for problem is as follows.

| S | | B | P |

| W | BSG | P | B |

| S | | B | |

| A | B | P | B |

Finding the solution...

front pos=14

back pos= 13

Up pos= 9

front pos=10

front pos=11

back pos= 10

Up pos= 6

Gold Found!! The score of the agent till he reaches gold is 993.

Now he will return back following the best explored path.

Uniformed Search Techniques

3.1 Implement Path Finding in Maze Using Depth-First Search

Aim:Path finding in maze using depth-first search (DFS).

Theory:

1. Maze generation algorithms are automated methods for the creation of mazes.

2. A maze can be generated by starting with a predetermined arrangement of cells (most

commonly a rectangular grid but other arrangements are possible) with wall sites between

them.

3. This predetermined arrangement can be considered as a connected graph with the edges

representing possible wall sites and the nodes representing cells.

4. The purpose of the maze generation algorithm can then be considered to be making a sub

graph, where it is challenging to find a route between two particular nodes.

Depth-First Search:

1. Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data

structures.

2. One starts at the root (selecting some arbitrary node as the root in the case of a graph) and

explores as far as possible along each branch before backtracking.

Program:

Depth-first search is an algorithm that can be used to generate a maze. The idea is really simple

and easy to implement using recursive method or stack.

Basically, you start from a random point and keep digging paths in one of 4 directions(up, right,

down, left) until you can’t go any further. Once you are stuck, you take a step back until you find

an open path. You would continue digging from there. It’s just the repetition of these.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology

First of all, I would like to explain the general idea a little deeper which you can apply using your

choice of programming language. After you have the picture in your mind, you can take a look at

the sample code and applet in java.

Explanation

Create a 2-dimensional int array with odd row and column size. 0 represents paths(orange cell)

and 1 would be walls(black cell).

Set all cells to 1(wall). There are no paths right now.

Next, let’s set the starting point. Generate odd numbers for row and col. Set that cell to 0. Use row

and col variables to keep track of current location. On the picture above, it would be row = 3, col

= 5. For clarity, I will be filling the current cell with red.

Now, choose a random direction(up, right, down, or left) you are moving to. You will always be

moving by 2 cells. The picture above illustrates the current cell moving down. There are couple

things you need to check when you move. First, you need to check if 2 cells ahead of that direction

is outside of the maze. Then, you check if 2 cells ahead is a path(0) or wall(1). If it’s a wall, you

http://www.jp.migapro.com/wp-content/uploads/2011/11/e1.png

can move by setting these 2 cells to 0(path). Update your current location which is row=5, col=5

at this moment.

As you keep digging as above, you notice that you get to a dead end. In this case, keep moving

your current cell to previous cells until you are able to move to a new direction. This is called

backtracking. Current location is at row=7, col=7, so you would be moving back to row=7, col=5

on the picture above. You can implement this logic using recursive method or stack.

So you keep digging as the picture demonstrates. For better visual, I changed the color of arrow

every time it hits a dead end.

Lastly, this is the final result. With this size, it’s just natural that the maze gets too simple. The

bigger the maze, the more complicated it will get.

Sample Applet

Using Recursive Method

After you choose your starting point, pass that information to the recursive method. In the recursive

method, you can do the following…

1. Generate an int array with 4 random numbers to represent directions.

2. Start a for loop to go for 4 times.

3. Set up a switch statement to take care of 4 directions.

4. For that direction, check if the new cell will be out of maze or if it’s a path already open. If

so, do nothing.

5. If the cell in that direction is a wall, set that cell to path and call recursive method passing the

new current row and column.

6. Done.

Sample code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 public int[][] generateMaze() {

 int[][] maze = new int[height][width];

 // Initialize

 for (int i = 0; i < height; i++)

 for (int j = 0; j < width; j++)

 maze[i][j] = 1;

 Random rand = new Random();

 // r for row、c for column

 // Generate random r

 int r = rand.nextInt(height);

 while (r % 2 == 0) {

 r = rand.nextInt(height);

 }

 // Generate random c

 int c = rand.nextInt(width);

 while (c % 2 == 0) {

 c = rand.nextInt(width);

 }

 // Starting cell

 maze[r][c] = 0;

 // Allocate the maze with recursive method

 recursion(r, c);

 return maze;

 }

 public void recursion(int r, int c) {

 // 4 random directions

 int[] randDirs = generateRandomDirections();

 // Examine each direction

 for (int i = 0; i < randDirs.length; i++) {

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

 switch(randDirs[i]){

 case 1: // Up

 // Whether 2 cells up is out or not

 if (r - 2 <= 0)

 continue;

 if (maze[r - 2][c] != 0) {

 maze[r-2][c] = 0;

 maze[r-1][c] = 0;

 recursion(r - 2, c);

 }

 break;

 case 2: // Right

 // Whether 2 cells to the right is out or not

 if (c + 2 >= width - 1)

 continue;

 if (maze[r][c + 2] != 0) {

 maze[r][c + 2] = 0;

 maze[r][c + 1] = 0;

 recursion(r, c + 2);

 }

 break;

 case 3: // Down

 // Whether 2 cells down is out or not

 if (r + 2 >= height - 1)

 continue;

 if (maze[r + 2][c] != 0) {

 maze[r+2][c] = 0;

 maze[r+1][c] = 0;

 recursion(r + 2, c);

 }

 break;

 case 4: // Left

 // Whether 2 cells to the left is out or not

 if (c - 2 <= 0)

 continue;

 if (maze[r][c - 2] != 0) {

 maze[r][c - 2] = 0;

 maze[r][c - 1] = 0;

 recursion(r, c - 2);

 }

 break;

 }

 }

 }

 /**

 * Generate an array with random directions 1-4

83

84

85

86

87

88

89

90

91

92

 * @return Array containing 4 directions in random order

 */

 public Integer[] generateRandomDirections() {

 ArrayList<Integer> randoms = new ArrayList<Integer>();

 for (int i = 0; i < 4; i++)

 randoms.add(i + 1);

 Collections.shuffle(randoms);

 return randoms.toArray(new Integer[4]);

 }

3.2 Implement Water Jug Problem Using Breadth-First Search

Aim: Implement water jug problem using Breadth-First Search (BFS).

Theory:

You are given a m litre jug and a n litre jug . Both the jugs are initially empty. The jugs don’t have

markings to allow measuring smaller quantities. You have to use the jugs to measure d litres of

water where d is less than n.

(X, Y) corresponds to a state where X refers to amount of water in Jug1 and Y refers to amount of

water in Jug2

Determine the path from initial state (xi, yi) to final state (xf, yf), where (xi, yi) is (0, 0) which

indicates both Jugs are initially empty and (xf, yf) indicates a state which could be (0, d) or (d, 0).

The operations you can perform are:

1. Empty a Jug, (X, Y)->(0, Y) Empty Jug 1

2. Fill a Jug, (0, 0)->(X, 0) Fill Jug 1

3. Pour water from one jug to the other until one of the jugs is either empty or full, (X, Y) ->

(X-d, Y+d)

Examples:

Input : 4 3 2

Output : {(0, 0), (0, 3), (4, 0), (4, 3),

 (3, 0), (1, 3), (3, 3), (4, 2),

 (0, 2)}

Algorithm:

#include <bits/stdc++.h>

#define pii pair<int, int>

#define mp make_pair

using namespace std;

void BFS(int a, int b, int target)

{

 // Map is used to store the states, every

 // state is hashed to binary value to

 // indicate either that state is visited

 // before or not

 map<pii, int> m;

 bool isSolvable = false;

 vector<pii> path;

 queue<pii> q; // queue to maintain states

 q.push({ 0, 0 }); // Initialing with initial state

 while (!q.empty()) {

 pii u = q.front(); // current state

 q.pop(); // pop off used state

 // if this state is already visited

 if (m[{ u.first, u.second }] == 1)

 continue;

 // doesn't met jug constraints

 if ((u.first > a || u.second > b ||

 u.first < 0 || u.second < 0))

 continue;

 // filling the vector for constructing

 // the solution path

 path.push_back({ u.first, u.second });

 // marking current state as visited

 m[{ u.first, u.second }] = 1;

 // if we reach solution state, put ans=1

 if (u.first == target || u.second == target) {

 isSolvable = true;

 if (u.first == target) {

 if (u.second != 0)

 // fill final state

 path.push_back({ u.first, 0 });

 }

 else {

 if (u.first != 0)

 // fill final state

 path.push_back({ 0, u.second });

 }

 // print the solution path

 int sz = path.size();

 for (int i = 0; i < sz; i++)

 cout << "(" << path[i].first

 << ", " << path[i].second << ")\n";

 break;

 }

 // if we have not reached final state

 // then, start developing intermediate

 // states to reach solution state

 q.push({ u.first, b }); // fill Jug2

 q.push({ a, u.second }); // fill Jug1

 for (int ap = 0; ap <= max(a, b); ap++) {

 // pour amount ap from Jug2 to Jug1

 int c = u.first + ap;

 int d = u.second - ap;

 // check if this state is possible or not

 if (c == a || (d == 0 && d >= 0))

 q.push({ c, d });

 // Pour amount ap from Jug 1 to Jug2

 c = u.first - ap;

 d = u.second + ap;

 // check if this state is possible or not

 if ((c == 0 && c >= 0) || d == b)

 q.push({ c, d });

 }

 q.push({ a, 0 }); // Empty Jug2

 q.push({ 0, b }); // Empty Jug1

 }

 // No, solution exists if ans=0

 if (!isSolvable)

 cout << "No solution";

}

// Driver code

int main()

{

 int Jug1 = 4, Jug2 = 3, target = 2;

 cout << "Path from initial state "

 "to solution state :\n";

 BFS(Jug1, Jug2, target);

 return 0;

}

Output:

Path from initial state to solution state ::

(0, 0)

(0, 3)

(4, 0)

(4, 3)

(3, 0)

(1, 3)

(3, 3)

(4, 2)

(0, 2)

Informed Search Technique

4.1 Implement 8-Puzzle Problem Using Hill Climbing

Aim: Implement 8-puzzle problem with heuristic function using hill climbing (informed search)

Theory:

In an 8-puzzle game, we need to rearrange some tiles to reach a predefined goal state. Consider

the following 8-puzzle board.

This is the goal state where each tile is in correct place. In this game, you will be given a board

where the tiles aren’t in the correct places. You need to move the tiles using the gap to reach the

goal state.

Suppose f (n) can be defined as: the number of misplaced tiles.

In the above figure, tiles 6, 7 and 8 are misplaced. So f (n) = 3 for this case.

For solving this problem with hill climbing search, we need to set a value for the heuristic. Suppose

the heuristic function h (n) is the lowest possible f (n) from a given state. First, we need to know

all the possible moves from the current state. Then we have to calculate f(n) (number of misplaced

tiles) for each possible move. Finally we need to choose the path with lowest possible f (n) (which

is our h (n) or heuristic).

Consider the figure above. Here, 3 moves are possible from the current state. For each state we

have calculated f (n). From the current state, it is optimal to move to the state with f (n) = 3 as it is

closer to the goal state. So we have our h (n) = 3.

However, do you really think we can guarantee that it will reach the goal state? What will you do

if you reach on a state(Not the goal state) from which there are no better neighbour states! This

condition can be called a local maxima and this is the problem of hill climbing search. Therefore,

we may get stuck in local maxima. In this scenario, you need to backtrack to a previous state to

perform the search again to get rid of the path having local maxima.

What will happen if we reach to a state where all the f (n) values are equal? This condition is called

a plateau. You need to select a state at random and perform the hill climbing search again!

Input:

You will be given the initial state of the board. The input will be given by row by row of the 3x3

grid of the 8-puzzle game. A digit from 1 to 9 will denote a tiles number. A 0 will denote the gap

of the board.

For the above board, the input will be:

1 2 3

7 8 4

6 0 5

Task 1: Print the total cost (number of steps) needed to reach the goal state (if possible). Report if

you reach a local maxima and get stuck. Print the board state in this scenario.

Task 2: You need get rid of any local maxima and reach the goal state anyway. Print the total cost

needed to reach the goal state. Mention where you have backtracked to avoid local maxima (if

any).

Program:

Main.java

public

class

Main

{
 public static void main(String[] args) {
 Eight_Puzzle eight_Puzzle = new Eight_Puzzle();
 eight_Puzzle.initializations();
 }
}

Priority.java

import java.util.Arrays;

Public

class

Priority

{

 static int[][] preState;//keeps the previous state
 static Node neighbors_nodeArray[];
 //takes an node array, sort nodes based on distance of fn
 //and return lowest fn node
 public static Node sort(Node[] nodeArray) {

 if(preState!=null){//parent exists
 nodeArray = getParentRemovedNodeArray(nodeArray, preState);//remove

parent
 }

 //sorting nodes based on fn
 for (int i = 0; i < nodeArray.length; i++) {
 for (int j = nodeArray.length - 1; j > i; j--) {
 if (nodeArray[j].fn < nodeArray[j - 1].fn) {
 Node temp = nodeArray[j];
 nodeArray[j] = nodeArray[j - 1];
 nodeArray[j - 1] = temp;
 }
 }
 }
 Priority.neighbors_nodeArray = nodeArray;
 return nodeArray[0];
 }
 //takes node array and prestate
 //remove the neighbor which same as prestate and return parent removed node

array
 public static Node[] getParentRemovedNodeArray(Node []nodeArray, int[][]

preState) {
 Node[] parentRemovedNodeArray = new Node[nodeArray.length - 1];
 int j = 0;
 for (int i = 0; i < nodeArray.length; i++) {
 if (Arrays.deepEquals(nodeArray[i].state, preState)) {
 //System.out.println("removed parent");
 } else {
 parentRemovedNodeArray[j] = nodeArray[i];
 j++;
 }
 }
 return parentRemovedNodeArray;
 }
}
//Node class
class Node {
 int fn;//fn value
 int[][] state;//states
 int [][] parent;
 public Node(int fn, int[][] state, int[][]parent) {
 this.fn = fn;
 this.state = state;

 this.parent = parent;
 }
}

Eight_Puzzle.java

import

java.util.Rando

m;

import java.util.Stack;

public class Eight_Puzzle {

 //solution state of the 8-puzzle game

 int goal_state[][] = {

 {1, 2, 3},

 {8, 0, 4},

 {7, 6, 5}

 };

 //problem board of 8-puzzle game

 int game_board[][] = {

 {2, 6, 3},

 {1, 0, 4},

 {8, 7, 5}

 };

 /* one local maxima input example input

 {2, 8, 3},

 {1, 6, 4},

 {7, 0, 5}

 */

 /* one solved input example

 {1, 3, 4},

 {8, 2, 5},

 {0, 7, 6}

 {2, 0, 6},

 {1, 4, 3},

 {8, 7, 5}

 //nice backtrack not solved in local maxima

 {2, 6, 3},

 {1, 0, 4},

 {8, 7, 5}

 */

 /* one no backtrack local maxima test input example

 {1, 4, 0},

 {8, 3, 2},

 {7, 6, 5}

 */

 /* one impossible local maxima test input example

 {1, 2, 0},

 {8, 3, 4},

 {7, 6, 5}

 using best solved

 {8, 2, 3},

 {0, 6, 4},

 {7, 1, 5}

 not using best

 {1, 0, 2},

 {8, 3, 6},

 {7, 4, 5}

 */

 //initial empty tile position

 int emptyTile_row = 0;

 int emptyTile_col = 0;

 int stepCounter = 0;

 int min_fn;

 Node min_fn_node;

 Random random = new Random();

 Stack<Node> stack_state = new Stack<>();//for backtracking

 //initializations

 public void initializations() {

 locateEmptyTilePosition();//set empty tile position

 min_fn = get_fn(game_board);//-? min fn

System.out.println("================================

=========");

 printState(game_board, "initial problem state");

 System.out.println("initial empty tile position: " + emptyTile_row + ",

" + emptyTile_col);

 System.out.println("initial fn (number of misplaced tiles): " + min_fn);

System.out.println("================================

=========");

 //start hill climbing search

 try {

 hill_climbing_search();

 } catch (Exception e) {

 System.out.println("Goal can not be reached, found closest solution

state");

 printState(min_fn_node.state, "---------solution state------with min

fn " + min_fn);

 }

 }

 //start hill climbing search for 8-puzzle problem

 public void hill_climbing_search() throws Exception {

 while (true) {

System.out.println(">===============================

=========<");

 System.out.println("cost/steps: " + (++stepCounter));

 System.out.println("-------------");

 //Priority.preState = game_board;//change pre state

 Node lowestPossible_fn_node = getLowestPossible_fn_node();

 addToStackState(Priority.neighbors_nodeArray);//add neighbors

to stack in high to low order fn

 printState(lowestPossible_fn_node.state, "-------new state");

 //print all fn values

// System.out.print("all sorted fn of current state: ");

// for (int i = 0; i < Priority.neighbors_nodeArray.length; i++) {

// System.out.print(Priority.neighbors_nodeArray[i].fn + " ");

// }

// System.out.println();

 //check for local maxima

 int fnCounter = 1;

 for (int i = 1; i < Priority.neighbors_nodeArray.length; i++) {

 if (Priority.neighbors_nodeArray[i - 1].fn ==

Priority.neighbors_nodeArray[i].fn) {//fns are equal

 fnCounter++;

 }

 }

 if (Priority.neighbors_nodeArray.length != 1 && fnCounter ==

Priority.neighbors_nodeArray.length) {//all fns are equal, equal chances to

choose

 System.out.println("---fn's are equal, found in local maxima---");

 //backtracking

 for (int i = 0; i < Priority.neighbors_nodeArray.length; i++) {

 if (stack_state != null) {

 System.out.println("pop " + (i + 1));

 stack_state.pop();

 } else {

 System.out.println("empty stack inside loop");

 }

 }

 if (stack_state != null) {

 Node gameNode = stack_state.pop();

 game_board = gameNode.state;//update game board

 Priority.preState = gameNode.parent;//update prestate

 locateEmptyTilePosition();//locate empty tile for updated state

 printState(game_board, "popped state from all equal fn");

 System.out.println("empty tile position: " + emptyTile_row +

", " + emptyTile_col);

 } else {

 System.out.println("stack empty inside first lm check");

 }

 } else {//for backtracking

 System.out.println("lowest fn: " + lowestPossible_fn_node.fn);

 if (lowestPossible_fn_node.fn == 0) {//no misplaced found

 System.out.println("-------------------------");

 System.out.println("8-Puzzle has been solved!");

 System.out.println("-------------------------");

 System.out.println("Total cost/steps to reach the goal: " +

stepCounter);

 System.out.println("-------------------------------------");

 break;

 }

 if (lowestPossible_fn_node.fn <= min_fn) {

 min_fn = lowestPossible_fn_node.fn;

 min_fn_node = lowestPossible_fn_node;//store lowest fn

solution

 if (stack_state != null) {

 Node gameNode = stack_state.pop();

 game_board = gameNode.state;//update game board

 Priority.preState = gameNode.parent;//update prestate

 locateEmptyTilePosition();//locate empty tile for updated

state

 printState(game_board, "-------new state as going deeper");

 System.out.println("empty tile position: " + emptyTile_row

+ ", " + emptyTile_col);

 } else {

 System.out.println("stack empty");

 }

 } else {

 System.out.println("---stuck in local maxima---");

 System.out.println("getting higher, not possible");

 //break;

 //backtracking

 for (int i = 0; i < Priority.neighbors_nodeArray.length; i++) {

 if (stack_state != null) {

 //System.out.println("pop " + (i + 1));

 stack_state.pop();

 } else {

 System.out.println("empty stack inside loop");

 }

 }

 if (stack_state != null) {

 Node gameNode = stack_state.pop();

 game_board = gameNode.state;//update game board

 Priority.preState = gameNode.parent;//update prestate

 locateEmptyTilePosition();//locate empty tile for updated

state

 printState(game_board, "popped state from getting

higher");

 System.out.println("empty tile position: " + emptyTile_row

+ ", " + emptyTile_col);

 } else {

 System.out.println("stack empty inside second lm check");

 }

 }//end of if cond: new fn<=pre min fn

 }//end of if cond: all fn equal

 }//while end

 }

 private Node getLowestPossible_fn_node() {

 if (emptyTile_row == 0 && emptyTile_col == 0) {//0,0 position is

empty tile

 //System.out.println("Empty 0,0");

 Node fn_array[] = {get_fn_down(), get_fn_right()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 0 && emptyTile_col == 1) {//0,1 position

is empty tile

 //System.out.println("Empty 0,1");

 Node fn_array[] = {get_fn_left(), get_fn_down(), get_fn_right()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 0 && emptyTile_col == 2) {//0,2 position

is empty tile

 //System.out.println("Empty 0,2");

 Node fn_array[] = {get_fn_left(), get_fn_down()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 1 && emptyTile_col == 0) {//1,0 position

is empty tile

 //System.out.println("Empty 1,0");

 Node fn_array[] = {get_fn_down(), get_fn_right(), get_fn_up()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 1 && emptyTile_col == 1) {//1,1 position

is empty tile

 //System.out.println("Empty 1,1");

 Node fn_array[] = {get_fn_left(), get_fn_down(), get_fn_right(),

get_fn_up()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 1 && emptyTile_col == 2) {//1,2 position

is empty tile

 //System.out.println("Empty 1,2");

 Node fn_array[] = {get_fn_left(), get_fn_down(), get_fn_up()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 2 && emptyTile_col == 0) {//2,0 position

is empty tile

 //System.out.println("Empty 2,0");

 Node fn_array[] = {get_fn_right(), get_fn_up()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 2 && emptyTile_col == 1) {//2,1 position

is empty tile

 //System.out.println("Empty 2,1");

 Node fn_array[] = {get_fn_left(), get_fn_right(), get_fn_up()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 } else if (emptyTile_row == 2 && emptyTile_col == 2) {//2,2 position

is empty tile

 //System.out.println("Empty 2,2");

 Node fn_array[] = {get_fn_left(), get_fn_up()};

 Node lowest_fn_node = Priority.sort(fn_array);

 return lowest_fn_node;

 }

 return null;

 }

 //----------------------------

 //return number of misplaced tiles for left state

 private Node get_fn_left() {

 int left_state[][] = new

int[game_board.length][game_board[0].length];

 for (int i = 0; i < game_board.length; i++) {

 for (int j = 0; j < game_board[0].length; j++) {

 if (i == emptyTile_row && j == emptyTile_col) {//empty tile,

swap left

 left_state[i][j] = game_board[i][j - 1];

 left_state[i][j - 1] = game_board[i][j];

 } else {//normal copy

 left_state[i][j] = game_board[i][j];

 }

 }

 }

 printState(left_state, "left state");//print left state

 Node node = new Node(get_fn(left_state), left_state, game_board);

 return node;

 }

 //return number of misplaced tiles for right state

 private Node get_fn_right() {

 int right_state[][] = new

int[game_board.length][game_board[0].length];

 for (int i = 0; i < game_board.length; i++) {

 for (int j = 0; j < game_board[0].length; j++) {

 if (i == emptyTile_row && j == emptyTile_col) {//empty tile,

swap right

 right_state[i][j] = game_board[i][j + 1];

 right_state[i][j + 1] = game_board[i][j];

 j++;//as j++ position already copied/updated

 } else {//normal copy

 right_state[i][j] = game_board[i][j];

 }

 }

 }

 printState(right_state, "right state");//print right state

 Node node = new Node(get_fn(right_state), right_state,

game_board);

 return node;

 }

 //return number of misplaced tiles for up state

 private Node get_fn_up() {

 int up_state[][] = new

int[game_board.length][game_board[0].length];

 for (int i = 0; i < game_board.length; i++) {

 for (int j = 0; j < game_board[0].length; j++) {

 if (i == emptyTile_row && j == emptyTile_col) {//empty tile,

swap up

 up_state[i][j] = game_board[i - 1][j];

 up_state[i - 1][j] = game_board[i][j];

 } else {//normal copy

 up_state[i][j] = game_board[i][j];

 }

 }

 }

 printState(up_state, "up state");//print up state

 Node node = new Node(get_fn(up_state), up_state, game_board);

 return node;

 }

 //return number of misplaced tiles for down state

 private Node get_fn_down() {

 int down_state[][] = new

int[game_board.length][game_board[0].length];

 for (int i = 0; i < game_board.length; i++) {

 for (int j = 0; j < game_board[0].length; j++) {

 if ((i - 1) == emptyTile_row && j == emptyTile_col) {//down pos

of empty tile, swap down

 down_state[i][j] = game_board[i - 1][j];

 down_state[i - 1][j] = game_board[i][j];

 } else {//normal copy

 down_state[i][j] = game_board[i][j];

 }

 }

 }

 printState(down_state, "down state");//print down state

 Node node = new Node(get_fn(down_state), down_state,

game_board);

 return node;

 }

 //takes a game state and returns number of misplaced tiles

 private int get_fn(int[][] game_state) {

 int fn_count = 0;

 for (int i = 0; i < game_state.length; i++) {

 for (int j = 0; j < game_state[0].length; j++) {

 if (game_state[i][j] != goal_state[i][j] && game_state[i][j] !=

0) {//found misplaced tiles

 fn_count++;

 }

 }

 }

 return fn_count;

 }

 //takes parent removed, sorted node array and add states to stack in high

to low order

 private void addToStackState(Node nodeArray[]) {

 for (int i = nodeArray.length - 1; i >= 0; i--) {

 stack_state.add(nodeArray[i]);//highest fn to lowest fn

 }

 }

 //find out the new empty tile position for current state

 private void locateEmptyTilePosition() {

 nestedloop://to break inner and outer loop

 for (int i = 0; i < game_board.length; i++) {

 for (int j = 0; j < game_board[0].length; j++) {

 if (game_board[i][j] == 0) {

 emptyTile_row = i;

 emptyTile_col = j;

 break nestedloop;

 }

 }

 }

 }

 //print the current state of the game board

 private void printState(int[][] state, String message) {

 System.out.println(message);

 for (int i = 0; i < state.length; i++) {

 for (int j = 0; j < state[0].length; j++) {

 System.out.print(state[i][j] + " ");

 }

 System.out.println();

 }

 System.out.println("--------");

 }

}

4.2 Implement 8-Puzzle Problem Using Best-First Search

Aim: Implement 8-puzzle problem with heuristic function – best-first search (informed search)

Theory:

 The problem. The 8-puzzle problem is a puzzle invented and popularized by Noyes Palmer

Chapman in the 1870s. It is played on a 3-by-3 grid with 8 square blocks labeled 1 through 8 and

a blank square. Your goal is to rearrange the blocks so that they are in order. You are permitted to

slide blocks horizontally or vertically into the blank square. The following shows a sequence of

legal moves from an initial board position (left) to the goal position (right).

Best-first search. We now describe an algorithmic solution to the problem that illustrates a general

artificial intelligence methodology known as the A* search algorithm. We define a state of the

game to be the board position, the number of moves made to reach the board position, and the

previous state. First, insert the initial state (the initial board, 0 moves, and a null previous state)

into a priority queue. Then, delete from the priority queue the state with the minimum priority, and

insert onto the priority queue all neighboring states (those that can be reached in one move). Repeat

this procedure until the state dequeued is the goal state. The success of this approach hinges on the

choice of priority function for a state. We consider two priority functions:

• Hamming priority function. The number of blocks in the wrong position, plus the number

of moves made so far to get to the state. Intuitively, a state with a small number of blocks

in the wrong position is close to the goal state, and we prefer a state that have been reached

using a small number of moves.

• Manhattan priority function. The sum of the distances (sum of the vertical and horizontal

distance) from the blocks to their goal positions, plus the number of moves made so far to

get to the state.

For example, the Hamming and Manhattan priorities of the initial state below are 5 and 10,

respectively.

Program :

http://en.wikipedia.org/wiki/A*_search_algorithm

import

java.util.*;
public class BDSearch {
 public static State initialState;
 public static void search(int[] board) {
 int[] goalBoard = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 0};
 initialState = new EightPuzzleState(board);
 State goalState = new EightPuzzleState(goalBoard);
 SearchNode root = new SearchNode(initialState);
 SearchNode goal = new SearchNode(goalState);
 Queue<SearchNode> forwardQueue = new LinkedList<>();
 Queue<SearchNode> backwardQueue = new LinkedList<>();
 forwardQueue.add(root);
 backwardQueue.add(goal);
 performSearch(forwardQueue, backwardQueue);
 }
 private static boolean checkRepeats(SearchNode n) {
 boolean retValue = false;
 SearchNode checkNode = n;
 // While n's parent isn't null, check to see if it's equal to the node
 // we're looking for.
 while (n.getParent() != null && !retValue) {
 if (n.getParent().getCurState().equals(checkNode.getCurState())) {
 retValue = true;
 }
 n = n.getParent();
 }
 return retValue;
 }
 private static boolean isInitialState(State state) {
 return state.equals(initialState);
 }
 private static SearchNode queueContainsNode(Queue<SearchNode> q,

SearchNode targetNode) {
 for (SearchNode n :
 q) {
 if (n.getCurState().equals(targetNode.getCurState())) {
 return n;
 }
 }
 return null;
 }
 private static void bfs(SearchNode n, Queue<SearchNode> q) {
 ArrayList<State> tempSuccessors = n.getCurState()
 .genSuccessors(); // generate tempNode's immediate
 // successors
 /*
 * Loop through the successors, wrap them in a SearchNode, check
 * if they've already been evaluated, and if not, add them to
 * the queue

 */
 for (int i = 0; i < tempSuccessors.size(); i++) {
 // second parameter here adds the cost of the new node to
 // the current cost total in the SearchNode
 SearchNode newNode = new SearchNode(n,
 tempSuccessors.get(i), n.getCost()
 + tempSuccessors.get(i).findCost(), 0);
 if (!checkRepeats(newNode)) {
 q.add(newNode);
 }
 }
 }
 // The goal state has been found. Print the path it took to get to
 // it.
 private static void success(SearchNode node, int searchCount) {
 // Use a stack to track the path from the starting state to the
 // goal state
 Stack<SearchNode> solutionPath = new Stack<SearchNode>();
 solutionPath.push(node);
 node = node.getParent();
 while (node.getParent() != null) {
 solutionPath.push(node);
 node = node.getParent();
 }
 solutionPath.push(node);
 // The size of the stack before looping through and emptying it.
 int loopSize = solutionPath.size();
 for (int i = 0; i < loopSize; i++) {
 node = solutionPath.pop();
 node.getCurState().printState();
 System.out.println();
 System.out.println();
 }
 System.out.println("The cost was: " + node.getCost());
 }
 private static void performSearch(Queue<SearchNode> fq,
 Queue<SearchNode> bq) {
 int searchCount = 1;
 while (!fq.isEmpty() && !bq.isEmpty()) {
 if (!fq.isEmpty()) {
 SearchNode tempNode = fq.poll();
 SearchNode nodeExistOnBackwardQueue =

queueContainsNode(bq, tempNode);
 if (tempNode.getCurState().isGoal() ||

nodeExistOnBackwardQueue != null) {
 if (nodeExistOnBackwardQueue != null) {
 success(nodeExistOnBackwardQueue, searchCount);
 }
 success(tempNode, searchCount);
 System.exit(0);

 } else {
 bfs(tempNode, fq);
 searchCount++;
 }
 }
 if (!bq.isEmpty()) {
 SearchNode tempNode = bq.poll();
 SearchNode nodeExistOnForwardQueue = queueContainsNode(fq,

tempNode);
 if (isInitialState(tempNode.getCurState()) ||

nodeExistOnForwardQueue != null) {
 success(tempNode, searchCount);
 if (nodeExistOnForwardQueue != null) {
 success(nodeExistOnForwardQueue, searchCount);
 }
 System.exit(0);
 } else {
 bfs(tempNode, bq);
 searchCount++;
 }
 }
 }
 }
}

4.3 Implement Tic-Tac-Toe Using A* algorithm

Aim: Tic-Tac-Toe using A* algorithm.

Theory:A board game (such as tic-tac-toe) is usually programmed as a state machine. looking on

the current-state and therefore the player’s move, the game goes into the next-state. tit-tat-toe (or

Noughts and crosses, Xs and Os) could be a paper and pencil for 2 players, X and O, who take

turns marking the areas in an exceedingly 3×3 grid. The player who succeeds in putting 3

individual marks in an exceedingly horizontal, vertical or diagonal row wins the game. Players

shortly discover that best play from each party ends up in a draw(often said as cat or cat’s game).

Hence, tit-tat-toe is most frequently competed by young children. The simplicity of tit-tat-toe

makes it ideal as a pedagogical tool for teaching the ideas of fine sportsmanship and therefore the

branch of artificial intelligence that deals with the searching of game trees. It is simple to write

down a computer program to play tit-tat-toe perfectly, to enumerate the 765 essentially completely

different positions (the space highlighting), or the 26,830 possible games up to rotations and

reflections (the game tree complexity) on this space. the game is generalized to an m,n,k-game

during which 2 players alternate putting stones of their own colour on an m×n board, with the goal

of obtaining k of their own colour in a row. tit-tat-toe is the (3,3,3)-game.

Algorithm:

public class TripleT {

enum State{Blank, X, O};

 int n = 3;

 State[][] board = new State[n][n];

 int moveCount;

 void Move(int x, int y, State s){

 if (board[x][y] == State.Blank){

 board[x][y] = s;

}

moveCount++;

//check end conditions

 //check col

 for(int i = 0; i< n; i++){

 if(board[x][i] != s)

 break;

 if(i == n-1){

 //report win for s

 }

}

 //check row

 for (int i = 0; i< n; i++){

 if (board[i][y] != s)

 break ;

 if(i == n-1){

 //report win for s

 }

 }

//check diag

 if(x == y){

 //we're on a diagonal

 for(int i = 0; i< n; i++){

 if(board[i][i] != s)

 break ;

 if(i == n-1){

 //report win for s

 }

 }

 }

 //check anti diag (thanks rampion)

 for (int i=0; i<n; i++){

 if (board[i][(n-1)-i] != s)

 break ;

 if (i == n-1){

 //report win for s

 }

 }

 //check draw

 if (moveCount == (n^2 - 1)){

 //report draw

 }

 }

}

Conclusion:

Thus, a winning move will solely happen when X or O has created their most up-to-date move,

therefore, one will solely search row/column with optional diag that are contained in this move

to limit their search space when trying to work out a winning board. Also, since there are a set

range of moves in a draw tit-tat-toe game once the last move is created, if it wasn't a winning

move, it is by default a draw game.

Program:

import java.util.Scanner;

/**

 * Tic-Tac-Toe: Two-player console, non-graphics, non-OO version.

 * All variables/methods are declared as static (belong to the class)

 * in the non-OO version.

 */

public class TicTacToe {

 // Name-constants to represent the seeds and cell contents

 public static final int EMPTY = 0;

 public static final int CROSS = 1;

 public static final int NOUGHT = 2;

 // Name-constants to represent the various states of the game

 public static final int PLAYING = 0;

 public static final int DRAW = 1;

 public static final int CROSS_WON = 2;

 public static final int NOUGHT_WON = 3;

 // The game board and the game status

 public static final int ROWS = 3, COLS = 3; // number of rows and columns

 public static int[][] board = new int[ROWS][COLS]; // game board in 2D array

 // containing (EMPTY, CROSS, NOUGHT)

 public static int currentState; // the current state of the game

 // (PLAYING, DRAW, CROSS_WON, NOUGHT_WON)

 public static int currentPlayer; // the current player (CROSS or NOUGHT)

 public static int currntRow, currentCol; // current seed's row and column

 public static Scanner in = new Scanner(System.in); // the input Scanner

 /** The entry main method (the program starts here) */

 public static void main(String[] args) {

 // Initialize the game-board and current status

initGame();

 // Play the game once

 do {

playerMove(currentPlayer); // update currentRow and currentCol

updateGame(currentPlayer, currntRow, currentCol); // update currentState

printBoard();

 // Print message if game-over

 if (currentState == CROSS_WON) {

System.out.println("'X' won! Bye!");

 } else if (currentState == NOUGHT_WON) {

System.out.println("'O' won! Bye!");

 } else if (currentState == DRAW) {

System.out.println("It's a Draw! Bye!");

 }

 // Switch player

currentPlayer = (currentPlayer == CROSS) ? NOUGHT : CROSS;

 } while (currentState == PLAYING); // repeat if not game-over

 }

 /** Initialize the game-board contents and the current states */

 public static void initGame() {

 for (int row = 0; row < ROWS; ++row) {

 for (int col = 0; col < COLS; ++col) {

 board[row][col] = EMPTY; // all cells empty

 }

 }

currentState = PLAYING; // ready to play

currentPlayer = CROSS; // cross plays first

 }

 /** Player with the "theSeed" makes one move, with input validation.

 Update global variables "currentRow" and "currentCol". */

 public static void playerMove(int theSeed) {

booleanvalidInput = false; // for input validation

 do {

 if (theSeed == CROSS) {

System.out.print("Player 'X', enter your move (row[1-3] column[1-3]): ");

 } else {

System.out.print("Player 'O', enter your move (row[1-3] column[1-3]): ");

 }

 int row = in.nextInt() - 1; // array index starts at 0 instead of 1

 int col = in.nextInt() - 1;

 if (row >= 0 && row < ROWS && col >= 0 && col < COLS && board[row][col] ==

EMPTY) {

currntRow = row;

currentCol = col;

 board[currntRow][currentCol] = theSeed; // update game-board content

validInput = true; // input okay, exit loop

 } else {

System.out.println("This move at (" + (row + 1) + "," + (col + 1)

 + ") is not valid. Try again...");

 }

 } while (!validInput); // repeat until input is valid

 }

 /** Update the "currentState" after the player with "theSeed" has placed on

 (currentRow, currentCol). */

 public static void updateGame(int theSeed, int currentRow, int currentCol) {

 if (hasWon(theSeed, currentRow, currentCol)) { // check if winning move

currentState = (theSeed == CROSS) ? CROSS_WON : NOUGHT_WON;

 } else if (isDraw()) { // check for draw

currentState = DRAW;

 }

 // Otherwise, no change to currentState (still PLAYING).

 }

 /** Return true if it is a draw (no more empty cell) */

 // TODO: Shall declare draw if no player can "possibly" win

 public static booleanisDraw() {

 for (int row = 0; row < ROWS; ++row) {

 for (int col = 0; col < COLS; ++col) {

 if (board[row][col] == EMPTY) {

 return false; // an empty cell found, not draw, exit

 }

 }

 }

 return true; // no empty cell, it's a draw

 }

 /** Return true if the player with "theSeed" has won after placing at

 (currentRow, currentCol) */

 public static booleanhasWon(int theSeed, int currentRow, int currentCol) {

 return (board[currentRow][0] == theSeed // 3-in-the-row

&& board[currentRow][1] == theSeed

&& board[currentRow][2] == theSeed

 || board[0][currentCol] == theSeed // 3-in-the-column

&& board[1][currentCol] == theSeed

&& board[2][currentCol] == theSeed

 || currentRow == currentCol // 3-in-the-diagonal

&& board[0][0] == theSeed

&& board[1][1] == theSeed

&& board[2][2] == theSeed

 || currentRow + currentCol == 2 // 3-in-the-opposite-diagonal

&& board[0][2] == theSeed

&& board[1][1] == theSeed

&& board[2][0] == theSeed);

 }

 /** Print the game board */

 public static void printBoard() {

 for (int row = 0; row < ROWS; ++row) {

 for (int col = 0; col < COLS; ++col) {

printCell(board[row][col]); // print each of the cells

 if (col != COLS - 1) {

System.out.print("|"); // print vertical partition

 }

 }

System.out.println();

 if (row != ROWS - 1) {

System.out.println("-----------"); // print horizontal partition

 }

 }

System.out.println();

 }

 /** Print a cell with the specified "content" */

 public static void printCell(int content) {

 switch (content) {

 case EMPTY: System.out.print(" "); break;

 case NOUGHT: System.out.print(" O "); break;

 case CROSS: System.out.print(" X "); break;

 }

 }

}

Output:

Player 'X', enter your move (row[1-3] column[1-3]): 2

3

 | |

 | | X

 | |

Player 'O', enter your move (row[1-3] column[1-3]): 3

1

 | |

 | | X

 O | |

Player 'X', enter your move (row[1-3] column[1-3]): 3

3

 | |

 | | X

 O | | X

Player 'O', enter your move (row[1-3] column[1-3]): 1

3

 | | O

 | | X

 O | | X

Player 'X', enter your move (row[1-3] column[1-3]): 1

1

 X | | O

 | | X

 O | | X

Player 'O', enter your move (row[1-3] column[1-3]): 2

2

 X | | O

 | O | X

 O | | X

'O' won! Bye!

4.4 Implement 8-Puzzle Problem Using A* Algorithm

Aim: Implement 8-puzzle problem with heuristic function – A* (informed search)

Theory:

N Puzzle or sliding puzzle is a popular puzzle that consists of N tiles where N can be 8, 15, 24 and

so on. In our example N = 8. The puzzle is divided into sqrt(N+1) rows and sqrt(N+1) columns. For

example, 15-Puzzle will have 4 rows and 4 columns and an 8-Puzzle will have 3 rows and 3

columns. The puzzle consists of N tiles and one empty space where the tiles can be moved. Start

and Goal configurations (also called state) of the puzzle are provided. The puzzle can be solved by

moving the tiles one by one in the single empty space and thus achieving the Goal configuration.

Fig 1. Start and Goal configurations of an 8-Puzzle.

The tiles in the initial(start) state can be moved in the empty space in a particular order and thus

achieve the goal state.

Rules for solving the puzzle.

Instead of moving the tiles in the empty space we can visualize moving the empty space in place of

the tile, basically swapping the tile with the empty space. The empty space can only move in four

directions viz.,

1. Up

2.Down

3. Right or

4. Left

The empty space cannot move diagonally and can take only one step at a time (i.e. move the empty

space one position at a time).

A* is a computer algorithm that is widely used in pathfinding and graph traversal, the process of

plotting an efficiently traversable path between multiple points, called nodes. Noted for its

performance and accuracy, it enjoys widespread use.

The key feature of the A* algorithm is that it keeps a track of each visited node which helps in

ignoring the nodes that are already visited, saving a huge amount of time. It also has a list that holds

all the nodes that are left to be explored and it chooses the most optimal node from this list, thus

saving time not exploring unnecessary or less optimal nodes.

So we use two lists namely ‘open list‘ and ‘closed list‘ the open list contains all the nodes that are

being generated and are not existing in the closed list and each node explored after its neighboring

nodes are discovered is put in the closed list and the neighbors are put in the open list this is how

the nodes expand. Each node has a pointer to its parent so that at any given point it can retrace the

path to the parent. Initially, the open list holds the start(Initial) node. The next node chosen from

the open list is based on its f score, the node with the least f score is picked up and explored.

f-score = h-score + g-score

A* uses a combination of heuristic value (h-score: how far the goal node is) as well as the g-score

(i.e. the number of nodes traversed from the start node to current node).

In our 8-Puzzle problem, we can define the h-score as the number of misplaced tiles by comparing

the current state and the goal state or summation of the Manhattan distance between misplaced

nodes.

g-score will remain as the number of nodes traversed from start node to get to the current node.

From Fig 1, we can calculate the h-score by comparing the initial(current) state and goal state and

counting the number of misplaced tiles.

Thus, h-score = 5 and g-score = 0 as the number of nodes traversed from the start node to the

current node is 0.

How A* solves the 8-Puzzle problem.

We first move the empty space in all the possible directions in the start state and calculate f-

score for each state. This is called expanding the current state.

After expanding the current state, it is pushed into the closed list and the newly generated states are

pushed into the open list. A state with the least f-score is selected and expanded again. This process

continues until the goal state occurs as the current state. Basically, here we are providing the

algorithm a measure to choose its actions. The algorithm chooses the best possible action and

proceeds in that path.

This solves the issue of generating redundant child states, as the algorithm will expand the node

with the least f-score.

Fig 2. A* algorithm solves 8-puzzle

Program:

import

java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
/**
 * Defines an A* search to be performed on a qualifying puzzle.

Currently
public class AStarSearch
{
 /**
 * Initialization function for 8puzzle A*Search
 *
 * @param board

 * - The starting state, represented as a linear array

of length
 * 9 forming 3 meta-rows.
 */
 public static void search(int[] board, char heuristic)
 {
 SearchNode root = new SearchNode(new

EightPuzzleState(board));
 Queue<SearchNode> q = new

LinkedList<SearchNode>();
 q.add(root);
 int searchCount = 1; // counter for number of

iterations
 while (!q.isEmpty()) // while the queue is not empty
 {
 SearchNode tempNode = q.poll();
 // if the tempNode is not the goal state
 if (!tempNode.getCurState().isGoal())
 {
 // generate tempNode's immediate

successors
 ArrayList<State> tempSuccessors =

tempNode.getCurState()
 .genSuccessors();
 ArrayList<SearchNode>

nodeSuccessors = new ArrayList<SearchNode>();
 /*
 * Loop through the successors,

wrap them in a SearchNode, check
 * if they've already been evaluated,

and if not, add them to
 * the queue
 */
 for (int i = 0; i <

tempSuccessors.size(); i++)
 {
 SearchNode checkedNode;
 // make the node
 if (heuristic == 'o')
 {
 /*
 * Create a new

SearchNode, with tempNode as the parent,
 * tempNode's cost +

the new cost (1) for this state,
 * and the Out of

Place h(n) value
 */
 checkedNode = new

SearchNode(tempNode, tempSuccessors.get(i),

tempNode.getCost() + tempSuccessors.get(i).findCost(),

((EightPuzzleState) tempSuccessors.get(i)).getOutOfPlace());
 }
 else
 {
 // See previous

comment
 checkedNode = new

SearchNode(tempNode,

 tempSuccessors.get(i), tempNode.getCost()

 + tempSuccessors.get(i).findCost(),

 ((EightPuzzleState) tempSuccessors.get(i))

 .getManDist());
 }
 // Check for repeats before

adding the new node
 if

(!checkRepeats(checkedNode))
 {

 nodeSuccessors.add(checkedNode);
 }
 }
 // Check to see if nodeSuccessors is

empty. If it is, continue
 // the loop from the top
 if (nodeSuccessors.size() == 0)
 continue;
 SearchNode lowestNode =

nodeSuccessors.get(0);
 /*
 * This loop finds the lowest f(n) in a

node, and then sets that
 * node as the lowest.
 */
 for (int i = 0; i <

nodeSuccessors.size(); i++)
 {
 if (lowestNode.getFCost() >

nodeSuccessors.get(i)
 .getFCost())
 {
 lowestNode =

nodeSuccessors.get(i);
 }
 }

 int lowestValue = (int)

lowestNode.getFCost();
 // Adds any nodes that have that

same lowest value.
 for (int i = 0; i <

nodeSuccessors.size(); i++)
 {
 if

(nodeSuccessors.get(i).getFCost() == lowestValue)
 {

 q.add(nodeSuccessors.get(i));
 }
 }
 searchCount++;
 }
 else
 // The goal state has been found. Print the

path it took to get to
 // it.
 {
 // Use a stack to track the path from

the starting state to the
 // goal state
 Stack<SearchNode> solutionPath =

new Stack<SearchNode>();
 solutionPath.push(tempNode);
 tempNode = tempNode.getParent();
 while (tempNode.getParent() !=

null)
 {

 solutionPath.push(tempNode);
 tempNode =

tempNode.getParent();
 }
 solutionPath.push(tempNode);
 // The size of the stack before looping

through and emptying it.
 int loopSize = solutionPath.size();
 for (int i = 0; i < loopSize; i++)
 {
 tempNode =

solutionPath.pop();

 tempNode.getCurState().printState();
 System.out.println();
 System.out.println();
 }

 System.out.println("The cost was: "

+ tempNode.getCost());
 System.exit(0);
 }
 }
 // This should never happen with our current

puzzles.
 System.out.println("Error! No solution found!");
 }
 /*
 * Helper method to check to see if a SearchNode has

already been evaluated.
 * Returns true if it has, false if it hasn't.
 */
 private static boolean checkRepeats(SearchNode n)
 {
 boolean retValue = false;
 SearchNode checkNode = n;
 // While n's parent isn't null, check to see if it's

equal to the node
 // we're looking for.
 while (n.getParent() != null && !retValue)
 {
 if

(n.getParent().getCurState().equals(checkNode.getCurState()))
 {
 retValue = true;
 }
 n = n.getParent();
 }
 return retValue;
 }
}

4.5 Implement Travelling Salesman Problem (TSP) Using A* Algorithm

Aim: Implement travelling salesman problem using A* Algorithm (informed search)

Theory:

Travelling Salesman Problem (TSP): Given a set of cities and distance between every pair of cities,

the problem is to find the shortest possible route that visits every city exactly once and returns back

to the starting point.

Note the difference between Hamiltonian Cycle and TSP. The Hamiltonian cycle problem is to

find if there exist a tour that visits every city exactly once. Here we know that Hamiltonian Tour

exists (because the graph is complete) and in fact many such tours exist, the problem is to find a

minimum weight Hamiltonian Cycle.

For example, consider the graph shown in figure on right side. A TSP tour in the graph is 1-2-4-3-

1. The cost of the tour is 10+25+30+15 which is 80.

The problem is a famous NP hard problem. There is no polynomial time know solution for this

problem.

Examples:

 Output of Given Graph:

 minimum weight Hamiltonian Cycle :

 10 + 25 + 30 + 15 := 80

1. Consider city 1 as the starting and ending point. Since route is cyclic, we can consider any

point as starting point.

2. Generate all (n-1)! permutations of cities.

3. Calculate cost of every permutation and keep track of minimum cost permutation.

4. Return the permutation with minimum cost.

Program:

import java.util.*;

import java.text.*;

class TSP

{

int weight[][],n,tour[],finalCost; final int INF=1000; public TSP()

{

Scanner s=new Scanner(System.in);

System.out.println("Enter no. of nodes:=>");

n=s.nextInt();

weight=new int[n][n];

tour=new int[n-1];

for(int i=0;i<n;i++)

{

for(int j=0;j<n;j++)

{

if(i!=j)

{

System.out.print("Enter weight of "+(i+1)+" to

"+(j+1)+":=>");

weight[i][j]=s.nextInt();

}

}

}

System.out.println();

System.out.println("Starting node assumed to be node

1.");

eval();

}

public int COST(int currentNode,intinputSet[],int

setSize)

{

if(setSize==0)

return weight[currentNode][0];

int min=INF,minindex=0;

int setToBePassedOnToNextCallOfCOST[]=new int[n-1];

for(int i=0;i<setSize;i++)

{

int k=0;//initialise new set

for(int j=0;j<setSize;j++)

{

if(inputSet[i]!=inputSet[j])

setToBePassedOnToNextCallOfCOST[k++]=inputSe

t[j];

}

int

temp=COST(inputSet[i],setToBePassedOnToNextCa

llOfCOST,setSize-1);

if((weight[currentNode][inputSet[i]]+temp) < min)

{

min=weight[currentNode][inputSet[i]]+temp;

minindex=inputSet[i];

}

}

return min;

}

public int MIN(int currentNode,intinputSet[],int

setSize)

{

if(setSize==0)

return weight[currentNode][0];

int min=INF,minindex=0;

int setToBePassedOnToNextCallOfCOST[]=new int[n-1];

for(int i=0;i<setSize;i++)//considers each node of

inputSet

{

int k=0;

for(int j=0;j<setSize;j++)

{

if(inputSet[i]!=inputSet[j])

setToBePassedOnToNextCallOfCOST[k++]=inputSe

t[j];

}

int

temp=COST(inputSet[i],setToBePassedOnToNextCa

llOfCOST,setSize-1);

if((weight[currentNode][inputSet[i]]+temp) < min)

{

min=weight[currentNode][inputSet[i]]+temp;

minindex=inputSet[i];

}

}

return minindex;

}

public void eval()

{

int dummySet[]=new int[n-1];

for(int i=1;i<n;i++)

dummySet[i-1]=i;

finalCost=COST(0,dummySet,n-1);

constructTour();

}

public void constructTour()

{

int previousSet[]=new int[n-1];

int nextSet[]=new int[n-2]; for(int i=1;i<n;i++)

previousSet[i-1]=i;

int setSize=n-1;

tour[0]=MIN(0,previousSet,setSize);

for(int i=1;i<n-1;i++)

{

int k=0;

for(int j=0;j<setSize;j++)

{

if(tour[i-1]!=previousSet[j])

nextSet[k++]=previousSet[j];

}

--setSize;

tour[i]=MIN(tour[i-1],nextSet,setSize);

for(int j=0;j<setSize;j++)

previousSet[j]=nextSet[j];

}

display();

}

public void display()

{

System.out.println();

System.out.print("The tour is 1-");

for(int i=0;i<n-1;i++)

System.out.print((tour[i]+1)+"-");

System.out.print("1");

System.out.println();

System.out.println("The final cost is "+finalCost);

}

}

class TSPExp

{

public static void main(String args[])

{

TSP obj=new TSP();

}

}

OUTPUT:

Enter no. of

nodes:=> 5

Enter weight of 1 to 2:=>4

Enter weight of 1 to 3:=>6

Enter weight of 1 to 4:=>3

Enter weight of 1 to 5:=>7

Enter weight of 2 to 1:=>3

Enter weight of 2 to 3:=>1

Enter weight of 2 to 4:=>7

Enter weight of 2 to 5:=>4

Enter weight of 3 to 1:=>7

Enter weight of 3 to 2:=>4

Enter weight of 3 to 4:=>3

Enter weight of 3 to 5:=>6

Enter weight of 4 to 1:=>8

Enter weight of 4 to 2:=>5

Enter weight of 4 to 3:=>3

Enter weight of 4 to 5:=>2

Enter weight of 5 to 1:=>4

Enter weight of 5 to 2:=>3

Enter weight of 5 to 3:=>2

Enter weight of 5 to 4:=>1

Starting node assumed to be node 1.

The tour is 1-2-3-4-5-1

The final cost is 14

4.6 Implement 8-Queen Problem with Heuristic Function (Informed Search)

Aim: Implement 8-queen problem with heuristic function (informed search)

Introduction: The problem is to seek out all ways in which of putting N non-attacking queens on

an NN board. A queen attacks all cells in its same row, column, and either diagonal. Therefore,

the target is to position N queens on an NN board in such a way that no 2 queens are on the same

row, column or diagonal.

In chess, a queen will move as far as she pleases, horizontally, vertically or diagonally. A

chess board has eight rows and eight columns. The standard eight by eight Queens’ problem asks

the way to place eight queens on an ordinary chess board so none of them will hit the other in one

move.

The following constraints need to be satisfied:

To place N queens on an NN chessboard so that no two queens are attacking one another: i.e.

1.They are not on the same row.

2.They are not on the same column.

3. They are not on the same diagonal.

Algorithm:

Backtracking algorithm: The idea is to place queens one by one in different columns, starting

from the left-most column. When we place a queen in a column, we check for clashes with already

placed queens. In the current column, if we find a row for which there is no clash, we mark this

row and column as part of the solution. If we do not find such a row due to clashes, then we

backtrack and return false.

1. Start

2. Start in the leftmost column

3. If all queens are placed return true

4. Try all rows in the current column. Do following for every tried row.

(a) If the queen can be placed safely in this row then mark this [row, column] as part of the

solution and recursively check if placing queen here leads to a solution.

(b) If placing queen in [row, column] leads to a solution then return true.

(c) If placing queen does not lead to a solution then unmark this [row, column] (Backtrack) and

go to step (a) to try other rows.

5. If all rows have been tried and nothing worked, return false to trigger backtracking.

6. Stop

Program:

import java.io.*;

import java.util.*;

public class Queens

{

//return true if q's placement q[n] does not conflict with other q q[n] through q[n-1]

public static booleanisConsistent(int []q,int n)

{

for(int i=0;i<n;i++)

{

if(q[i]==q[n])

{

return false;

}

if((q[i]-q[n])==(n-i))

{

return false;

return false;

} }

return true;

}

//print out N-by-N placement of q from permutation q in ASCII

public static void printQueens(int []q)

{

int N=q.length;

System.out.println("Output:");

for(int i=0;i<N;i++)

{

for(int j=0;j<N;j++)

{

if(q[i]==j)

{

} System.out.print("Q\t");

if((q[n]-q[i])==(n-i)) }

{ else

{

System.out.print("*\t");

}

}

System.out.println();

}

//System.out.println("Output:");

}

//try all permutation using backtracking

public static void enumerate(int N)

{

int[]a=new int[N];

//System.out.println("Output:");

enumerate(a,0);

}

public static void enumerate(int []q,int n)

{

int N=q.length;

if(n==N)

{

printQueens(q);

}

else

{

for(int i=0;i<N;i++)

{

q[n]=i;

if(isConsistent(q,n))

{

enumerate(q,n+1);

}

} } }

public static void main(String args[]) throws

Exception

{

Scanner sc = new Scanner(System.in);

System.out.println("Enter value of N for

N*N matrix:\t");

int N=sc.nextInt();

enumerate(N);

}}

Output:

Enter value of N for N*N matrix:8

Q * * * * * * *

* * * * Q * * *

* * * * * * * Q

* * * * * Q * *

* * Q * * * * *

* * * * * * Q *

* Q * * * * * *

* * * Q * * * *

Adversarial Search

5.1 Implement Minimax Algorithm

Aim: Adversarial search minimax algorithm with α-β pruning.

Theory: Minimax may be a decision rule utilised in decision theory, game theory, statistics

and philosophy for minimizing the possible loss for a worst case (maximum loss) scenario. as

an alternative, it will be thought of as maximizing the minimum gain (maximin). Originally

developed for two-player zero-sum game theory, covering both the cases wherever players take

alternate moves and people where they create simultaneous moves, it is additionally been

extended to additional complicated games and to general decision making within the presence

of uncertainty.

In the theory of simultaneous games, a minimax strategy may be a mixed strategy that

is part of the answer to a zero-sum game. In zero-sum games, the minimax solution is that the

same as the nash equilibrium.

Minimax Theorem: The minimax theorem states the following:

For every two-person, zero-sum game with finitely many strategies, there exists a value V and

a mixed strategy for each player, such that

1. Given player 2's strategy, the best payoff possible for player 1 is V, and

2. Given player 1's strategy, the best payoff possible for player 2 is −V.

Equivalently, Player 1's strategy guarantees him a payoff of V regardless of Player 2's strategy,

and similarly Player 2 can guarantee himself a payoff of −V. The name minimax arises because

each player minimizes the maximum payoff possible for the other—since the game is zero-

sum, he also minimizes his own maximum loss (i.e. maximize his minimum payoff).

Example:
 B chooses B1 B chooses B2 B chooses B3

A chooses A1 +3 −2 +2

A chooses A2 −1  0 +4

A chooses A3 −4 −3 +1

The following example of a game, wherever A and B create simultaneous moves,

illustrates minimax solutions. Suppose every player has 3 selections and think about the payoff

matrix for A displayed at right. Assume the payoff matrix for B is that the same matrix with

the signs reversed (i.e. if the alternatives are A1 and B1 then B pays three to A). Then, the

minimax selection for A is A2 since the worst possible result then needs to pay one, whereas

the simple minimax selection for B is B2 since the worst attainable result is then no payment.

However, this solution is not stable, since if B believes A can opt for A2 then B can opt for B1

to gain 1; then if A believes B can opt for B1 then A can opt for A1 to achieve 3; then B can

opt for B2; and eventually each players can realize the difficulty of making a selection. Thus,

an additional stable strategy is required.

http://en.wikipedia.org/wiki/Zero-sum

Some decisions are dominated by others and may be eliminated: A won't select A3

since either A1 or A2 can turn out a stronger result, no matter what B selects; B won't choose

B3 since some mixtures of B1 and B2 can turn out a stronger result, no matter what A chooses.

A can avoid having to make an expected payment of more than 1/3 by selecting A1

with probability 1/6 and A2 with probability 5/6, despite what B chooses. B will ensure an

expected gain of a minimum of 1/3 by using an irregular strategy of choosing B1 with

probability 1/3 and B2 with probability 2/3, no matter what A chooses. These mixed minimax

strategies are currently stable and can't be improved.

Minimax-algorithm

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)

• Time complexity? O (bm)

• Space complexity? O (bm) (depth- first exploration)

The α-β algorithm

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O (bm/2)

 doubles depth of search

• A simple example of the value of reasoning about which

Computations are relevant (a form of meta-reasoning)

Intelligence Methods – WS 2005/2006 – Marc Erich Latoschik

Conclusion: Thus, we have enforced a program using alpha-beta pruning in Min-Max

algorithm. Thus, Min-Max algorithm prunes the information, thereby using alpha-beta pruning,

we reduce the iteration steps.

Program:

import java.util.Scanner;

public class minmax {

 public static int min(int a[][],int n,intsetIndex) {

 int smallest = a[setIndex][0];

 for(int i=1; i<n; i++) {

 if(smallest > a[setIndex][i])

 smallest = a[setIndex][i];

 }

 return smallest;

 }

 public static int max(int a[][],int n,intsetIndex) {

 int greatest = a[setIndex][0];

 for(int i=1; i<n; i++) {

 if(greatest < a[setIndex][i])

 greatest = a[setIndex][i];

 }

 return greatest;

 }

 public static void main(String[] args) {

 Scanner s = new Scanner(System.in);

System.out.println("Enter the no. of nodes in each subtree");

 int n = s.nextInt();

 int set[][] = new int[n][n];

System.out.println("Enter the utility values: ");

 for(int i=0; i<n; i++) {

 for(int j=0; j<n; j++) {

 set[i][j] = s.nextInt();

 }

 }

 int max[][] = new int[1][n];

System.out.print("The min values retured are: ");

 for(int i=0; i<n; i++) {

 max[0][i] = min(set, n, i);

System.out.print(" " +max[0][i]);

 }

System.out.println("");

 int maxValue = max(max, n, 0);

System.out.println("The Max Value is " + maxValue);

 }

}

OUTPUT:

Enter the no. of nodes in each subtree

3

Enter the utility values:

-2

2

1

1

3

4

4

3

7

The min values retured are: -2 1 3

The Max Value is 3

Process completed.

Constraint Satisfaction Problem

6.1 Implement 8-Queen Problem

Aim: To solve 8-queen problem using constraint satisfaction.

Theory:

Introduction: The problem is to search out all ways that of placing N non-attacking queens on

an N by N board. A queen attacks all cells in its same row, column, and either diagonal.

Therefore, the target is to put N queens on an n by n board in such the simplest way that no 2

queens are on identical row, column or diagonal.

In chess, a queen will move as so much as she pleases, horizontally, vertically or

diagonally. A chess board has eight rows and eight columns. The quality eight by eight Queens’

drawback asks the way to place eight queens on a standard chess board so none of them will

hit the other in one move.

The following constraints need to be satisfied:

To place N queens on an NN chessboard so that no two queens are attacking one another: i.e.

1.They are not on the same row.

2.They are not on the same column.

3. They are not on the same diagonal.

Algorithm:

1. Backtracking Algorithm: The idea is to place queens one by one in different columns,

starting from the left-most column. When we place a queen in a column, we check for

clashes with already placed queens. In the current column, if we find a row for which there

is no clash, we mark this row and column as part of the solution. If we do not find such a

row due to clashes, then we backtrack and return false.

1.Start

2.Start in the leftmost column

3.If all queens are placed, return true

4.Try all rows in the current column. Do following for every tried row.

(a) If the queen can be placed safely in this row then mark this [row, column] as part of

the solution and recursively check if placing queen here leads to a solution.

(b) If placing queen in [row, column] leads to a solution then return true.

(c) If placing queen does not lead to a solution then unmark this [row, column]

(Backtrack) and go to step (a) to try other rows.

5.If all rows have been tried and nothing worked, return false to trigger backtracking.

6.Stop

Conclusion: The constraint satisfaction problem (CSP) consists in finding a solution for a

constraint network. This has numerous applications including, e.g. scheduling and timetabling.

Program:

import java.util.*;

public class EightQueens {

 public static void main(String args[]) {

 Scanner src=new Scanner (System.in);

System.out.println ("Enter the number of queens you want to place :");

int N=src.nextInt();

 int[][] board = new int[N][N];

 solve(0, board, N);

for (int i = 0; i< N; i++) {

for (int j = 0; j < N; j++) {

if (board[i][j]==1)

System.out.print ("Q ");

else System.out.print("* ");

 }

System.out.println();

 } }

 static boolean solve(int row, int[][] board, int N) {

 if(row>=N) return true;

 for(int position = 0; position < N; position++) {

 if(isValid(board, row, position, N)) {

 board[row][position] = 1;

 if(!solve(row+1, board, N)) {

 board[row][position] = 0;

 } else

 return true;

 }

 }

 return false;

 }

 static booleanisValid(int[][] board, int x, int y, int N) {

 int i, j;

 for(i = 0; i< x; i++)

 if(board[i][y]==1)

 return false;

i = x - 1;

 j = y - 1;

 while((i>=0)&&(j>=0))

 if(board[i--][j--]==1) return false;

i = x - 1;

 j = y + 1;

 while((i>=0)&&(j<N))

 if(board[i--][j++]==1) return false;

 return true;

 }

}

Output: Enter the number of queens you want to place:8.

Q * * * * * * *

* * * * Q * * *

* * * * * * * Q

* * * * * Q * *

* * Q * * * * *

* * * * * * Q *

* Q * * * * * *

* * * Q * * * *

6.2 Implement Map Colouring Problem

Aim: To implement map colouring problem.

Theory: In AI and research, constraint satisfaction is the method of finding an answer to a

collection of constraints that impose conditions that the variables should satisfy. An answer is

so a collection of values for the variables that satisfies all constraints—that is, a point within

the feasible region.

Program:

importjava.io.FileNotFound

Exception;

//This class implements the map colouring problem.

publicclassMapColoringProblem {

 Graph;

 int[] color_config_array;//this array holds the color

number for each vertex corresponding to the index

 //For example - if the number of colors is 3 . Then

different colours will be represented by numbers 1,2 and 3.

 //this method prints which vertex will be of which

color

 publicvoidprintConfiguration()

 {

 for(inti=0;i<color_config_array.length;i++)

 {

 System.out.println("The

"+(i+1)+"(th) vertex will be colored in color number

"+color_config_array[i]);

 }

 }

 //this method colors the graph using recursive

backtracking in all possible combinations and returns true

of the graph can

 //be colored in the given number of colors

 publicbooleancolorGraph(intvertex_num,intnumbe

r_of_colours)

 {

 if(vertex_num==graph.adjLists.length)//base

condition

 {

 returncheckGraph();

 }

 for(inti=1;i<=number_of_colours;i++)

 {

 color_config_array[vertex_num]=i;

 if(colorGraph(vertex_num+1,number_of_colours)

==true)

 {

 returntrue;

 }

 }

 returnfalse;

 }

 //this method returns true of graph is colored

properly and false otherwise

 publicbooleancheckGraph()

 {

 boolean result=true;

 intno_Of_vertex=graph.adjLists.length;

 for(inti=0;i<no_Of_vertex;i++)

 {

 intcolor_of_vertex=color_config_array[i];

 Neighbour

neighbour=graph.adjLists[i].adjList;

 while(neighbour!=null)

 {

 if(color_of_vertex==color_config_array[neighbou

r.vertexNum])

 {

 result=false;

 return result;

 }

 neighbour=neighbour.next;

 }

 }

 return result;

 }

 /**

 * @paramargs

 * @throwsFileNotFoundException

 */

 publicstaticvoidmain(String[] args)

throwsFileNotFoundException {

 // TODO Auto-generated method stub

 String

path="C:\\Users\\sangam\\Desktop\\graph.txt";

 MapColoringProblemmapColoringProblem=new

MapColoringProblem();

 mapColoringProblem.graph=new

Graph(path);

 intno_Of_vertex=mapColoringProblem.graph.adjL

ists.length;

 mapColoringProblem.color_config_array=new

int[no_Of_vertex];

 intnumber_of_colours=3;//this can be

changed as per the user input

 boolean

result=mapColoringProblem.colorGraph(0,

number_of_colours);//0 is because we have to start the

coloring from zeroth vertex

 if(result ==true)

 {

 System.out.println("The combination

is ");

 mapColoringProblem.printConfiguration();

 }

 else

 {

 System.out.println("the graph cannot

be colored in these many given colours");

 }

 }

}

6.3 Implement Crypt Arithmetic Problem

Aim: To implement crypt arithmetic problem.

Theory: Cryptarithmetic problems are where numbers are replaced with alphabets. By using

standard arithmetic rules, we need to decipher the alphabet.

General rules:

1. Each alphabet takes only one number from 0 to 9 uniquely.

2. Two single digit numbers sum can be maximum 19 with carryover. So, carry over in

problems of two number addition is always 1.

3. Try to solve left most digit in the given problem.

4. If a × b = kb, then the following are the possibilities

(3 × 5 = 15; 7 × 5 = 35; 9 × 5 = 45) or (2 × 6 = 12; 4 × 6 = 24; 8 × 6 = 48)

Program:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

namespace CryptArithmetic

{

publicpartialclass Form1 : Form

 {

char[] s1 = newchar[10];

char[] s2 = newchar[10];

char[] s3 = newchar[10];

int[] assinged = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

char[] c = newchar[11];

int[] val = newint[11];

int topc = 0;

public Form1()

 {

InitializeComponent();

 }

privatevoidbtn_ok_Click(object sender, EventArgs e)

 {

 label4.Text = "";

 s1 = textBox1.Text.ToCharArray();

 s2 = textBox2.Text.ToCharArray();

 s3 = textBox3.Text.ToCharArray();

 int flag=0;

 for(int i=0;i<s1.Length;i++)

 {

 for(int j=0;j<=topc;j++)

 {

 if(s1[i]!=c[j])

 flag=1;

 else

 {

 flag =0;

 break;

 }

 }

 if(flag==1)

 c[topc++] =s1[i];

 }

 for(int i=0;i<s2.Length;i++)

 {

for(int j=0;j<=topc;j++)

 {

 if(s2[i]!=c[j])

 flag=1;

 else

 {

 flag =0;

 break;

 }

 }

if(flag==1)

 c[topc++] =s2[i];

 }

for(int i=0;i<s3.Length;i++)

 {

for(int j=0;j<=topc;j++)

 {

if(s3[i]!=c[j])

 flag=1;

else

 {

 flag =0;

break;

 }

 }

 if(flag==1)

 c[topc++] =s3[i];

 }

if (solve(0, assinged)==1)

 {

for(int i=0;i<c.Length;i++)

 label4.Text += "\n"+ c[i]+"--->"+val[i].ToString() + "\n";

 }

else

 label4.Text = "Sorry";

 }

//-------------------end of getdata-----------------

int solve(int ind,int []temp1)

 {

 int [] temp2 = newint[10];

 int flag=0;

 for(int i=0;i<10;i++)

 {

 if(temp1[i]==0)

 {

 for(int j=0;j<10;j++)

 temp2[j]=temp1[j];

 temp2[i]=1;

 val[ind]=i;

 if(ind==(topc-1))

 {

 if(verify()==1)

 {

 flag=1;

 goto exit;

 }

 }

 else

 {

if(solve(ind+1,temp2)==1)

 {

 flag=1;

 goto exit;

 }

 }

 }

 }

exit :

if(flag!=0)

 return1;

else

 return0;

 }

 int verify()

 {

 long n1=0,n2=0,n3=0;

 long power=1;

 char ch;

 int i=s1.Length-1;

 int in1;

 while(i>=0)

 {

 ch=s1[i];

 in1=0;

 while(in1!=topc)

 {

 if(c[in1]==ch)

 break;

 else

 in1++;

 }

 n1+=power*val[in1];

 power *=10;

 i--;

 }

 power=1;

 i=s2.Length-1;

 while(i>=0)

 {

 ch=s2[i];

 in1=0;

 while(in1!=topc)

 {

 if(c[in1]==ch)

 break;

 else

 in1++;

 }

 n2+=power*val[in1];

 power *=10;

 i--;

 }

 power=1;

 i=s3.Length-1;

 while(i>=0)

 {

 ch=s3[i];

 in1=0;

 while(in1!=topc)

 {

 if(c[in1]==ch)

 break;

 else

 in1++;

 }

 n3+=power*val[in1];

 power *=10;

 i--;

 }

 if(n1+n2==n3)

 return1;

 else

 return0;

 }

privatevoid Form1_Load(object sender, EventArgs e)

 {

 }

privatevoid textBox1_TextChanged(object sender, EventArgs e)

 {

 }

 }

}

Design of a Planning System Using STRIPS (Block World Problem)

Aim: Study of planning agent.

Theory:

Language of Planning Problem:

What is STRIPS?

The Stanford Research Institute Problem Solver (STRIPS) is an automated planning technique

that works by executing a domain and problem to find a goal. With STRIPS, you first describe

the world. You do this by providing objects, actions, preconditions, and effects. These are all

the types of things you can do in the game world.

Once the world is described, you then provide a problem set. A problem consists of an initial

state and a goal condition. STRIPS can then search all possible states, starting from the initial

one, executing various actions, until it reaches the goal.

A common language for writing STRIPS domain and problem sets is the Planning Domain

Definition Language (PDDL). PDDL lets you write most of the code with English words, so

that it can be clearly read and (hopefully) well understood. It’s a relatively easy approach to

writing simple AI planning problems.

Problem statement

Design a planning agent for a Blocks World problem. Assume suitable initial state and

final state for the problem.

Designing the Agent

Idea is to give an agent:

• Representation of goal/intention to achieve

• Representation of actions it can perform; and

• Representation of the environment;

Then have the agent generate a plan to achieve the goal.

The plan is generated entirely by the planning system, without human intervention.

Assume start & goal states as below:

a. STRIPS : A planning system – Has rules with precondition deletion list and addition list

Sequence of actions :

b. Grab C

c. Pickup C

d. Place on table C

e. Grab B

f. Pickup B

g. Stack B on C

h. Grab A

i. Pickup A

j. Stack A on B

Rules:

k. R1 : pickup(x)

1. Precondition & Deletion List : hand empty, on(x,table), clear(x)

2. Add List : holding(x)

l. R2 : putdown(x)

1. Precondition & Deletion List : holding(x)

2. Add List : hand empty, on(x,table), clear(x)

m. R3 : stack(x,y)

1. Precondition & Deletion List :holding(x), clear(y)

2. Add List : on(x,y), clear(x)

n. R4 : unstack(x,y)

1. Precondition & Deletion List : on(x,y), clear(x)

2. Add List : holding(x), clear(y)

Plan for the assumed blocks world problem

For the given problem, Start \rightarrow Goal can be achieved by the following sequence:

1. Unstack(C,A)

2. Putdown(C)

3. Pickup(B)

4. Stack(B,C)

5. Pickup(A)

6. Stack(A,B)

Implementation of Bayes' belief network (probabilistic reasoning in an uncertain

domain)

Aim:To implementation of Bayes' belief network (probabilistic reasoning in an uncertain

domain).

Theory:

Probabilistic reasoning

The aim of a reasoning is to combine the capacity of probability theory to handle uncertainty

with the capacity of deductive logic to exploit structure. The result is a richer and more

expressive formalism with a broad range of possible application areas. Probabilistic logics

attempt to find a natural extension of traditional logic truth tables: the results they define are

derived through probabilistic expressions instead. A difficulty with probabilistic logics is that

they tend to multiply the computational complexities of their probabilistic and logical

components. Other difficulties include the possibility of counter-intuitive results, such as those

of Dempster-Shafer theory. The need to deal with a broad variety of contexts and issues has

led to many different proposals.

Probabilistic Reasoning Using Bayesian Learning: The idea of Bayesian learning is to

compute the posterior probability distribution of the target features of a new example

conditioned on its input features and all of the training examples.

Suppose a new case has inputs X=x and has target features, Y; the aim is to compute

P(Y|X=x∧e), where e is the set of training examples. This is the probability distribution of the

target variables given the particular inputs and the examples. The role of a model is to be the

assumed generator of the examples. If we let M be a set of disjoint and covering models, then

reasoning by cases and the chain rule give

P(Y|x∧e) = ∑m∈M P(Y ∧m |x∧e)
 = ∑m∈M P(Y | m ∧x∧e) ×P(m|x∧e)
 = ∑m∈M P(Y | m ∧x) ×P(m|e) .

The first two equalities are theorems from the definition of probability. The last equality

makes two assumptions: the model includes all of the information about the examples that is

necessary for a particular prediction [i.e., P(Y | m ∧x∧e)= P(Y | m ∧x)], and the model does

not change depending on the inputs of the new example [i.e., P(m|x∧e)= P(m|e)]. This formula

says that we average over the prediction of all of the models, where each model is weighted by

its posterior probability given the examples.

P(m|e) can be computed using Bayes' rule:

P(m|e) = (P(e|m)×P(m))/(P(e)) .

Thus, the weight of each model depends on how well it predicts the data (the likelihood)

and its prior probability. The denominator, P(e), is a normalizing constant to make sure the

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Deductive_logic
http://en.wikipedia.org/wiki/Dempster-Shafer_theory
http://artint.info/html/ArtInt_141.html#cases-prop-it
http://artint.info/html/ArtInt_141.html

posterior probabilities of the models sum to 1. Computing P(e) can be very difficult when there

are many models.

A set {e1,...,ek} of examples are IID (independent and identically distributed), where the

distribution is given by model m if, for all i and j, examples ei and ej are independent given m,

which means P(ei∧ej|m)=P(ei|m)×P(ej|m). We usually assume that the examples are i.i.d.

Suppose the set of training examples e is {e1,...,ek}. That is, e is the conjunction of the

ei, because all of the examples have been observed to be true. The assumption that the examples

are IID implies

P(e|m) = ∏i=1
k P(ei|m)

The set of models may include structurally different models in addition to models that

differ in the values of the parameters. One of the techniques of Bayesian learning is to make

the parameters of the model explicit and to determine the distribution over the parameters.

Example: Consider the simplest learning task under uncertainty. Suppose there is a single

Boolean random variable, Y. One of two outcomes, a and ¬a, occurs for each example. We

want to learn the probability distribution of Y given some examples.

There is a single parameter, φ, that determines the set of all models. Suppose that φ

represents the probability of Y=true. We treat this parameter as a real-valued random variable

on the interval [0,1]. Thus, by definition of φ, P(a|φ)=φ and P(¬a|φ)=1-φ.

Suppose an agent has no prior information about the probability of Boolean variable Y

and no knowledge beyond the training examples. This ignorance can be modelled by having

the prior probability distribution of the variable φ as a uniform distribution over the interval

[0,1]. This is the probability density function labeledn0=0, n1=0 in.

We can update the probability distribution of φ given some examples. Assume that the

examples, obtained by running a number of independent experiments, are a particular sequence

of outcomes that consists of n0 cases where Y is false and n1 cases where Y is true.

Figure Beta distribution based on different samples.

The posterior distribution for φ given the training examples can be derived by Bayes'

rule. Let the examples e be the particular sequence of observation that resulted in n1 occurrences

of Y=true and n0 occurrences of Y=false. Bayes' rule gives us

P(φ|e)=(P(e|φ)×P(φ))/(P(e)) .

The denominator is a normalizing constant to make sure the area under the curve is 1.

Given that the examples are IID,

P(e|φ)=φn
1×(1-φ)n

0

Because there are n0 cases where Y=false, each with a probability of 1-φ, and n1 cases

where Y=true, each with a probability of φ.

One possible prior probability, P(φ), is a uniform distribution on the interval [0,1]. This

would be reasonable when the agent has no prior information about the probability.

The figure on “Beta distribution based on different samples” gives some posterior

distributions of the variable φ based on different sample sizes, and given a uniform prior. The

cases are (n0=1, n1=2), (n0=2, n1=4), and (n0=4, n1=8). Each of these peak at the same place,

namely at (2)/(3). More training examples make the curve sharper.

The distribution of this example is known as beta distribution; it is parametrized by two

counts, α0 and α1, and a probability p. Traditionally, the αi parameters for the beta distribution

are one more than the counts; thus, αi=ni+1. The beta distribution is

Betaα
0

,α
1(p)=(1)/(K) pα

1
-1×(1-p)α

0
-1

where K is a normalizing constant that ensures the integral over all values is 1. Thus, the

uniform distribution on [0,1] is the beta distribution Beta1,1.

The generalization of the beta distribution to more than two parameters is known as the

Dirichlet distribution. The Dirichlet distribution with two sorts of parameters, the "counts"

α1,...,αk, and the probability parameters p1,...,pk, is

Dirichletα
1

,...,α
k(p1,...,pk) = (1)/(K) ∏j=1

kpj
α

j
-1

where K is a normalizing constant that ensures the integral over all values is 1; pi is the

probability of the ith outcome (and so 0 ≤ pi ≤ 1) and αi is one more than the count of the ith

outcome. That is, αi=ni+1. The Dirichlet distribution looks like as in the figure along each

dimension (i.e. as each pj varies between 0 and 1).

For many cases, summing over all models weighted by their posterior distribution is

difficult, because the models may be complicated (e.g., if they are decision trees or even belief

networks). However, for the Dirichlet distribution, the expected value for outcome i (averaging

over all pj's) is

http://artint.info/html/ArtInt_196.html#BayesLearn-fig

(αi)/(∑j αj) .

The reason that the αi parameters are one more than the counts is to make this formula

simple. This fraction is well defined only when the αj are all non-negative and not all are zero.

Example: Consider Example, which determines the value of φ based on a sequence of

observations made up of n0 cases where Y is false and n1 cases where Y is true. Consider the

posterior. What is interesting about this is that, whereas the most likely posterior value of φ is

(n1)/(n0+n1), the expected value of this distribution is (n1+1)/(n0+n1+2).

Thus, the expected value of the n0=1, n1=2 curve is (3)/(5), for the n0=2, n1=4 case the

expected value is (5)/(8), and for the n0=4, n1=8 case it is (9)/(14). As the learner gets more

training examples, this value approaches (n)/(m).

This estimate is better than (n)/(m) for a number of reasons. First, it tells us what to do

if the learning agent has no examples: Use the uniform prior of (1)/(2). This is the expected

value of the n=0, m=0 case. Second, consider the case where n=0 and m=3. The agent should

not use P(y)=0, because this says that Y is impossible, and it certainly does not have evidence

for this! The expected value of this curve with a uniform prior is (1)/(5).

An agent does not have to start with a uniform prior; it can start with any prior

distribution. If the agent starts with a prior that is a Dirichlet distribution, its posterior will be

a Dirichlet distribution. The posterior distribution can be obtained by adding the observed

counts to the αi parameters of the prior distribution.

The IID assumption can be represented as a belief network, where each of the ei are

independent given model m. This independence assumption can be represented by the belief

network.

Figure Belief network and plate models of Bayesian learning.

If m is made into a discrete variable, any of the inference methods of the previous

chapter can be used for inference in this network. A standard reasoning technique in such a

network is to condition on all of the observed ei and to query the model variable or an

unobserved ei variable.

The problem with specifying a belief network for a learning problem is that the model

grows with the number of observations. Such a network can be specified before any

observations have been received by using a plate model. A plate model specifies what variables

will be used in the model and what will be repeated in the observations. The plate is drawn as

a rectangle that contains some nodes, and an index (drawn on the bottom right of the plate).

http://artint.info/html/ArtInt_145.html

The nodes in the plate are indexed by the index. In the plate model, there are multiple copies

of the variables in the plate, one for each value of the index. The intuition is that there is a pile

of plates, one for each value of the index. The number of plates can be varied depending on the

number of observations and what is queried. In this figure, all of the nodes in the plate share a

common parent. The probability of each copy of a variable in a plate given the parents is the

same for each index.

A plate model lets us specify more complex relationships between the variables. In a

hierarchical Bayesian model, the parameters of the model can depend on other parameters.

Such a model is hierarchical in the sense that some parameters can depend on other parameters.

Example: Suppose a diagnostic assistant agent wants to model the probability that a particular

patient in a hospital is sick with the flu before symptoms have been observed for this patient.

This prior information about the patient can be combined with the observed symptoms of the

patient. The agent wants to learn this probability, based on the statistics about other patients in

the same hospital and about patients at different hospitals. This problem can range from the

cases where a lot of data exists about the current hospital (in which case, presumably, that data

should be used) to the case where there is no data about the particular hospital that the patient

is in. A hierarchical Bayesian model can be used to combine the statistics about the particular

hospital the patient is in with the statistics about the other hospitals.

Suppose that for patient X in hospital H there is a random variable SHX that is true when

the patient is sick with the flu. (Assume that the patient identification number and the hospital

uniquely determine the patient.) There is a value φH for each hospital H that will be used for

the prior probability of being sick with the flu for each patient in H. In a Bayesian model, φH

is treated as a real-valued random variable with domain [0,1]. SHX depends on φH, with

P(SHX|φH)=φH. Assume that φH is distributed according to a beta distribution. We don't assume

that φhi and φh2 are independent of each other, but depend on hyperparameters. The

hyperparameters can be the prior counts α0 and α1. The parameters depend on the

hyperparameters in terms of the conditional probability P(φhi|α0,α1)= Betaα
0

,α
1(φhi); α0 and α1

are real-valued random variables, which require some prior distribution.

Figure Hierarchical Bayesian model.

http://artint.info/html/ArtInt_196.html#beta-distribution

Part (a) shows the plate model, where there is a copy of the outside plate for each

hospital and a copy of the inside plate for each patient in the hospital. Part of the resulting belief

network is shown in part (b). Observing some of the SHX will affect the φH and so α0 and α1,

which will in turn affect the other φH variables and the unobserved SHX variables.

Sophisticated methods exist to evaluate such networks. However, if the variables are

made discrete, any of the methods of the previous chapter can be used.

In addition to using the posterior distribution of φ to derive the expected value, we can

use it to answer other questions such as: What is the probability that the posterior probability

of φ is in the range [a,b]? In other words, derive P((φ ≥ a ∧φ ≤ b) | e).

(∫a
bpn×(1-p)m-n)/(∫0

1pn×(1-p)m-n)

This kind of knowledge is used in surveys when it may be reported that a survey is

correct with an error of at most 5%, 19 times out of 20. It is also the same type of information

that is used by probably approximately correct (PAC) learning, which guarantees an error at

most ε at least 1-δ of the time. If an agent chooses the midpoint of the range [a,b], namely

(a+b)/(2), as its hypothesis, it will have error less than or equal to (b-a)/(2), just when the

hypothesis is in [a,b]. The value 1-δ corresponds to P(φ ≥ a ∧φ ≤ b | e). If ε=(b-a)/(2) and δ=1-

P(φ ≥ a ∧φ ≤ b | e), choosing the midpoint will result in an error at most ε in 1-δ of the time.

PAC learning gives worst-case results, whereas Bayesian learning gives the expected number.

Typically, the Bayesian estimate is more accurate, but the PAC results give a guarantee of the

error. The sample complexity required for Bayesian learning is typically much less than that of

PAC learning – many fewer examples are required to expect to achieve the desired accuracy

than are needed to guarantee the desired accuracy.

Implement Resolution Inference Rule Using Prolog

Aim: To study resolution inference rule.

Theory: Inference is the act or method of deriving logical conclusions from premises known

or assumed to be true. The conclusion drawn is additionally known as an idiomatic. The laws

of valid inference are studied within the field of logic.

Human inference (i.e. how humans draw conclusions) is historically studied inside the

sphere of cognitive psychology; artificial intelligence researchers develop machine-driven

inference systems to emulate human inference. statistical inference permits for inference from

quantitative data.

The process by which a conclusion is inferred from multiple observations is named

inductive reasoning. The conclusion is also correct or incorrect, or correct to within a certain

degree of accuracy, or correct in certain situations. Conclusions inferred from multiple

observations is also tested by additional observations.

http://artint.info/html/ArtInt_195.html

A conclusion reached on the basis of proof and reasoning.

The process of reaching such a conclusion: "order, health, and by inference

cleanliness".

The validity of an inference depends on the shape of the inference. That is, the word

"valid" does not refer to the reality of the premises or the conclusion, but rather to the form of

the inference. an inference may be valid though the elements are false, and may be invalid

though the elements are true. However, a valid form with true premises can always have a real

conclusion.

For example,

All fruits are sweet.

A banana is a fruit.

Therefore, a banana is sweet.

For the conclusion to be necessarily true, the premises need to be true.

To show that this form is invalid, we demonstrate how it can lead from true premises to a false

conclusion.

All apples are fruit. (Correct)

Bananas are fruit. (Correct)

Therefore, bananas are apples. (Wrong)

A valid argument with false premises may lead to a false conclusion:

All tall people are Greek.

John Lennon was tall.

Therefore, John Lennon was Greek.

When a valid argument is used to derive a false conclusion from false premises, the inference

is valid because it follows the form of a correct inference. A valid argument can also be used

to derive a true conclusion from false premises:

All tall people are musicians.

John Lennon was tall.

Therefore, John Lennon was a musician.

In this case we have two false premises that imply a true conclusion.

In mathematical logic and automated theorem proving, resolution could be a rule of inference

resulting in a refutation theorem-proving technique for sentences in propositional logic and

first-order logic. In alternative words, iteratively applying the resolution rule in an acceptable

method allows for telling whether a propositional formula is satisfiable and for proving that a

first-order formula is unsatisfiable; this methodology could prove the satisfiability of a first-

order satisfiable formula, however not always, because it is the case for all ways for first-order

logic. Resolution was introduced by John Alan Robinson in 1965.

Resolution Rule: The resolution rule in propositional logic is a single valid inference rule that

produces a new clause implied by two clauses containing complementary literals. A literal is a

propositional variable or the negation of a propositional variable. Two literals are said to be

complements if one is the negation of the other (in the following, is taken to be the

complement to). The resulting clause contains all the literals that do not have complements.

Formally:

where

all s and s are literals,

 is the complement to , and

the dividing line stands for entails

The clause produced by the resolution rule is called the resolvent of the two input clauses.

When the two clauses contain more than one pair of complementary literals, the

resolution rule can be applied (independently) for each such pair; however, the result is always

a tautology.

Modus ponens can be seen as a special case of resolution of a one-literal clause and a

two-literal clause.

A Resolution Technique: When coupled with a complete search algorithm, the resolution rule

yields a sound and complete algorithm for deciding the satisfiability of a propositional formula,

and, by extension, the validity of a sentence under a set of axioms.

This resolution technique uses proof by contradiction and is based on the fact that any

sentence in propositional logic can be transformed into an equivalent sentence in conjunctive

normal form. The steps are as follows.

All sentences in the knowledge base and the negation of the sentence to be proved

(the conjecture) are conjunctively connected.

The resulting sentence is transformed into a conjunctive normal form with the conjuncts

viewed as elements in a set, S, of clauses.

For example,

gives rise to the set

.

Algorithm: The resolution rule is applied to all possible pairs of clauses that contain

complementary literals. After each application of the resolution rule, the resulting sentence is

simplified by removing repeated literals. If the sentence contains complementary literals, it is

discarded (as a tautology). If not, and if it is not yet present in the clause set S, it is added to S,

and is considered for further resolution inferences.

If after applying a resolution rule the empty clause is derived, the original formula is

unsatisfiable (or contradictory), and hence, it can be concluded that the initial conjecture

follows from the axioms.

If, on the other hand, the empty clause cannot be derived, and the resolution rule cannot

be applied to derive any more new clauses, the conjecture is not a theorem of the original

knowledge base.

One instance of this algorithm is the original Davis–Putnam algorithm that was later

refined into the DPLL algorithm that removed the need for explicit representation of the

resolvents.

This description of the resolution technique uses a set S as the underlying data-structure

to represent resolution derivations. Lists, Trees and Directed Acyclic Graphs are other possible

and common alternatives. Tree representations are more faithful to the fact that the resolution

rule is binary. Together with a sequent notation for clauses, a tree representation also makes it

clear to see how the resolution rule is related to a special case of the cut-rule, restricted to

atomic cut-formulas. However, tree representations are not as compact as set or list

representations, because they explicitly show redundant subderivations of clauses that are used

more than once in the derivation of the empty clause. Graph representations can be as compact

in the number of clauses as list representations and they also store structural information

regarding which clauses were resolved to derive each resolvent.

A simple example

In plain language: Suppose is false. In order for the premise to be true, must

be true. Alternatively, suppose is true. In order for the premise to be true, must

be true. Therefore, regardless of falsehood or veracity of , if both premises hold, then the

conclusion is true.

Resolution in First-Order Logic: In first-order logic, resolution condenses the

traditional syllogisms of logical inference down to a single rule.

To understand how resolution works, consider the following example syllogism of term

logic:

All Greeks are Europeans.

Homer is a Greek.

Therefore, Homer is a European.

Or, more generally:

Therefore,

To recast the reasoning using the resolution technique, first the clauses must be

converted to conjunctive normal form. In this form, all quantification becomes

implicit: universal quantifiers on variables (X, Y, …) are simply omitted as understood,

while existentially quantified variables are replaced by Skolem functions.

Therefore,

So, the question is, how does the resolution technique derive the last clause from the

first two? The rule is simple:

Find two clauses containing the same predicate, where it is negated in one clause but

not in the other.

Perform unification on the two predicates. (If the unification fails, you made a bad

choice of predicates. Go back to the previous step and try again.)

If any unbound variables which were bound in the unified predicates also occur in other

predicates in the two clauses, replace them with their bound values (terms) there as well.

Discard the unified predicates, and combine the remaining ones from the two clauses

into a new clause, also joined by the "∨" operator.

To apply this rule to the above example, we find the predicate P occurs in negated form

¬P(X)

in the first clause, and in non-negated form

P(a)

in the second clause. X is an unbound variable, while a is bound value (term). Unifying the two

produces the substitution

X ↦ a

Discarding the unified predicates, and applying this substitution to the remaining

predicates (just Q(X), in this case), produces the conclusion:

Q(a)

For another example, consider the syllogistic form

All Cretans are islanders.

All islanders are liars.

Therefore, all Cretans are liars.

Or more generally,

∀X P(X) → Q(X)

∀X Q(X) → R(X)

Therefore, ∀X P(X) → R(X)

In CNF, the antecedents become:

¬P(X) ∨ Q(X)

¬Q(Y) ∨ R(Y)

(Note that the variable in the second clause was renamed to make it clear that variables in

different clauses are distinct.)

Now, unifying Q(X) in the first clause with ¬Q(Y) in the second clause means

that X and Y become the same variable anyway. Substituting this into the remaining clauses

and combining them gives the conclusion:

¬P(X) ∨ R(X)

The resolution rule, as defined by Robinson, also incorporated factoring, which unifies

two literals in the same clause, before or during the application of resolution as defined above.

The resulting inference rule is refutation complete, in that a set of clauses is unsatisfiable if and

only if there exists a derivation of the empty clause using resolution alone.

Program:

%% Sam's likes and dislikes in food

%% Considering the following will give some practice

%% in thinking about backtracking.

%% ?- likes(sam,dahl).

%% ?- likes(sam,chop_suey).

%% ?- likes(sam,pizza).

%% ?- likes(sam,chips).

%% ?- likes(sam,curry).

likes(sam,Food) :-

indian(Food),

mild(Food).

likes(sam,Food) :-

chinese(Food).

likes(sam,Food) :-

italian(Food).

likes(sam,chips).

indian(curry).

indian(dahl).

indian(tandoori).

indian(kurma).

mild(dahl).

mild(tandoori).

mild(kurma).

chinese(chow_mein).

chinese(chop_suey).

chinese(sweet_and_sour).

italian(pizza).

italian(spaghetti).

Output:

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 6.6.6)

Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- chdir('C:/Program Files (x86)/swipl/demo/').

true.

2 ?- consult('C:/Program Files (x86)/swipl/demo/likes.pl').

% C:/Program Files (x86)/swipl/demo/likes.pl compiled 0.02 sec, 17 clauses

true.

3 ?- likes(sam,pizza).

true.

4 ?- likes(sam,idle).

false.

5 ?-

Ontology Creating, Editing and Authoring Using Protégé Tool

Aim: To study ontology creating, editing and authorizing using Protégétool.

Theory: Protégé is a free, open-source platform that gives a growing user community with a

set of tools to construct domain models and knowledge-based applications with ontologies. At

its core, Protégé implements a rich set of knowledge-modelling structures and actions that

support the creation, visualization, and manipulation of ontologies in varied illustration

formats. Protégé are often customized to supply domain-friendly support for making

knowledge models and entering data. Further, Protégé can be extended by means of a plug-in

design and a Java-based Application Programming Interface (API) for building knowledge-

based tools and applications.

An ontology describes the ideas and relationships that are necessary in an exceedingly

particular domain, providing a vocabulary for that domain in addition as a computerized

specification of the meaning of terms utilized in the vocabulary. Ontologies vary from

taxonomies and classifications, database schemas, to totally axiomatized theories. In recent

years, ontologies are adopted in several business and scientific communities as some way to

share, use and method domain data. Ontologies are currently central to several applications like

scientific knowledge portals, data management and integration systems, electronic commerce,

and semantic web services.

The Protégé platform supports two main ways of modelling ontologies:

The Protégé-Frames editor permits users to create and populate ontologies that are

frame-based, in accordance with the Open knowledge base connectivity protocol (OKBC). in

this model, an ontology consists of a group of classes organized during a subsumption hierarchy

to represent a domain’s salient ideas, a set of slots associated to categories to explain their

properties and relationships, and a set of instances of these classes - individual exemplars of

the ideas that hold specific values for his or her properties.

The Protégé-OWL editor permits users to create ontologies for the semantic web,

especially within the W3C’s web ontology Language (OWL). "An owl ontology might embody

descriptions of categories, properties and their instances. Given such an ontology, the owl

formal semantics specifies a way to derive its logical consequences, i.e. facts not literally

present within the ontology, however entailed by the semantics. These entailments is also based

on a single document or multiple distributed documents that are combined using defined owl

mechanisms"

Ontology: Ontology could be a formal explicit description of ideas in a very domain of

discourse (classes (sometimes called concepts)), properties of every concept describing varied

options and attributes of the concept (slots (sometimes referred to as roles or properties)), and

restrictions on slots (facets (sometimes referred to as role restrictions)). an ontology together

with a set of individual instances of classes constitutes a knowledge base. In reality, there is a

fine line wherever the ontology ends and therefore the knowledge base begins.

Classes are the main focus of most ontologies. classes describe ideas within the domain.

as an example, a class of wines represents all wines. Specific wines are instances of this class.

The Bordeaux wine within the glass front of you while you scan this document is an instance

of the class of Bordeaux wines. a class will have subclasses that represent ideas that are a lot

of specific than the superclass. as an example, we will divide the class of all wines into red,

white and rose. Alternatively, we will divide a class of all wines into sparkling and non-

sparkling wines.

Creating Ontology:Ontology creation involves following steps:

Step 1: Determine the domain and scope of the ontology starting the development of an

ontology by defining its domain and scope. That is, answer several basic questions:

 What is the domain that the ontology will cover?

 For what we are going to use the ontology?

 For what types of questions the information in the ontology should provide answers?

 Who will use and maintain the ontology?

The answers to these questions may change during the ontology-design process, but at any

given time they help limit the scope of the model.

Step 2: Consider reusing existing ontologies. It is almost always value considering what

somebody else has done and checking if we are able to refine and extend existing sources for

our particular domain and task. Reusing existing ontologies may be a requirement if our system

needs to move with different applications that have already committed to explicit ontologies or

controlled vocabularies. several ontologies are already offered in electronic type and might be

foreign into an ontology-development environment that you simply are using. The formalism

within which an ontology is expressed usually doesnot matter, since several knowledge-

representation systems will import and export ontologies. although a knowledge-representation

system cannot work directly with a selected formalism, the task of translating an ontology from

one formalism to a different is usually not a troublesome one.

Step 3: Enumerate important terms in the ontology. It is useful to write down a list of all terms

we would like either to make statements about or to explain to a user. What are the terms we

would like to talk about? What properties do those terms have? What would we like to say

about those terms? For example, important wine-related terms will include wine, grape, winery,

location, a wine’s color, body, flavour and sugar content; different types of food, such as fish

and red meat; subtypes of wine such as white wine, and so on. Initially, it is important to get a

comprehensive list of terms without worrying about overlap between concepts they represent,

relations among the terms, or any properties that the concepts may have, or whether the

concepts are classes or slots.

Step 4: Define the classes and the class hierarchy. There are several possible approaches in

developing a class hierarchy (Uschold and Gruninger 1996):

A top-down development process starts with the definition of the most general concepts

in the domain and subsequent specialization of the concepts. For example, we can start with

creating classes for the general concepts of Wine and Food. Then we specialise the wine class

by creating some of its subclasses: white, red and rose. We can further categorize the Red wine

class, for example, into Syrah, Red Burgundy, Cabernet Sauvignon, and so on.

A bottom-up development process starts with the definition of the most specific classes,

the leaves of the hierarchy, with subsequent grouping of these classes into more general

concepts. For Example, we start by defining classes for Pauillac and Margaux wines. We then

create a common superclass for these two classes—Medoc—which in turn is a subclass of

Bordeaux.

A combination development process is a combination of the top-down and bottom-up

approaches: We define the more salient concepts first and then generalize and specialize them

appropriately. We might start with a few top-level concepts such as Wine, and a few specific

concepts, such as Margaux. We can then relate them to a middle-level concept, such as Medoc.

Then we may want to generate all of the regional wine classes from France, thereby generating

a number of middle-level concepts.

Step 5: Define the properties of classes—slots. There are several types of object properties that

can become slots in ontology:

“Intrinsic” properties such as the flavour of a wine;

“Extrinsic” properties such as a wine’s name, and area it comes from

parts, if the object is structured; these can be both physical and abstract “parts” (e.g., the courses

of a meal)

Relationships to other individuals; these are the relationships between individual members of

the class and other items (e.g., the maker of a wine, representing a relationship between a wine

and a winery, and the grape the wine is made from.)

Step 6: Define the facets of the slots. Slots can have different facets describing the value type,

allowed values, the number of the values (cardinality), and other features of the values the slot

can take.

Step 7: Create instances. The last step is creating individual instances of classes in the

hierarchy. Defining an individual instance of a class requires (1) choosing a class, (2) creating

an individual instance of that class, and (3) filling in the slot values.

Editing: One of the primary and most vital choices within the design of an owl editor is how

to to|a way to} show class expressions in an exceedingly user-friendly however economical

way. Syntax planned within the owl specification [8] is clearly too verbose to be of any use

here. The owl Abstract Syntax [9] is far more easy, however still quite verbose. For the owl

Plug-in, we selected to use an expression syntax based on standard dl symbols, like 8 and t.

These symbols permit to the system display even complicated nested expressions in a single

row. A trade-off from this syntax is that some characters don't seem to be found on standard

keyboards. The owl Plug-in provides a comfortable expression editor that permits users to

quickly assemble expressions with either the mouse or the keyboard. The special characters are

mapped onto keys known from languages like Java (e.g., owl: intersection of which is entered

with the & key). To alter editing, keyboard users will exploit a syntax completion mechanism

known from programming environments, that semi-automatically completes partial names

after the uses has pressed tab. The expression editor is invoked by double-click on a class

expression, then pops up directly below the expression. For extremely complicated

expressions, users will open a multi-line editor in an additional window, that formats the

expression using indentation.

The OWL Plug-in helps new users to get acquainted with the expression syntax. An

English prose text is shown as a “tool tip” when the mouse is moved over the expression. For

example, “9 has Pet Cat” is displayed as “Any object which has a cat as its pet”. Figure 2Protégé

provides a comfortable editor for arbitrary OWL expressions. 4 Editing Class Descriptions

Another major design decision for a DL class editor is how to edit the logical class definitions.

Protégé users are accustomed to an object-centred view to the interface which has required

some effort to adapt to OWL. The distinction between defined and primitive classes simply is

not found in frame-style or object-oriented modelling paradigms, and this can compound users’

confusion when learning the DL paradigm. In the OWL specification, there is a lack of

uniformity between defined classes and primitive classes. Multiple necessary conditions are

represented by multiple rdfs: sub Class Of statements whose intersection is implied, whereas

sets of multiple necessary and sufficient conditions are represented by an owl equivalent class

block containing an explicit intersection class. Although logically consistent, experience has

shown that many users find the difference confusing. As a result, it was decided that the user

interface should not simply reflect the structure suggested by the OWL specification but

attempt to provide a clearer more uniform presentation to users. During the evolution of the

OWL plug-in we experimented with several interface designs, partly based on existing tools

such as the Protégé core system and OilEd, partly on suggestions from our colleagues and

users.

OilEd has 2 modes: one to “partially” define a class with solely necessary conditions,

the other to “completely” define a class with necessary conditions. there is a button to change

between these 2 modes. whereas this feature allowed the oiled developers to produce

customized widgets for varied forms of class descriptions (e.g. a widget for only restrictions),

it has the disadvantage that users have to be compelled to maintain separate class axioms in a

separate pane for the required restrictions of classes that also are “completely” defined by a set

of necessary conditions. there is nobody pane in oiled within which one will see both the sets

of necessary and decent conditions and any further necessary conditions (i.e. axioms taking the

defined class as their antecedent.)

As shown in the centre of Figure 5, the owl Plug-in solves this problem by means of a

list of conditions, organized into blocks of necessary, and inherited (i.e., inferred) conditions.

Each of the necessary blocks represents one equivalent intersection class, and solely those

inherited conditions are listed that haven't been further restricted above in the hierarchy

The editor supports drag-and-drop between blocks in the conditions list, and copy-and-

paste of expressions. It also supports changing super classes by dragging a class from one

parent to another in the class tree on the left-hand side of the window. In addition to the list of

conditions, there is also a custom-tailored widget for entering disjoint classes, which has special

support for typical design patterns such as making all siblings disjoint. This rather object-

centred design of the OWL Classes tab makes it possible to maintain the whole class definition

on a single screen.

Authoring Ontology:Change tracking. Collaborative Protégé records all actions made by a

user and stores them in a structured log as instances of the Change class of the CHAO ontology.

The change log contains

Because the changes are also stored as instances of the CHAO ontology, they can also

be annotated to record design rationale, or other information. For projects with large sets of

annotations, search and filtering are crucial features. Users of Collaborative Protégé can filter

and search in each of the collaboration panels using different criteria, such as author, date,

annotation text, and annotation type. Chat. Users connected at the same time to a Protégé server

can discuss and exchange live messages. One feature that sets Collaborative Protégé chat

functionality apart from other chat clients is the support for sending links to entities in the

ontology (e.g. a class).

The user who receives a chat message containing an entity link, can simply click on

that link, and she will see the definition for that entity. We designed Collaborative Protégé in

such a way that it is very easy to extend the annotation types available in the user interface. It

only requires adding a subclass of Annotation in the CHAO ontology and the tool will be able

to handle the new type of annotation. Collaborative Protégé is built using a plug-in architecture,

meaning that other groups can very easily add their own custom collaboration panel. The

extensibility is made possible by exposing all the collaboration information through API calls,

so they can be easily used and integrated in other applications.

Inductive Learning Using Weka Tool

11.1 Implement Decision Tree Learning

Aim: Inductive learning using Weka tool.

Theory: Decision tree learning

A decision tree is a classifier expressed as a recursive partition of the instance space. The

decision tree consists of nodes that form a rooted tree, that means it is a directed tree with a

node known as “root” that has no incoming edges. All alternative nodes have exactly one

incoming edge. A node with outgoing edges is termed an internal or test node. All other nodes

are known as leaves (also referred to as terminal or decision nodes). in a decision tree, every

internal node splits the instance space into 2 or a lot of sub-spaces according to a particular

discrete function of the input attributes values. within the simplest and most frequent case,

every check considers a single attribute, specified the instance space is partitioned according

to the attribute’s value. within the case of numeric attributes, the condition refers to a range.

Example: For each feature encountered in the tree, the arc corresponding to the value of the

example for that feature is followed. When a leaf is reached, the classification corresponding

to that leaf is returned.

Figure Two decision trees.

 A deterministic decision tree, in which all of the leaves are classes,

can be mapped into a set of rules, with each leaf of the tree corresponding to a rule. The example

has the classification at the leaf if all of the conditions on the path from the root to the leaf are

true.

The leftmost decision tree in Figure 5can be represented as the following rules:

Skips ←long.

Reads ←short ∧new

Reads ←short∧followUp∧known

Skips ←short ∧follow Up∧unknown

Algorithm:

1: Procedure DecisionTreeLearner(X,Y,E)

2: Inputs

3: X: set of input features, X={X1,...,Xn}

4: Y: target feature

5: E: set of training examples

6: Output

7: decision tree

8: if stopping criterion is true then

9: return pointEstimate(Y,E)

10: else

11: Select feature Xi∈X, with domain {v1,v2}

12: let E1={e∈E: val(e,Xi)=v1}

13: let T1=DecisionTreeLearner(X \ {Xi},Y,E1)

14: let E2={e∈E: val(e,Xi)=v2}

15: let T2=DecisionTreeLearner(X \ {Xi},Y,E2)

16: return ⟨Xi=v1, T1, T2⟩

A decision tree can be incrementally built from the top down by recursively selecting a

feature to split on and partitioning the training examples with respect to that feature. In above

algorithm, the procedure DecisionTreeLearner learns a decision tree for binary attributes. The

decisions regarding when to stop and which feature to split on are left undefined.

The algorithm DecisionTreeLearner builds a decision tree from the top down as

follows: The input to the algorithm is a set of input features, a target feature, and a set of

examples. The learner first tests if some stopping criterion is true. If the stopping criterion is

true, it returns a point estimate for Y, which is either a value for Y or a probability distribution

over the values for Y. If the stopping criterion is not true, the learner selects a feature Xi to split

on, and for each value v of this feature, it recursively builds a subtree for those examples

with Xi=v. The returned tree is represented here in terms of triples representing an if-then-else

structure.

Conclusion: A decision tree or a classification tree is a tree in which each internal (non-leaf)

node is labelled with an input feature. The arcs coming from a node labelled with a feature are

labelled with each of the possible values of the feature. Each leaf of the tree is labelled with a

class or a probability distribution over the classes.

Study of Seiko DTRANS RT 3200 Robot

Aim: Study of Seiko DTRANS RT 3200 robot.

Theory:Robots have the potential to change our economy, our health, our standard of living,

our knowledge and the world in which we live. As the technology progresses, we are finding

new ways to use robots.

 The RT 3200 robot delivers an eleven-pound payload across a thirty-six inch pick and

a place cycle in less than 1.3 seconds, maintaining a repeatability of 0.001. In addition to Speed

and Precision, factor in a New powerful control system, and you have an exceptional

automation system.

The net benefits are as follows:

1. Fastest cycle time of any assembly robot assures you higher throughput and increased

productivity.

2. Most powerful control system insures quick system implementation and fast return on

your investment.

3. Modular design and proven reliability make this robot very flexible and easy to service.

We include the robot arm, controller, cables, teach pendant and documentation. (The teach

pendant is just sitting on the top of the arm, it is not mounted there.)

This robot arm moves up and down at the top of the base, rotates at the top of the base, goes in

and out of the arm and rotates at the end of the arm.

(a) Controller

(b) Hour Meter: Shows the hour meter at 19155 hours

(c) Teach Terminal: Enable one to move the robot around as desired and program the points

and motions you want.

Successful applications:

1. Mechanical assembly

2. Machine tool load/unload

3. Waterjet cutting

4. Assembly adjustments

5. Wire harness and connector assembly

Mini Expert System Using PROLOG

Aim: Implement Mini Expert system.

Theory:Robots have the potential to change our economy, our health, our standard of living,

our knowledge and the world in which we live. As the technology progresses, we are finding

new ways to use robots.

The RT 3200 robot delivers an eleven-pound payload across a 36 inch pick and a place

cycle in less than 1.3 seconds, maintaining a repeatability of 0.001. In addition to speed and

precision, factor in a new powerful control system, and you have an exceptional automation

system.

The net benefits are:

1. Fastest cycle time of any assembly robot assures you higher throughput and increased

productivity.

2. Most powerful control system insures quick system implementation and fast return on your

investment.

3. Modular design and proven reliability make this robot very flexible and easy to service.

Included is the robot arm, controller, cables, teach pendant and documentation. (The

teach pendant is just sitting on the top of the arm, it is not mounted there.)

This robot arm moves up and down at the top of the base, rotates at the top of the base,

goes in and out of the arm and rotates at the end of the arm.

(a) Controller

 (b) Hour Meter: Shows the hour meter at 19155 hours

(c) Teach Terminal: Enable one to move the robot around as desired and program the points

and motions you want.

Successful applications:

1. Mechanical assembly

1. Machine tool load/unload

2. Water jet cutting

3. Assembly adjustments

4. Wire harness and connector assembly

Conclusion: RT 3200 robot is fastest assembly robot in the world. It offers a choice of control

schemes, flexible work envelope, modular design and a history of proven reliability.

Program:

state(ac,bd,a):-

write('move to b'),nl,

state(ac,bd,b).

state(ac,bd,b):-

write('clean b'),nl,

state(ac,bc,b).

state(ac,bc,b):-

write('both a & b are clean').

state(ad,bc,a):-

write('clean a'),nl,

state(ac,bc,a).

state(ac,bc,a):-

write('both a & b are clean').

state(ad,bc,b):-

write('move to a'),nl,

state(ad,bc,a).

state(ad,bd,a):-

write('clean a'),nl,

state(ac,bd,a).

state(ad,bd,b):-

write('clean b'),nl,

state(ad,bc,b).

Output:

1 ?-

% c:/Users/sakec/Desktop/vaccum.pl compiled 0.00 sec, 580

bytes 1 ?- state(ad,bd,b).

clean

b

move

to a

clean

a

both a & b are

clean true .

2 ?- state(ad,bc,b).

move to a

clean a

both a & b are clean

true

Programming Using Python

14.1 Water Jug Problem Using Python

14.1.1 Two Jug Problem

Given 2 jugs of capacities: 5 and 7 Litres. Using these 2 jugs to obtain exactly 4 Litres water .

Code :

def pour(jug1, jug2):

 max1, max2, fill = 5, 7, 4 #Change maximum capacity and final capacity

 print("%d\t%d" % (jug1, jug2))

 if jug2 is fill:

 return

 elif jug2 is max2:

 pour(0, jug1)

 elif jug1 != 0 and jug2 is 0:

 pour(0, jug1)

 elif jug1 is fill:

 pour(jug1, 0)

 elif jug1 < max1:

 pour(max1, jug2)

 elif jug1 < (max2-jug2):

 pour(0, (jug1+jug2))

 else:

 pour(jug1-(max2-jug2), (max2-jug2)+jug2)

print("JUG1\tJUG2")

pour(0, 0)

Output :

JUG1 JUG2

0 0

5 0

0 5

5 5

3 7

0 3

5 3

1 7

0 1

5 1

0 6

5 6

4 7

0 4

14.1.2 Three Jug Problem

Problem: Given 3 jugs of capacities: 12, 8 and 5 litres. Our 12 L jug is completely filled. Using

these 3 jugs split the water to obtain exactly 6 Litres.

So I thought of writing a code in python to obtain the solution to the problem, instead of doing

hit and trial.

I used DFS to search through all the states of the jugs. At each state, we’ll have certain choices

of emptying water from one jug into another. We’ll try each choice, calling our function for each

state, and if we reach the goal state, we stop.

[Note that the given program could be made smaller/modular, but it is more understandable

given this way. Also, DFS might not give an optimal (best path) solution. For that use BFS]

Code :

3 water jugs capacity -> (x,y,z) where x>y>z

initial state (12,0,0)

final state (6,6,0)

capacity = (12,8,5)

Maximum capacities of 3 jugs ->x,y,z

x = capacity[0]

y = capacity[1]

z = capacity[2]

to mark visited states

memory = {}

store solution path

ans = []

def get_all_states(state):

 # Let the 3 jugs be called a,b,c

 a = state[0]

 b = state[1]

 c = state[2]

 if(a==6 and b==6):

ans.append(state)

 return True

 # if current state is already visited earlier

 if((a,b,c) in memory):

 return False

 memory[(a,b,c)] = 1

 #empty jug a

 if(a>0):

 #empty a into b

 if(a+b<=y):

 if(get_all_states((0,a+b,c))):

ans.append(state)

 return True

 else:

 if(get_all_states((a-(y-b), y, c))):

ans.append(state)

 return True

 #empty a into c

 if(a+c<=z):

 if(get_all_states((0,b,a+c))):

ans.append(state)

 return True

 else:

 if(get_all_states((a-(z-c), b, z))):

ans.append(state)

 return True

 #empty jug b

 if(b>0):

 #empty b into a

 if(a+b<=x):

 if(get_all_states((a+b, 0, c))):

ans.append(state)

 return True

 else:

 if(get_all_states((x, b-(x-a), c))):

ans.append(state)

 return True

 #empty b into c

 if(b+c<=z):

 if(get_all_states((a, 0, b+c))):

ans.append(state)

 return True

 else:

 if(get_all_states((a, b-(z-c), z))):

ans.append(state)

 return True

 #empty jug c

 if(c>0):

 #empty c into a

 if(a+c<=x):

 if(get_all_states((a+c, b, 0))):

ans.append(state)

 return True

 else:

 if(get_all_states((x, b, c-(x-a)))):

ans.append(state)

 return True

 #empty c into b

 if(b+c<=y):

 if(get_all_states((a, b+c, 0))):

ans.append(state)

 return True

 else:

 if(get_all_states((a, y, c-(y-b)))):

ans.append(state)

 return True

 return False

initial_state = (12,0,0)

print("Starting work...\n")

get_all_states(initial_state)

ans.reverse()

for i in ans:

 print(i)

Starting work...

(12, 0, 0)

(4, 8, 0)

(0, 8, 4)

(8, 0, 4)

(8, 4, 0)

(3, 4, 5)

(3, 8, 1)

(11, 0, 1)

(11, 1, 0)

(6, 1, 5)

(6, 6, 0)

14.2 Wumpus World Problem Using Python

Code :

dirs= ["right","left","up","down"]

gm = 1
gn = 1
pm = 3
pn = 0

h = 0
visited = []
w = [[2,0,0,0],[1,2,0,2],[2,0,2,1],[0,0,0,2]]
print w
p = [[0,0,4,3],[0,4,3,4],[0,0,4,0],[0,4,3,4]]
print p
k = [["","","",""],["","","",""],["","","",""],["","","",""]]
k[pm][pn] = 'S'
print k
tl = []
tl2 = []
present = ""
prev = ""
tmp = ""
tv = 1
mypath = []
def getMatrix(msg,m):
 print msg
 matrix = []
 for i in range(m):
 rl = []
 tmp = raw_input();
 tmp = tmp.replace(' ', '')
 for i in range(len(tmp)):
 fl = int(tmp[i])
 rl.append(fl)
 matrix.append(rl)
 rl = []
 print matrix
def setdirections_for(i,j):
 si = str(i)
 sj = str(j)
 r = str(j+1)
 l = str(j-1)
 u = str(i-1)
 d = str(i+1)
 if i is 0 and j is 0:
 dirs[0] = si + r
 dirs[1] = ""
 dirs[2] = ""
 dirs[3] = d + sj
 #print i," ",j,"down right"
 elif i is 0 and j is 3:
 dirs[0] = ""
 dirs[1] = si + l
 dirs[2] = ""
 dirs[3] = d + sj
 #print i," ",j,"left down"
 elif i is 3 and j is 0:
 dirs[0] = si + r

 dirs[1] = ""
 dirs[2] = u + sj
 dirs[3] = ""
 #print i," ",j,"up right"
 elif i is 3 and j is 3:
 dirs[0] = ""
 dirs[1] = si + l
 dirs[2] = u + sj
 dirs[3] = ""
 #print i," ",j,"left up"
 elif i is 0:
 dirs[0] = si + r
 dirs[1] = si + l
 dirs[2] = ""
 dirs[3] = d + sj
 #print i," ",j,"leftdown right"
 elif i is 3:
 dirs[0] = si + r
 dirs[1] = si + l
 dirs[2] = u + sj
 dirs[3] = ""
 #print i," ",j,"leftup right"
 elif j is 0:
 dirs[0] = si + r
 dirs[1] = ""
 dirs[2] = u + sj
 dirs[3] = d + sj
 #print i," ",j,"up right down"
 elif j is 3:
 dirs[0] = ""
 dirs[1] = si + l
 dirs[2] = u + sj
 dirs[3] = d + sj
 #print i," ",j,"left up down"
 else:
 dirs[0] = si + r
 dirs[1] = si + l
 dirs[2] = u + sj
 dirs[3] = d + sj
 #print i," ",j,"left up right down"
def getdiagonals_for(i,j):
 iup = str(i-1)
 idown = str(i+1)
 jright = str(j+1)
 jleft = str(j-1)
 if i is 0 and j is 0:
 dirs[0] = ""
 dirs[1] = ""
 dirs[2] = ""
 dirs[3] = idown + jright

 #print i," ",j,"down right"
 elif i is 0 and j is 3:
 dirs[0] = ""
 dirs[1] = ""
 dirs[2] = idown + jleft
 dirs[3] = ""
 #print i," ",j,"left down"
 elif i is 3 and j is 0:
 dirs[0] = ""
 dirs[1] = iup + jright
 dirs[2] = ""
 dirs[3] = ""
 #print i," ",j,"up right"
 elif i is 3 and j is 3:
 dirs[0] = iup + jleft
 dirs[1] = ""
 dirs[2] = ""
 dirs[3] = ""
 #print i," ",j,"left up"
 elif i is 0:
 dirs[0] = ""
 dirs[1] = ""
 dirs[2] = idown + jleft
 dirs[3] = idown + jright
 #print i," ",j,"leftdown right"
 elif i is 3:
 dirs[0] = iup + jleft
 dirs[1] = iup + jright
 dirs[2] = ""
 dirs[3] = ""
 #print i," ",j,"leftup right"
 elif j is 0:
 dirs[0] = ""
 dirs[1] = iup + jright
 dirs[2] = ""
 dirs[3] = idown + jright
 #print i," ",j,"up right down"
 elif j is 3:
 dirs[0] = iup + jleft
 dirs[1] = ""
 dirs[2] = idown + jleft
 dirs[3] = ""
 #print i," ",j,"left up down"
 else:
 dirs[0] = iup + jleft
 dirs[1] = iup + jright
 dirs[2] = idown + jleft
 dirs[3] = idown + jright
 #print i," ",j,"left up right down"

def allowedsteps(ls):
 for objs in dirs:
 if objs is not "":
 ls.append(objs)
 return ls
def checkforwumpus(steps):
 if w[int(steps[0])][int(steps[1])] is 1:
 print "Player got killed"
 print visited
 print k
 exit(0)
 elif w[int(steps[0])][int(steps[1])] is 2:
 return '2'
 else:
 return '0'
def checkforpit(steps):
 if p[int(steps[0])][int(steps[1])] is 3:
 print "Player got killed"
 print k
 exit(0)
 elif p[int(steps[0])][int(steps[1])] is 4:
 return '4'
 else:
 return '0'
def getdiagonals(step):
 ls = []
 getdiagonals_for(int(step[0]),int(step[1]))
 ls = allowedsteps(ls)
 return ls
def stepintocell(step):
 ws = checkforwumpus(step)
 pb = checkforpit(step)
 return ws+pb
def applylogic_from_knowledge():
 global tl2,present,tv
 print "\n\nApplying logic"
 for step in tl:
 print "_______________thinking for %s_________________"%(step)
 if step in visited:
 print step,"is visited so avoid thinking about that\n"
 if int(step[0]) is pm and int(step[0]) is pn:
 print "1"
 elif '2' in k[int(step[0])][int(step[1])]:
 print "2"
 else:
 setdirections_for(int(step[0]),int(step[1]))
 tl2 = tl2[0:0]
 tl2 = allowedsteps(tl2)
 print "Connections of",step,"checking for :",tl2

 #print present
 #print prev
 for st in tl2:
 if st == present:
 print st,"is it is present"
 else:
 print "************************checking :",st
 #print "Visited :",visited
 #print present,step,start
 dg = getdiagonals(st)
 print "Diagonals",dg,
 if st in start:
 print st,"is Start state"
 elifst == present:
 print st,"is Present state"
 elifst in visited:
 print st,"yes it is in visited"
 if (k[int(st[0])][int(st[1])] in ['04','40','02','20']) and

(k[int(present[0])][int(present[1])] in ['02','20','04','40']):
print "Applying first condition and is true"
 k[int(step[0])][int(step[1])] = 'S'
 print "Putting Safe State at

",int(step[0]),int(step[1])
 print "Visited :",visited
 return step
 print "\n"
 else:
 for objs in dg:
 if objs in start:
 print "Diagonal",objs,"is Start

state"
 elifobjs == present:
 print "Diagonal",objs,"is Present

state"
 elifobjs in visited:
 tv = 1
 print "%s is diagonal of %s which is

visited"%(objs,st)

 else:
 print objs,"not visited"
 else:
 if tv is not 1:
 print "here Nothing could be done

for",st
 print "________________\n"
 return 0
def whats_nextstep(ws,wp):
 global tl,present,prev,tmp,h
 print "\nThinkingwhats_nextstep from",ws,wp,

 print "\nNow present is :",present,
 print "Now previous is :",prev
 setdirections_for(ws,wp)
 tl = tl[0:0]
 tl = allowedsteps(tl)
 if ws == gm and wp == gn:
 h = 1
 if h is 1:
 print "\nHurray!!Got the Gold",
 print "\nPresently in %s returning back to %s"%(present,start)
 #print mypath
 for steps in range(len(mypath),0,-1):
 #print "Stepping into ",mypath[steps-1]
 prev = present
 present = mypath[steps-1]
 #print "Present : ",present,"Previous :",prev
 print "Now reached to :",present
 exit(0)
 #return_to_initial_postition()
 elif k[ws][wp] is "S":
 print "\nSafe Cell"
 print "Allowed Steps",tl,
 for step in tl:
 tmp = step
 if step not in visited:
 print step,"Not visited"
 prev = present
 print "previous cell :",prev
 present = step[0]+step[1]
 print "present cell",present
 #print "Visited :",visited
 #Theres something wrong here
 k[int(step[0])][int(step[1])] = stepintocell(step)
 print "\nStepping into ",step[0],step[1]
 mypath.append(step)
 visited.append(step)
 print visited
 print k
 whats_nextstep(int(step[0]),int(step[1]))
 Print
 else:
 print step,"already visited",
 else:
 print "\nNot a Safe Cell",
 print "\nConnections of ",present,":",tl,
 if ws is 2 and wp is 2:
 print tl
 #print "exiting"
 #exit(0)
 l = applylogic_from_knowledge()

 print "i got here",l
 if l is 0:
 print "Stepping Back to",prev,"\n"
 mypath.pop()
 print prev
 present = prev
 print present,prev
 whats_nextstep(int(prev[0]),int(prev[1]))
 else:
 print "here I reached********************"
 visited.append(l)
 print visited
 prev = tmp
 present = l
 print present,prev
 print "\nfrom here Stepping into ",l,
 mypath.append(l)
 whats_nextstep(int(l[0]),int(l[1]))

if __name__ == "__main__":
 #getMatrix("Enter Matrix",4);
 '''
 for i in range(1,5):
 for j in range(1,5):
 setdirections_for(i,j)
 print "from",i,j,"it can move to",
 allowedcells()
 '''
 prm = pm
 prn = pn
 start = str(pm)+str(pn)
 visited.append(start)
 print visited
 print "Starting from ",pm,pn
 prev = str(pm)+str(pn)
 present = str(pm)+str(pn)
 mypath.append(start)
 whats_nextstep(pm,pn)
 print present
 print k

14.3 Eight Puzzle Problem Using Python

The state of the board is stored in a list. The list stores values for the
board in the following positions:

| 0 | 3 | 6 |

| 1 | 4 | 7 |

| 2 | 5 | 8 |

The goal is defined as:

| 1 | 2 | 3 |

| 8 | 0 | 4 |

| 7 | 6 | 5 |

Where 0 denotes the blank tile or space.
goal_state= [1, 8, 7, 2, 0, 6, 3, 4, 5]

The code will read state from a file called "state.txt" where the format is
as above but space seperated. i.e. the content for the goal state would be
1 8 7 2 0 6 3 4 5
Code begins.
import sys
defdisplay_board(state):
 print"-------------"
 print"| %i | %i | %i |"% (state[0], state[3], state[6])
 print"-------------"
 print"| %i | %i | %i |"% (state[1], state[4], state[7])
 print"-------------"
 print"| %i | %i | %i |"% (state[2], state[5], state[8])
 print"-------------"

defmove_up(state):
 """Moves the blank tile up on the board. Returns a new state as a list."""
 # Perform an object copy
 new_state= state[:]
 index =new_state.index(0)
 # Sanity check
 if index notin [0, 3, 6]:

 # Swap the values.
 temp =new_state[index -1]
 new_state[index -1] =new_state[index]
 new_state[index] = temp
 returnnew_state
 else:
 # Can't move, return None (Pythons NULL)
 returnNone
defmove_down(state):
 """Moves the blank tile down on the board. Returns a new state as a list."""
 # Perform object copy
 new_state= state[:]
 index =new_state.index(0)
 # Sanity check
 if index notin [2, 5, 8]:
 # Swap the values.
 temp =new_state[index +1]
 new_state[index +1] =new_state[index]
 new_state[index] = temp
 returnnew_state
 else:
 # Can't move, return None.
 returnNone
defmove_left(state):
 """Moves the blank tile left on the board. Returns a new state as a list."""
 new_state= state[:]
 index =new_state.index(0)
 # Sanity check
 if index notin [0, 1, 2]:
 # Swap the values.
 temp =new_state[index -3]
 new_state[index -3] =new_state[index]
 new_state[index] = temp
 returnnew_state
 else:
 # Can't move it, return None
 returnNone
defmove_right(state):
 """Moves the blank tile right on the board. Returns a new state as a list."""
 # Performs an object copy. Python passes by reference.
 new_state= state[:]
 index =new_state.index(0)
 # Sanity check
 if index notin [6, 7, 8]:
 # Swap the values.
 temp =new_state[index +3]
 new_state[index +3] =new_state[index]
 new_state[index] = temp
 returnnew_state
 else:

 # Can't move, return None
 returnNone
defcreate_node(state, parent, operator, depth, cost):
 return Node(state, parent, operator, depth, cost)
defexpand_node(node, nodes):
 """Returns a list of expanded nodes"""
 expanded_nodes= []
 expanded_nodes.append(create_node(move_up(node.state), node, "u",

node.depth+1, 0))
 expanded_nodes.append(create_node(move_down(node.state), node, "d",

node.depth+1, 0))
 expanded_nodes.append(create_node(move_left(node.state), node, "l",

node.depth+1, 0))
 expanded_nodes.append(create_node(move_right(node.state), node, "r",

node.depth+1, 0))
 # Filter the list and remove the nodes that are impossible (move function

returned None)
 expanded_nodes= [node for node inexpanded_nodesifnode.state!=None]

#list comprehension!
 returnexpanded_nodes
defbfs(start, goal):
 """Performs a breadth first search from the start state to the goal"""
 # A list (can act as a queue) for the nodes.
 nodes = []
 # Create the queue with the root node in it.
 nodes.append(create_node(start, None, None, 0, 0))
 whileTrue:
 # We've run out of states, no solution.
 iflen(nodes) ==0: returnNone
 # take the node from the front of the queue
 node =nodes.pop(0)
 # Append the move we made to moves
 # if this node is the goal, return the moves it took to get here.
 ifnode.state== goal:
 moves = []
 temp = node
 whileTrue:
 moves.insert(0, temp.operator)
 iftemp.depth==1: break
 temp =temp.parent
 return moves
 # Expand the node and add all the expansions to the front of the

stack
 nodes.extend(expand_node(node, nodes))
defdfs(start, goal, depth=10):
 """Performs a depth first search from the start state to the goal. Depth

param is optional."""
 # NOTE: This is a limited search or else it keeps repeating moves. This is an

infinite search space.

 # I'm not sure if I implemented this right, but I implemented an iterative

depth search below
 # too that uses this function and it works fine. Using this function itself will

repeat moves until
 # the depth_limit is reached. Iterative depth search solves this problem,

though.
 #
 # An attempt of cutting down on repeat moves was made in the

expand_node() function.
 depth_limit= depth
 # A list (can act as a stack too) for the nodes.
 nodes = []
 # Create the queue with the root node in it.
 nodes.append(create_node(start, None, None, 0, 0))
 whileTrue:
 # We've run out of states, no solution.
 iflen(nodes) ==0: returnNone
 # take the node from the front of the queue
 node =nodes.pop(0)
 # if this node is the goal, return the moves it took to get here.
 ifnode.state== goal:
 moves = []
 temp = node
 whileTrue:
 moves.insert(0, temp.operator)
 iftemp.depth<=1: break
 temp =temp.parent
 return moves
 # Add all the expansions to the beginning of the stack if we are under

the depth limit
 ifnode.depth<depth_limit:
 expanded_nodes=expand_node(node, nodes)
 expanded_nodes.extend(nodes)
 nodes =expanded_nodes
defids(start, goal, depth=50):
 """Perfoms an iterative depth first search from the start state to the goal.

Depth is optional."""
 foriinrange(depth):
 result =dfs(start, goal, i)
 if result !=None:
 return result
defa_star(start, goal):
 """Perfoms an A* heuristic search"""
 # ATTEMPTED: does not work :(
 nodes = []
 nodes.append(create_node(start, None, None, 0, 0))
 whileTrue:
 # We've run out of states - no solution.
 iflen(nodes) ==0: returnNone
 # Sort the nodes with custom compare function.

 nodes.sort(cmp)
 # take the node from the front of the queue
 node =nodes.pop(0)
 # if this node is the goal, return the moves it took to get here.
 print"Trying state", node.state, " and move: ", node.operator
 ifnode.state== goal:
 moves = []
 temp = node
 whileTrue:
 moves.insert(0, temp.operator)
 iftemp.depth<=1: break
 temp =temp.parent
 return moves
 #Expand the node and add all expansions to the end of the queue
 nodes.extend(expand_node(node, nodes))

defcmp(x, y):
 # Compare function for A*. f(n) = g(n) + h(n). I use depth (number of

moves) for g().
 return (x.depth+ h(x.state, goal_state)) - (y.depth+ h(x.state, goal_state))
defh(state, goal):
 """Heuristic for the A* search. Returns an integer based on out of place

tiles"""
 score =0
 foriinrange(len(state)):
 if state[i] != goal[i]:
 score = score +1
 return score
Node data structure
classNode:
 def__init__(self, state, parent, operator, depth, cost):
 # Contains the state of the node
 self.state= state
 # Contains the node that generated this node
 self.parent= parent
 # Contains the operation that generated this node from the parent
 self.operator= operator
 # Contains the depth of this node (parent.depth +1)
 self.depth= depth
 # Contains the path cost of this node from depth 0. Not used for

depth/breadth first.
 self.cost= cost
defreadfile(filename):
 f =open(filename)
 data =f.read()
 # Get rid of the newlines
 data =data.strip("\n")
 #Break the string into a list using a space as a seperator.
 data =data.split(" ")
 state = []

 for element in data:
 state.append(int(element))
 return state
Main method
defmain():
 starting_state=readfile("state.txt")
 ### CHANGE THIS FUNCTION TO USE bfs, dfs, ids or a_star
 result = ids(starting_state, goal_state)
 if result ==None:
 print"No solution found"
 elif result == [None]:
 print"Start node was the goal!"
 else:
 print result
 printlen(result), " moves"
A python-isim. Basically if the file is being run execute the main() function.
if__name__=="__main__":
 main()

14.4 Tic-Tak-Toe Game Using Python

defboard():
print("Welcome to the tic tak toe game. Player 1 will use 'O' as mark.

Player 2 will use 'X' as mark.")
 d={}
for n inrange(1,10):
 d[n]="-"
return d
defprintBoard(d):
fork,vind.items():
ifint(k)%3==0:
print(v, end=" ")
print("\n")
else:
print(v, end=" ")
defcheckInput(d): # take input and check if the input is valid
 x=""
try: # check if the input is a number
x=int(x)
except ValueError:
print("Enter number please")
continue
while x notin'1 2 3 4 5 6 7 8 9'.split() ornotcheckSingle(d,int(x)): # check

if the number is in the range of 1 to 9
 x=input("Please enter correct number(only number from 1-9): ")
returnint(x)
defcheckSingle(d,x): # check if the space has been filled
return d[x] =="-"
defcheckWon(d,n):
contorl=0# 0 for ongoing, 1 for tie, 2 for player1 won, 3 for player3 won
sumnum=0# tie counter
 sv0=0# player1 vertical counter
 sh0=0# player1 horizonal counter
 sd0=0# player1 dignose counter
 sv1=0
 sh1=0
 sd1=0
if n >3and n<7:
for e in [n-3,n+3]:
if d[e] =="O":
 sv0 +=1
elif d[e] =="X":
 sv1 +=1
else:
Pass
for e in [4,5,6]:
if d[e]=="O":
 sh0 +=1
elif d[e] =="X":
 sh1 +=1
else:

Pass
if sh0==3or sv0==3:
 control =2
return control
if sh1==3or sv1==3:
 control =3
return control
elif n<4:
for e in [n+3,n+6]:
if d[e] =="O":
 sv0 +=1
elif d[e] =="X":
 sv1 +=1
else:
Pass
for e in [1,2,3]:
if d[e]=="O":
 sh0 +=1
elif d[e] =="X":
 sh1 +=1
else:
Pass
if n==1:
for e in [1,5,9]:
if d[e]=="O":
 sd0+=1
elif d[e] =="X":
 sd1+=1
else:
Pass
if n==3:
for e in [3,5,7]:
if d[e]=="O":
 sd0+=1
elif d[e] =="X":
 sd1+=1
else:
Pass
if sh0==3or sv0==3or sd0==3:
 control =2
return control
if sh1==3or sv1==3or sd1==3:
 control =3
return control
elif n>6:
for e in [n-3,n-6]:
if d[e] =="O":
 sv0 +=1
elif d[e] =="X":
 sv1 +=1

else:
Pass
for e in [7,8,9]:
if d[e]=="O":
 sh0 +=1
elif d[e] =="X":
 sh1 +=1
else:
Pass
if n==7:
for e in [3,5,7]:
if d[e]=="O":
 sd0+=1
elif d[e] =="X":
 sd1+=1
else:
Pass
if n==9:
for e in [1,5,9]:
if d[e]=="O":
 sd0+=1
elif d[e] =="X":
 sd1+=1
else:
Pass
if sh0==3or sv0==3or sd0==3:
 control =2
return control
if sh1==3or sv1==3or sd1==3:
 control =3
return control
else:
Pass
for e in d.values():
if e !="-":
sumnum+=1
if"-"notind.values():
 control =1
if sumnum ==9:
control = 1
return control
defprocess(d,player):
 won =0
 x=checkInput(d)
print("Player",(player+1),"selected position",x)
if player ==0:
 d[x]="O"
 player =1
 won =checkWon(d,x)
if won ==1:

print("tie")
elif won ==2:
print("Player1 won")
elif won ==3:
print("Player2 won")
else:
printBoard(d)
 process(d,player)
else:
 d[x]="X"
 player =0
 won =checkWon(d,x)
if won ==1:
print("tie")
elif won ==2:
print("Player1 won")
elif won ==3:
print("Player2 won")
else:
printBoard(d)
 process(d,player)
defreplay():
 x =input("Do you want to play again(y/n): ").lower().startswith("y")
if x ==True:
 player =0
 main()
else:
print("Bye!")
Pass
defmain():
 player =0# set the player switch
 d = board() # init the board
printBoard(d) # print the blank board
 process(d,player) # game on
printBoard(d) # print the final board
 replay() # ask if the players wnat to play next round
main()

14.5 Eight / N- Queen Problem Using Python

14.5.1 Eight Queen Problem

fromitertoolsimportpermutations

n=8

cols=range(n)

forvecinpermutations(cols):

if(n==len(set(vec[i]+iforiincols))

==len(set(vec[i]-iforiincols))):

printvec

Computes all 92 solutions for eight queens. By setting n to different values, other sized puzzles

can be solved.

The output is presented in vector form (each number represents the column position of a queen

on consecutive rows). The vector can be pretty printed with this function:

def board(vec):

 '''Translate column positions to an equivalent chess board.

 >>> board([0, 4, 7, 5, 2, 6, 1, 3])

 Q-------

 ----Q---

 -------Q

 -----Q--

 --Q-----

 ------Q-

 -Q------

 ---Q----

 '''

 for col invec:

 s =['-']*len(vec)

 s[col]='Q'

 print''.join(s)

 print

14.5.2 N-Queen Problem

N = 8 # Default; command line overrides

class Queens:

 def __init__(self, n=N):

self.n = n

self.reset()

 def reset(self):

 n = self.n

self.y = [None] * n # Where is the queen in column x

self.row = [0] * n # Is row[y] safe?

self.up = [0] * (2*n-1) # Is upward diagonal[x-y] safe?

self.down = [0] * (2*n-1) # Is downward diagonal[x+y] safe?

self.nfound = 0 # Instrumentation

 def solve(self, x=0): # Recursive solver

 for y in range(self.n):

 if self.safe(x, y):

self.place(x, y)

 if x+1 == self.n:

self.display()

 else:

self.solve(x+1)

self.remove(x, y)

 def safe(self, x, y):

 return not self.row[y] and not self.up[x-y] and not self.down[x+y]

 def place(self, x, y):

self.y[x] = y

self.row[y] = 1

self.up[x-y] = 1

self.down[x+y] = 1

 def remove(self, x, y):

self.y[x] = None

self.row[y] = 0

self.up[x-y] = 0

self.down[x+y] = 0

 silent = 0 # If true, count solutions only

 def display(self):

self.nfound = self.nfound + 1

 if self.silent:

 return

 print '+-' + '--'*self.n + '+'

 for y in range(self.n-1, -1, -1):

 print '|',

 for x in range(self.n):

 if self.y[x] == y:

 print "Q",

 else:

 print ".",

 print '|'

 print '+-' + '--'*self.n + '+'

def main():

 import sys

 silent = 0

 n = N

 if sys.argv[1:2] == ['-n']:

 silent = 1

 del sys.argv[1]

 if sys.argv[1:]:

 n = int(sys.argv[1])

 q = Queens(n)

q.silent = silent

q.solve()

 print "Found", q.nfound, "solutions."

if __name__ == "__main__":

 main()

14.6 Minimax & Alpha Beta Pruning AI Algorithm in Tic-Tac-Toe Using Python

Minimax Search

def minimax_decision(state, game):

"""Given a state in a game, calculate the best move by searching

 forward all the way to the terminal states. [Fig. 6.4]"""

 player = game.to_move(state)

def max_value(state):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = -infinity

 for (a, s) in game.successors(state):

 v = max(v, min_value(s))

 return v

def min_value(state):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = infinity

 for (a, s) in game.successors(state):

 v = min(v, max_value(s))

 return v

Body of minimax_decision starts here:

 action, state = argmax(game.successors(state),

 lambda ((a, s)): min_value(s))

 return action

def alphabeta_full_search(state, game):

"""Search game to determine best action; use alpha-beta pruning.

 As in [Fig. 6.7], this version searches all the way to the leaves."""

 player = game.to_move(state)

def max_value(state, alpha, beta):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = -infinity

 for (a, s) in game.successors(state):

 v = max(v, min_value(s, alpha, beta))

 if v >= beta:

 return v

 alpha = max(alpha, v)

 return v

def min_value(state, alpha, beta):

 if game.terminal_test(state):

 return game.utility(state, player)

 v = infinity

 for (a, s) in game.successors(state):

 v = min(v, max_value(s, alpha, beta))

 if v <= alpha:

 return v

 beta = min(beta, v)

 return v

Body of alphabeta_search starts here:

 action, state = argmax(game.successors(state),

 lambda ((a, s)): min_value(s, -infinity, infinity))

 return action

def alphabeta_search(state, game, d=4, cutoff_test=None, eval_fn=None):

"""Search game to determine best action; use alpha-beta pruning.

 This version cuts off search and uses an evaluation function."""

 player = game.to_move(state)

def max_value(state, alpha, beta, depth):

 if cutoff_test(state, depth):

 return eval_fn(state)

 v = -infinity

 for (a, s) in game.successors(state):

 v = max(v, min_value(s, alpha, beta, depth+1))

 if v >= beta:

 return v

 alpha = max(alpha, v)

 return v

def min_value(state, alpha, beta, depth):

 if cutoff_test(state, depth):

 return eval_fn(state)

 v = infinity

 for (a, s) in game.successors(state):

 v = min(v, max_value(s, alpha, beta, depth+1))

 if v <= alpha:

 return v

 beta = min(beta, v)

 return v

Body of alphabeta_search starts here:

The default test cuts off at depth d or at a terminal state

cutoff_test = (cutoff_test or

 (lambda state,depth: depth>d or game.terminal_test(state)))

eval_fn = eval_fn or (lambda state: game.utility(state, player))

 action, state = argmax(game.successors(state),

 lambda ((a, s)): min_value(s, -infinity, infinity, 0))

 return action

Players for Games

def query_player(game, state):

"Make a move by querying standard input."

game.display(state)

 return num_or_str(raw_input('Your move? '))

def random_player(game, state):

"A player that chooses a legal move at random."

 return random.choice(game.legal_moves())

def alphabeta_player(game, state):

 return alphabeta_search(state, game)

def play_game(game, *players):

"Play an n-person, move-alternating game."

 state = game.initial

 while True:

 for player in players:

 move = player(game, state)

 state = game.make_move(move, state)

 if game.terminal_test(state):

 return game.utility(state, players[0])

Some Sample Games

class Game:

"""A game is similar to a problem, but it has a utility for each

 state and a terminal test instead of a path cost and a goal

 test. To create a game, subclass this class and implement

legal_moves, make_move, utility, and terminal_test. You may

 override display and successors or you can inherit their default

 methods. You will also need to set the .initial attribute to the

 initial state; this can be done in the constructor."""

def legal_moves(self, state):

"Return a list of the allowable moves at this point."

 abstract

def make_move(self, move, state):

"Return the state that results from making a move from a state."

 abstract

def utility(self, state, player):

"Return the value of this final state to player."

 abstract

def terminal_test(self, state):

"Return True if this is a final state for the game."

 return not self.legal_moves(state)

def to_move(self, state):

"Return the player whose move it is in this state."

 return state.to_move

def display(self, state):

"Print or otherwise display the state."

 print state

def successors(self, state):

"Return a list of legal (move, state) pairs."

 return [(move, self.make_move(move, state))

 for move in self.legal_moves(state)]

def __repr__(self):

 return '<%s>' % self.__class__.__name__

class Fig62Game(Game):

"""The game represented in [Fig. 6.2]. Serves as a simple test case.

>>> g = Fig62Game()

>>>minimax_decision('A', g)

 'a1'

>>>alphabeta_full_search('A', g)

 'a1'

>>>alphabeta_search('A', g)

 'a1'

 """

succs = {'A': [('a1', 'B'), ('a2', 'C'), ('a3', 'D')],

'B': [('b1', 'B1'), ('b2', 'B2'), ('b3', 'B3')],

'C': [('c1', 'C1'), ('c2', 'C2'), ('c3', 'C3')],

'D': [('d1', 'D1'), ('d2', 'D2'), ('d3', 'D3')]}

utils = Dict(B1=3, B2=12, B3=8, C1=2, C2=4, C3=6, D1=14, D2=5, D3=2)

 initial = 'A'

def successors(self, state):

 return self.succs.get(state, [])

def utility(self, state, player):

 if player == 'MAX':

 return self.utils[state]

 else:

 return -self.utils[state]

def terminal_test(self, state):

 return state not in ('A', 'B', 'C', 'D')

def to_move(self, state):

 return if_(state in 'BCD', 'MIN', 'MAX')

class TicTacToe(Game):

"""Play TicTacToe on an h x v board, with Max (first player) playing 'X'.

 A state has the player to move, a cached utility, a list of moves in

 the form of a list of (x, y) positions, and a board, in the form of

 a dict of {(x, y): Player} entries, where Player is 'X' or 'O'."""

def __init__(self, h=3, v=3, k=3):

 update(self, h=h, v=v, k=k)

 moves = [(x, y) for x in range(1, h+1)

 for y in range(1, v+1)]

self.initial = Struct(to_move='X', utility=0, board={}, moves=moves)

def legal_moves(self, state):

"Legal moves are any square not yet taken."

 return state.moves

def make_move(self, move, state):

 if move not in state.moves:

 return state # Illegal move has no effect

 board = state.board.copy(); board[move] = state.to_move

 moves = list(state.moves); moves.remove(move)

 return Struct(to_move=if_(state.to_move == 'X', 'O', 'X'),

 utility=self.compute_utility(board, move, state.to_move),

 board=board, moves=moves)

def utility(self, state):

"Return the value to X; 1 for win, -1 for loss, 0 otherwise."

 return state.utility

def terminal_test(self, state):

"A state is terminal if it is won or there are no empty squares."

 return state.utility != 0 or len(state.moves) == 0

def display(self, state):

 board = state.board

 for x in range(1, self.h+1):

 for y in range(1, self.v+1):

 print board.get((x, y), '.'),

 print

def compute_utility(self, board, move, player):

"If X wins with this move, return 1; if O return -1; else return 0."

 if (self.k_in_row(board, move, player, (0, 1)) or

self.k_in_row(board, move, player, (1, 0)) or

self.k_in_row(board, move, player, (1, -1)) or

self.k_in_row(board, move, player, (1, 1))):

 return if_(player == 'X', +1, -1)

 else:

 return 0

def k_in_row(self, board, move, player, (delta_x, delta_y)):

"Return true if there is a line through move on board for player."

 x, y = move

 n = 0 # n is number of moves in row

 while board.get((x, y)) == player:

 n += 1

 x, y = x + delta_x, y + delta_y

 x, y = move

 while board.get((x, y)) == player:

 n += 1

 x, y = x - delta_x, y - delta_y

 n -= 1 # Because we counted move itself twice

 return n>= self.k

class ConnectFour(TicTacToe):

"""A TicTacToe-like game in which you can only make a move on the bottom

 row, or in a square directly above an occupied square. Traditionally

 played on a 7x6 board and requiring 4 in a row."""

def __init__(self, h=7, v=6, k=4):

TicTacToe.__init__(self, h, v, k)

def legal_moves(self, state):

"Legal moves are any square not yet taken."

 return [(x, y) for (x, y) in state.moves

 if y == 0 or (x, y-1) in state.board]

14.7 Constraint Satisfaction Problem Using Python

14.7.1 Crypt Arithmetic Problem Using Python

from re import sub

defsolve(q):

try:
 n = (iforiin q ifi.isalpha()).next()
exceptStopIteration:
return q ifeval(sub(r'(^|[^0-9])0+([1-9]+)', r'\1\2', q)) elseFalse
else:
foriin (str(i) foriinrange(10) ifstr(i) notin q):
 r = solve(q.replace(n,str(i)))
if r:
return r
returnFalse
if__name__=="__main__":
 query ="ABCDE * A == EEEEEE"
 r = solve(query)
print r if r else"No solution found."
Other puzzles to try:
query = "REASON == IT * IS + THERE"
query = "MAD * MAN == ASYLUM"
query = "THREE + THREE + ONE == SEVEN"
query = "SEND + MORE == MONEY"
query = "I + BB == ILL"
query = "WHOSE + TEETH + ARE + AS == SWORDS"
query = "BILL + WILLIAM + MONICA == CLINTON"
query = "GREEN + ORANGE == COLORS"
query = "PACIFIC + PACIFIC + PACIFIC == ATLANTIC"
query = "CASSATT + RENOIR == PICASSO"
query = "MANET + MATISSE + MIRO + MONET + RENOIR == ARTISTS"
query = "COMPLEX + LAPLACE == CALCULUS"

14.7.2 Map Coloring Problem Using Python

Map to be filled :

We start off with a file containing a list of states and the set of states that are adjacent to each.

The row for Tennessee might be as follows:

1 TN,AL;AR;GA;KY;MO;MS;NC;VA

Next we need to read that file.

1

2

3

4

5

6

def loadData(localFileName):

 # expects: AA,BB;CC;DD where BB, CC and DD are the initial column values in other rows

 with open(localFileName, mode='r') as infile:

 reader = csv.reader(infile)

 mydict = {row[0]: row[1].split(';') for row in reader if row}

 return mydict

Then we need to build the rules. A Rule connects two states indicating that they are adjacent.

We want to be able to put rules in a dictionary and find them in a list so we need to

define __hash__ and __eq__. We might also want to be able to display a rule so we’ll add

a __str__ implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

class Rule:

 Item = None

 Other = None

 Stringified = None

 def __init__(self, item, other, stringified):

 self.Item = item

 self.Other = other

 self.Stringified = stringified

 def __eq__(self, another):

 return hasattr(another, 'Item') and \

 hasattr(another, 'Other') and \

 self.Item == another.Item and \

15

16

17

18

19

20

21

 self.Other == another.Other

 def __hash__(self):

 return hash(self.Item) * 397 ^ hash(self.Other)

 def __str__(self):

 return self.Stringified

Next we’re going to build the set of rules. While we’re doing so we’re going to perform a sanity

check on the data. Whenever a state says it is adjacent to another state, the adjacent state should

also say it is adjacent to the first state.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

def buildLookup(items):

 itemToIndex = {}

 index = 0

 for key in sorted(items):

 itemToIndex[key] = index

 index += 1

 return itemToIndex

def buildRules(items):

 itemToIndex = buildLookup(items.keys())

 rulesAdded = {}

 rules = []

 keys = sorted(list(items.keys()))

 for key in sorted(items.keys()):

 keyIndex = itemToIndex[key]

 adjacentKeys = items[key]

 for adjacentKey in adjacentKeys:

 if adjacentKey == '':

 continue

 adjacentIndex = itemToIndex[adjacentKey]

 temp = keyIndex

 if adjacentIndex< temp: temp, adjacentIndex = adjacentIndex, temp ruleKey = keys[temp] + "->" + keys[adjacentIndex]

 rule = Rule(temp, adjacentIndex, ruleKey)

 if rule in rulesAdded:

 rulesAdded[rule] += 1

 else:

 rulesAdded[rule] = 1

 rules.append(rule)

 for k, v in rulesAdded.items():

 if v == 1:

 print("rule %s is not bidirectional" % k)

 return rules

REPORT THIS AD

Now we have the ability to convert a file of node relationships to a set of adjacency rules. Next

we need to build the code used by the genetic solver. We’ll start by determining what our genes

will be. In this case since we want to four-color the 50 states our gene set will be four color

codes.

1

2

3

4

5

colors = ["Orange", "Yellow", "Green", "Blue"]

colorLookup = {}

for color in colors:

 colorLookup[color[0]] = color

geneset = list(colorLookup.keys())

Our Individuals will have 50 genes, one for each state, in alphabetical order. This lets us use

the index into the genes as an index into the set of sorted state codes.

Since the expected optimal situation will be that all adjacent states have different colors we can

set the optimal value to the number of rules.

At the end we’ll write out the color of each state.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

class GraphColoringTests(unittest.TestCase):

 def test(self):

 states = loadData("adjacent_states.csv")

 rules = buildRules(states)

 colors = ["Orange", "Yellow", "Green", "Blue"]

 colorLookup = {}

 for color in colors:

 colorLookup[color[0]] = color

 geneset = list(colorLookup.keys())

 optimalValue = len(rules)

 startTime = datetime.datetime.now()

 fnDisplay = lambda candidate: display(candidate, startTime)

 fnGetFitness = lambda candidate: getFitness(candidate, rules)

 best = genetic.getBest(fnGetFitness, fnDisplay, len(states), optimalValue, geneset)

 self.assertEqual(best.Fitness, optimalValue)

 keys = sorted(states.keys())

 for index in range(len(states)):

 print(keys[index] + " is " + colorLookup[best.Genes[index]])

As for display, it should be sufficient to output the color codes.

1

2

3

def display(candidate, startTime):

 timeDiff = datetime.datetime.now() - startTime

 print("%s\t%i\t%s" % (''.join(map(str, candidate.Genes)), candidate.Fitness, str(timeDiff)))

This gets output like the following. The number to the right of the gene sequence will indicate

how many rules this gene sequence satisfies.

1
YGGBOOGOOBBYGGYYYYGBGYOOGBOYGGOOOYBOYBBGGOBYOGOGOGG

74 0:00:00.001000

Finally we need a fitness function that checks all the rules assuming the states are colored

according to the gene sequence.

1

2

def getFitness(candidate, rules):

 rulesThatPass = 0

3

4

5

6

7

 for rule in rules:

 if candidate[rule.Item] != candidate[rule.Other]:

 rulesThatPass += 1

 return rulesThatPass

That’s it. Now when we run our main test function we get the following output:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

OOYYOBBGYOOYGBBYOOOBOGYGYGGBBYGOGGOYOYGYBBOBOBGOBBG 82 0:00:00

YYBOYGGGGOBYOYBGBOOBOOBBGGBGGYGBBGOBOBYYOGYYBBYOYGO 102

0:00:00.016001

BOOGOGGOGBGYGGBGOOYBYOBYGBBOGBGBBBOYYYGYYOYOOGYBOBY 103

0:00:00.316018

GOBOGGOYGBGOBGOGYBYBOOYYGGBBGOYBYYYOOBGYYOYGBGGOGYY 104

0:00:01.602092

BBBBGGBYGOGYBGOGBBYGOGYYYGYBBOOBYYYOOOGOYGOGOGBBGYB 105

0:00:04.933282

AK is Blue

AL is Blue

AR is Blue

AZ is Blue

CA is Green

CO is Green

CT is Blue

DC is Yellow

DE is Green

FL is Orange

GA is Green

HI is Yellow

IA is Blue

ID is Green

IL is Orange

IN is Green

KS is Blue

KY is Blue

LA is Yellow

MA is Green

MD is Orange

ME is Green

MI is Yellow

MN is Yellow

MO is Yellow

MS is Green

MT is Yellow

NC is Blue

ND is Blue

NE is Orange

NH is Orange

NJ is Blue

NM is Yellow

NV is Yellow

NY is Yellow

45

46

47

48

49

50

51

52

53

54

55

56

OH is Orange

OK is Orange

OR is Orange

PA is Green

RI is Orange

SC is Yellow

SD is Green

TN is Orange

TX is Green

UT is Orange

VA is Green

VT is Blue

WA is Blue

WI is Green

WV is Yellow

WY is Blue

Construction of a Domain-Specific Chatbot Using Natural Language Processing

Techniques

Aim: Construction of a domain-specific Chatbot using natural language processing techniques.

(Applications can include medical diagnosis, personal shopping assistant, travel agent,

troubleshooting, etc.).

Theory: Chatbots, or conversational interfaces as they are also known, present a new way for

individuals to interact with computer systems. Traditionally, to get a question answered by a

software program involved using a search engine or filling out a form. A chatbot allows a user

to simply ask questions in the same manner that they would address a human. The most well-

known chatbots currently are voice chatbots: Alexa and Siri. However, chatbots are currently

being adopted at a high rate on computer chat platforms.

The technology at the core of the rise of the chatbot is natural language processing

(“NLP”). Recent advances in machine learning have greatly improved the accuracy and

effectiveness of natural language processing, making chatbots a viable option for many

organizations. This improvement in NLP is firing a great deal of additional research which

should lead to continued improvement in the effectiveness of chatbots in the years to come.

A simple chatbot can be created by loading an FAQ (frequently asked questions) into

chatbot software. The functionality of the chatbot can be improved by integrating it into the

organization’s enterprise software, allowing more personal questions to be answered, like

“What is my balance?”, or “What is the status of my order?”.

Most commercial chatbots are dependent on platforms created by the technology giants

for their natural language processing. These include Amazon Lex, Microsoft Cognitive

Services, Google Cloud Natural Language API, Facebook DeepText, and IBM Watson.

Platforms where chatbots are deployed include Facebook Messenger, Skype, and Slack, among

many others.

Applications: A chatbot can be used anywhere a human is interacting with a computer system.

These are the areas where the fastest adoption is occurring:

Customer Service: A chatbot can be used as an “assistant” to a live agent, increasing the

agent’s efficiency. When trained, they can also provide service when the call centre is closed,

or eventually even act as an independent agent, if desired.

Sales/Marketing/Branding: Chatbots can be used for sales qualification, ecommerce,

promotional campaigns, or as a branding vehicle.

Human Resources: An HR chatbot can help with frequently asked questions (“how many

vacation days do I have left?”) and can act as an onboarding assistant.

Benefits

1. Economically offer 24/7 Service

2. Improve Customer Satisfaction

3. Reach a Younger Demographic

4. Reduce Costs

5. Increase Revenue

Installing Chatterbot

You can install Chatterbot on your system using Python’s pip command. Pip install chatterbot

Creating your first chat bot

Create a new file named chatbot.py. Then open chatbot.py in your editor of choice.

Before we do anything else, Chatterbot needs to be imported. The import for Chatterbot should

look like the following line.

From chatterbot import Chatbot

Create a new instance of the Chatbot class.

Bot = Chatbot(‘Norman’)

This line of code has created a new chat bot named Norman. There is a few more parameters

that we will want to specify before we run our program for the first time.

Setting the storage adapter

Chatterbot comes with built in adapter classes that allow it to connect to different types of

databases. In this tutorial, we will be using the SQLStorageAdapter which allows the chat bot

to connect to SQL databases. By default, this adapter will create a SQLite database.

The database parameter is used to specify the path to the database that the chat bot will

use. For this example, we will call the database sqlite:///database.sqlite3. this file will be

created automatically if it does not already exist.

Bot = Chatbot(

‘Norman’,

storage_adapter=’chatterbot.storage.SQLStorageAdapter’,

database_uri=’sqlite:///database.sqlite3’

)

Note

The SQLStorageAdapter is ChatterBot’s default adapter. If you do not specify an adapter in

your constructor, the SQLStorageAdapter adapter will be used automatically.

Specifying logic adapters

The logic_adapters parameter is a list of logic adapters. In Chatterbot, a logic adapter is a class

that takes an input statement and returns a response to that statement.

You can choose to use as many logic adapters as you would like. In this example we will use

two logic adapters. The TimeLogicAdapter returns the current time when the input statement

asks for it. The Mathematical Evaluation adapter solves math problems that use basic

operations.

Bot = Chatbot(

‘Norman’,

storage_adapter=’chatterbot.storage.SQLStorageAdapter’,

logic_adapters=[

‘chatterbot.logic.MathematicalEvaluation’,

‘chatterbot.logic.TimeLogicAdapter’

],

database_uri=’sqlite:///database.sqlite3’

)

Getting a Response from Your Chat Bot: Next, you will want to create a while loop for your

chat bot to run in. By breaking out of the loop when specific exceptions are triggered, we can

exit the loop and stop the program when a user enters ctrl+c.

while True:

 try:

bot_input = bot.get_response(input())

 print(bot_input)

https://www.sqlite.org/

 except(KeyboardInterrupt, EOFError, SystemExit):

 break

Training Your Chatbot: At this point your chat bot, Norman will learn to communicate as

you talk to him. You can speed up this process by training him with examples of existing

conversations.

From chatterbot.trainers import ListTrainer

trainer = ListTrainer(bot)

trainer.train([

‘How are you?’,

‘I am good.’,

‘That is good to hear.’,

‘Thank you’,

‘You are welcome.’,

])

You can run the training process multiple times to reinforce preferred responses to particular

input statements. You can also run the train command on a number of different example dialogs

to increase the breadth of inputs that your chat bot can respond to.

From chatterbot import Chatbot

from chatterbot.trainers import ListTrainer

Create a new chat bot named Charlie

chatbot = ChatBot(‘Charlie’)

trainer = ListTrainer(chatbot)

trainer.train([

“Hi, can I help you?”,

“Sure, I’d like to book a flight to Iceland.”,

“Your flight has been booked.”

])

Get a response to the input text ‘I would like to book a flight.’

Response = chatbot.get_response(‘I would like to book a flight.’)

print(response)

Terminal Example: This example program shows how to create a simple terminal client that

allows you to communicate with your chat bot by typing into your terminal.

From chatterbot import Chatbot

Uncomment the following lines to enable verbose logging

import logging

logging.basicConfig(level=logging.INFO)

Create a new instance of a ChatBot

bot = ChatBot(

‘Terminal’,

storage_adapter=’chatterbot.storage.SQLStorageAdapter’,

logic_adapters=[

‘chatterbot.logic.MathematicalEvaluation’,

‘chatterbot.logic.TimeLogicAdapter’,

‘chatterbot.logic.BestMatch’

],

database_uri=’sqlite:///database.db’

)

print(‘Type something to begin’…')

The following loop will execute each time the user enters input

while True:

 try:

user_input = input()

bot_response = bot.get_response(user_input)

 print(bot_response)

 # Press ctrl-c or ctrl-d on the keyboard to exit

 except (KeyboardInterrupt, EOFError, SystemExit):

 break

Using MongoDB: Before you can use ChatterBot’s built in adapter for MongoDB, you will

need to install MongoDB. Make sure MongoDB is running in your environment before you

execute your program. To tell Chatterbot to use this adapter, you will need to set

the storage_adapter parameter.

storage_adapter="chatterbot.storage.MongoDatabaseAdapter"

from chatterbot import ChatBot

Uncomment the following lines to enable verbose logging

import logging

logging.basicConfig(level=logging.INFO)

Create a new ChatBot instance

bot = ChatBot(

 'Terminal',

storage_adapter='chatterbot.storage.MongoDatabaseAdapter',

logic_adapters=[

 'chatterbot.logic.BestMatch'

],

database_uri='mongodb://localhost:27017/chatterbot-database'

)

print('Type something to begin...')

https://docs.mongodb.com/manual/installation/

while True:

 try:

user_input = input()

bot_response = bot.get_response(user_input)

 print(bot_response)

 # Press ctrl-c or ctrl-d on the keyboard to exit

 except (KeyboardInterrupt, EOFError, SystemExit):

 break

Time and Mathematics Example: Chatterbot has natural language evaluation capabilities that

allow it to process and evaluate mathematical and time-based inputs.

from chatterbot import ChatBot

bot = ChatBot(

 'Math & Time Bot',

logic_adapters=[

 'chatterbot.logic.MathematicalEvaluation',

 'chatterbot.logic.TimeLogicAdapter'

]

)

Print an example of getting one math based response

response = bot.get_response('What is 4 +’9?')

print(response)

Print an example of getting one time based response

response = bot.get_response('What time is it?')

print(response)

Using SQL Adapter: Chatterbot data can be saved and retrieved from SQL databases. From

chatterbot, import ChatBot

Uncomment the following lines to enable verbose logging

import logging

logging.basicConfig(level=logging.INFO)

Create a new instance of a ChatBot

bot = ChatBot(

 'SQLMemoryTerminal',

storage_adapter='chatterbot.storage.SQLStorageAdapter',

database_uri=None,

logic_adapters=[

 'chatterbot.logic.MathematicalEvaluation',

 'chatterbot.logic.TimeLogicAdapter',

 'chatterbot.logic.BestMatch'

]

)

Get a few responses from the bot

bot.get_response('What time is it?')

bot.get_response('What is 7 plus 7?')

Conclusion: Your chat bot will learn based on each new input statement it receives. If you

want to disable this learning feature after your bot has been trained, you can set read-

only=True as a parameter when initializing the bot.

chatbot = ChatBot("Johnny Five", read_only=True)

