Biotechnology and Genetics in Fisheries and Aquaculture, 2ed

Andy Beaumont, Pierre Boudry, Kathryn Hoare

ISBN: 9788126574681

216 pages

Exclusively distributed by Star Educational Books Distributors


INR 2495


Following the extremely well-received structure of the first edition, this carefully revised and updated new edition now includes much new information of vital importance to those working and researching in the fisheries and aquaculture industries. Commencing with chapters covering genetic variation and how it can be measured, the authors then look at genetic structure in natural populations, followed by a new chapter covering genetics in relation to population size and conservation issues. Genetic variation of traits and triploids and the manipulation of ploidy are fully covered, and another new chapter is included, entitled 'From Genetics to Genomics'. The book concludes with a chapter covering the impact of genetic engineering in aquaculture.


Preface to the second edition.



Chapter 1 What is genetic variation?

  • Deoxyribose nucleic acid.
  • Ribose nucleic acid.
  • What is the genetic code?
  • Protein structure.
  • So what about chromosomes?
  • How does sexual reproduction produce variation?
  • Mitochondrial and chloroplast DNA.


Chapter 2 How can genetic variation be measured?

  • DNA sequence variation.
  • DNA fragment size variation.
  • Protein variation.
  • Phenotypic variation.


Chapter 3 Genetic structure in natural populations.

  • What is a population?
  • How are allele frequencies estimated?
  • What is the relationship between alleles and genotypes?
  • How do allele frequencies change over time?
  • How does population structure arise?
  • How are genetic markers used to study population structure?
  • Levels of genetic differentiation in aquatic organisms.
  • Potential problems with allozymes and coding markers.
  • mtDNA variation.
  • Microsatellite variation.
  • Population structure in the flat oyster.
  • Mixed stock analysis (MSA).


Chapter 4 Genetics of population size in conservation and aquaculture.

  • Genetics of small population size in the wild.
  • Genetic markers in conservation.
  • Genetics of small population size in the hatchery.
  • Is there evidence of loss of genetic variation in the hatchery?
  • How does hatchery propagation affect heterozygosity?
  • Genetic markers for identification of hatchery product.
  • Genetic markers for pathogen identification.


Chapter 5 Genetic variation of traits.

  • Qualitative traits.
  • Quantitative traits.
  • What kinds of traits are important?
  • Variation of a quantitative trait.
  • How can we estimate narrow-sense heritability?
  • Realised heritability.
  • Correlated traits.
  • What types of artificial selections are there?.
  • Setting up a breeding programme.
  • Inbreeding, cross-breeding and hybridisation.
  • Current status of selective breeding programmes in aquaculture.


Chapter 6 From genetics to genomics.

  • What is the genome?
  • Genome mapping.
  • Whole genome sequencing: the 'big picture'.
  • QTL mapping.
  • Application of QTLs in aquaculture and fisheries management.
  • Marker-assisted selection (MAS): from QTLs to genomic selection.
  • Transcriptomics.


Chapter 7 Triploids and beyond: why manipulate ploidy?

  • How is it done?
  • Production of gynogens and androgens.
  • Identification of ploidy change.
  • Value of Triploids.
  • Tetraploids.
  • Gynogens and androgens.


Chapter 8 Genetic engineering in aquaculture.

  • The DNA construct.
  • Transgene delivery.
  • Transgene integration.
  • Detecting integration and expression of the transgene.
  • Results of transgenesis efforts in fish.
  • So much for transgenics -- what about cloning?
  • Genethics.




Colour plates.