Spin Dynamics, 2ed: Basics of Nuclear Magnetic Resonance

Malcolm H. Levitt

ISBN: 9788126568390

Exclusively distributed by Tata Book house

 

INR 3995

Description

Spin Dynamics: Basics of Nuclear Magnetic Resonance, Second Edition focuses on those essential principles and concepts needed for a thorough understanding of the subject, rather than its practical aspects. The quantum theory of nuclear magnets is presented within a strong physical framework, supported by a large number of figures, helping to make the text accessible to a wide range of readers. The book assumes only a basic knowledge of complex numbers and matrices, and provides the reader with numerous worked examples and problems to encourage understanding.

Preface.

Preface to the First Edition.

Introduction.

 

Part 1 Nuclear Magnetism.

1 Matter.

1.1 Atoms and Nuclei.

1.2 Spin.

1.3 Nuclei.

1.4 Nuclear Spin.

1.5 Atomic and Molecular Structure.

1.6 States of Matter.

 

2 Magnetism.

2.1 The Electromagnetic Field.

2.2 Macroscopic Magnetism.

2.3 Microscopic Magnetism.

2.4 Spin Precession.

2.5 Larmor Frequency.

2.6 Spin-Lattice Relaxation: Nuclear Paramagnetism.

2.7 Transverse Magnetization and Transverse Relaxation.

2.8 NMR Signal.

2.9 Electronic Magnetism.

 

3 NMR Spectroscopy.

3.1 A Simple Pulse Sequence.

3.2 A Simple Spectrum.

3.4 Relative Spectral Frequencies: Case of Positive Gyromagnetic Ratio.

3.5 Relative Spectral Frequencies: Case of Negative Gyromagnetic Ratio.

3.6 Inhomogeneous Broadening.

3.7 Chemical Shifts.

3.8 J-Coupling Multiplets.

3.9 Heteronuclear Decoupling.

 

Part 2 The NMR Experiment.

4 The NMR Spectrometer.

4.1 The Magnet.

4.2 The Transmitter Section.

4.3 The Duplexer.

4.4 The Probe.

4.5 The Receiver Section.

4.6 Overview of the Radio-Frequency Section.

4.7 Pulsed Field Gradients.

 

5 Fourier Transform NMR.

5.1 A Single-Pulse Experiment.

5.2 Signal Averaging.

5.3 Multiple-Pulse Experiments: Phase Cycling.

5.4 Heteronuclear Experiments.

5.5 Pulsed Field Gradient Sequences.

5.6 Arrayed Experiments.

5.7 NMR Signal.

5.8 NMR Spectrum.

5.9 Two-Dimensional Spectroscopy.

5.10 Three-Dimensional Spectroscopy.

 

Part 3 Quantum Mechanics.

6 Mathematical Techniques.

6.1 Functions.

6.2 Operators.

6.3 Eigenfunctions, Eigenvalues and Eigenvectors.

6.4 Diagonalization.

6.5 Exponential Operators.

6.6 Cyclic Commutation.

 

7 Review of Quantum Mechanics.

7.1 Spinless Quantum Mechanics.

7.2 Energy Levels.

7.3 Natural Units.

7.4 Superposition States and Stationary States.

7.5 Conservation Laws.

7.6 Angular Momentum.

7.7 Spin.

7.8 Spin-1/2.

7.9 Higher Spin.

 

Part 4 Nuclear Spin Interactions.

8 Nuclear Spin Hamiltonian.

8.1 Spin Hamiltonian Hypothesis.

8.2 Electromagnetic Interactions.

8.3 External and Internal Spin Interactions.

8.4 External Magnetic Fields.

8.5 Internal Spin Hamiltonian.

8.6 Motional Averaging.

 

9 Internal Spin Interactions.

9.1 Chemical Shift.

9.2 Electric Quadrupole Coupling.

9.3 Direct Dipole-Dipole Coupling.

9.4 J-Coupling.

9.5 Spin-Rotation Interaction.

9.6 Summary of the Spin Hamiltonian Terms.

 

Part 5 Uncoupled Spins.

10 Single Spin-1/2.

10.1 Zeeman Eigenstates.

10.2 Measurement of Angular Momentum: Quantum Indeterminacy.

10.3 Energy Levels.

10.4 Superposition States.

10.5 Spin Precession.

10.6 Rotating Frame.

10.7 Precession in the Rotating Frame.

10.8 Radio-Frequency Pulse.

 

11 Ensemble of Spins-1/2.

11.1 Spin Density Operator.

11.2 Populations and Coherences.

11.3 Thermal Equilibrium.

11.4 Rotating-Frame Density Operator.

11.5 Magnetization Vector.

11.6 Strong Radio-Frequency Pulse.

11.7 Free Precession Without Relaxation.

11.8 Operator Transformations.

11.9 Free Evolution with Relaxation.

11.10 Magnetization Vector Trajectories.

11.11 NMR Signal and NMR Spectrum.

11.12 Single-Pulse Spectra.

 

12 Experiments on Non-Interacting Spins-1/2.

12.1 Inversion Recovery: Measurement of T1.

12.2 Spin Echoes: Measurement of T2.

12.3 Spin Locking: Measurement of T1ˆ.

12.4 Gradient Echoes.

12.5 Slice Selection.

12.6 NMR Imaging.

 

13 Quadrupolar Nuclei.

13.1 Spin I = 1.

13.2 Spin I = 3/2.

13.3 Spin I = 5/2.

13.4 Spins I = 7/2.

13.5 Spins I = 9/2.

 

Part 6 Coupled Spins.

14 Spin-1/2 Pairs.

14.1 Coupling Regimes.

14.2 Zeeman Product States and Superposition States.

14.3 Spin-Pair Hamiltonian.

14.4 Pairs of Magnetically Equivalent Spins.

14.5 Weakly Coupled Spin Pairs.

 

15 Homonuclear AX System.

15.1 Eigenstates and Energy Levels.

15.2 Density Operator.

15.3 Rotating Frame.

15.4 Free Evolution.

15.5 Spectrum of the AX System: Spin-Spin Splitting.

15.6 Product Operators.

15.7 Thermal Equilibrium.

15.8 Radio-Frequency Pulses.

15.9 Free Evolution of the Product Operators.

15.10 Spin Echo Sandwich.

 

16 Experiments on AX Systems.

16.1 COSY.

16.2 INADEQUATE.

16.3 INEPT.

16.4 Residual Dipolar Couplings.

 

17 Many-Spin Systems.

17.1 Molecular Spin System.

17.2 Spin Ensemble.

17.3 Motionally Suppressed J-Couplings.

17.4 Chemical Equivalence.

17.5 Magnetic Equivalence.

17.6 Weak Coupling.

17.7 Heteronuclear Spin Systems.

17.8 Alphabet Notation.

17.9 Spin Coupling Topologies.

 

18 Many-Spin Dynamics.

18.1 Spin Hamiltonian.

18.2 Energy Eigenstates.

18.3 Superposition States.

18.4 Spin Density Operator.

18.5 Populations and Coherences.

18.6 NMR Spectra.

18.7 Many-Spin Product Operators.

18.8 Thermal Equilibrium.

18.9 Radio-Frequency Pulses.

18.10 Free Precession.

18.11 Spin Echo Sandwiches.

18.12 INEPT in an I2S System.

18.13 COSY in Multiple-Spin Systems.

18.14 TOCSY.

 

Part 7 Motion and Relaxation.

19 Motion.

19.1 Motional Processes.

19.2 Motional Time-Scales.

19.3 Motional Effects.

19.4 Motional Averaging.

19.5 Motional Lineshapes and Two-Site Exchange.

19.6 Sample Spinning.

19.7 Longitudinal Magnetization Exchange.

19.8 Diffusion.

 

20 Relaxation.

20.1 Types of Relaxation.

20.2 Relaxation Mechanisms.

20.3 Random Field Relaxation.

20.4 Dipole-Dipole Relaxation.

20.5 Steady-State Nuclear Overhauser Effect.

20.6 NOESY.

20.7 ROESY.

20.8 Cross-Correlated Relaxation.

 

Notes.

Further Reading.

Exercises.

 

Appendices.

Appendix A.

A.1 Euler Angles and Frame Transformations.

A.2 Rotations and Cyclic Commutation.

A.3 Rotation Sandwiches.

A.4 Spin-1/2 Rotation Operators.

A.5 Quadrature Detection and Spin Coherences.

A.6 Secular Approximation.

A.7 Quadrupolar Interaction.

A.8 Strong Coupling.

A.9 J-Couplings and Magnetic Equivalence.

A.10 Spin Echo Sandwiches.

A.11 Phase Cycling.

A.12 Coherence Selection by Pulsed Field Gradients.

A.13 Bloch Equations.

A.14 Chemical Exchange.

A.15 Solomon Equations.

A.16 Cross-Relaxation Dynamics.

Notes.

Further Reading.

 

Appendix B.

B.1 Symbols and Abbreviations.

B.2 Answers to the Exercises.